
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

Branch and Bound Algorithm in Decision Making for 

a Connect Four Game 
 

Rinaldy Adin - 13521134 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: rinaldyadin@gmail.com 

 

 
Abstract—This paper aims to implement a popular board 

game named “Connect Four”. The two-player game is played by 

each player dropping a disc into a vertical board with the goal of 

creating a line of four discs. The solution proposed implements 

an algorithm that uses the branch and bound strategy, called 

Alpha-Beta Pruning, in order to simulate possible moves that can 

be done to win. The result is that the algorithm is effective in 

identifying possible opportunities and threats that are given by 

the opponent, and is able to do the simulations in an efficient 

manner. 

Keywords—Branch and bound, alpha beta pruning, connect 

four 

I.  INTRODUCTION 

The game of Connect Four has long captivated enthusiasts 
with its simplicity and strategic depth. As a two-player board 
game, it offers a challenging environment where players strive 
to be the first to connect four of their colored discs in a row 
horizontally, vertically, or diagonally. With a seemingly 
endless number of possible moves and outcomes, finding an 
optimal decision-making strategy becomes crucial for success 
in Connect Four. The board board game is played using a 
vertical board where players take turns to drop their discs, 
colored based on the player. Each turn, a player drops their 
discs into one of the seven columns where the discs will drop 
as far down as it can go, either dropping into the base of the 
vertical board or dropping on top of another disc. 

Each player has to strategize on which column they are 
going to drop their disc on. With each player having the final 
goal of getting four of their discs on a row, players can either 
drop their discs with the goal of reaching that goal, or by 
blocking the other player from potentially being able to get 
four discs on the row. 

 

Figure 1 Connect Four Physical Board Game 
(https://shop.hasbro.com/en-us/product/connect-4-game/80FB5BCA-5056-

9047-F5F4-5EB5DF88DAF4) 

One algorithm strategy that could be used to choose an 
optimal move in the game is by using a branch and bound 
algorithm. Branch and bound algorithms are used to efficiently 
explore possible states during solving a certain problem. 
Branch and bound algorithms branch trough the possible 
moves a player can make, then evaluating that branched state 
and scoring the state based on a heuristic. Branching happens 
until a certain depth is reached or a certain condition is 
reached. Using the correct heuristic and conditions, the branch 
and bound algorithm can find an optimal solution to a problem 
in an efficient manner. 

II. CONNECT FOUR RESPRESENTED IN A BRANCH AND BOUND 

ALGORITHM 

As previously mentioned, a connect four game state is 
represented by a two dimensional grid with seven columns and 
five rows. Each cell in the grid will represent whether or not 
the cell is empty and if it is not empty, the cell will represent 
the color of the disc in the shell, showing which player’s disc it 
is. Then, each turn is represented by receiving an input from 
the player, then inserting their disc into the chosen column and 
implementing the logic to “drop” their disc into the bottom of 
the column. After each turn, the program will have to evaluate 
for a winnning state based on the resulting positions of discs in 
the board. The evaluation will consider cases of horizontal, 
vertical, and diagonal winning states. If a winning state is 
found, then the player that last inserted their discs wins, and if 
not, the turn is switched to the other player to insert their own 
disc. This is repeated until a winning state is found and the 
winner chosen or when the board is full and no more discs can 
be inserted, in which case a draw happens between the players. 

The game has its appeal from it’s simplicity in how to play 
and how to win, similar in nature to other two player games 
like tic-tac-toe and chess, albeit being slightly more complex 
version of tic-tac-toe and also being a much more simpler game 
than chess. Unlike tic-tac-toe, a game of Connect Four can be 
quite complex in which two players are strategizing to both get 
four discs in a row while also trying to block the other player, 
but unlike a game of chess a player only has seven possible 
moves during a single turn in a game of Connect Four, while 
chess players have tens of possible moves. Overall, Connect 
Four has just the right simplicity for children and adults alike to 
easily pick the game up and have fun right away. 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

In order to develop a computer program that’s decent in 
playing a game of Connect Four, there needs to be an algorithm 
that can equally match the decision making of a real human 
that’s playing the game. In order to do that, algorithm strategies 
that are often used predict and simulate the possible moves and 
outcomes that it is presented with, and then come up with the 
best possible move, or at least what it thinks is the best possible 
move. Simulating those possible moves and outcomes will 
require a sizeable amount of computing space and resources, 
although computer power right now has been faster than ever, 
optimization is still needed so the algorithm won’t have to 
expand into useless possibilities where it is obvious that the 
move is not beneficial. One possible algorithm strategy for that 
is using the branch and bound approach. 

Branch and bound algorithm work by branching all 
possible moves that can be done off of a single state, evaluating 
and also socing them based on a heuristic, then continuing until 
a certain condition is reached, such as a winning state or a 
certain depth of search. The bound in a branch and bound 
algorithm is done by bounding or discarding the previous states 
that has a score that’s disadvantageous in comparison to the 
last found best solution or score. Using those two concepts, 
branch and bound algorithms are able to simulate many 
possible moves without having to worry about evaluating 
obviously disadvantageous possibilities. 

In this particular problem of exploring possible moves in a 
Connect Four game, a state in the exploration is the positions 
of the colored discs in the board. Branching in this case will be 
based on the possible moves a player can make, with 
simulating the alternation of the players turn. While Bounding 
is done by evaluating a single state based on a heuristic that is 
deemed able to score whether or not the possible move is 
advantageuos or not. While common branch and bound 
algorithms bound or prune branches basesd on whether the 
score of a branch is higher or lower than the last found best 
branch, since this exploring the possibilities in a Connect Four 
game has to consider the turn of the opposing player and also 
consider the likelihood of the other player winning, an 
optimized algorithm based on branch and bound is used, called 
Alpha-Beta Pruning. 

 

Figure 2 Illusstration of Alpha-Beta Pruning 
(https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning) 

 Alpha-beta pruning is an optimized branch and bound 
algorithm commonly used in game tree search, such as in the 
Connect Four game. It enhances the efficiency of the search by 
eliminating branches that do not need to be explored further. 
Unlike traditional branch and bound algorithms that prune 
branches based on whether the score is higher or lower than the 
best score found so far, alpha-beta pruning takes advantage of 

the fact that players take turns in games like Connect Four. It 
uses two additional values, alpha and beta, to keep track of the 
lower and upper bounds of the best scores for the maximizing 
and minimizing players, respectively. By intelligently pruning 
branches that are guaranteed to be worse than previously 
explored branches, alpha-beta pruning significantly reduces the 
number of game states that need to be evaluated, resulting in a 
more efficient search for the optimal move. 

In alpha-beta pruning, the alpha and beta values are used to 
keep track of the best scores found so far during the search. 
They represent lower and upper bounds, respectively, on the 
scores that the maximizing and minimizing players can 
achieve. The alpha value represents the best (highest) score 
found for the maximizing player (current player) up to the 
current point in the search. It starts with an initial value of 
negative infinity and gets updated as the search progresses. It 
keeps track of the maximum score that the maximizing player 
can achieve. The beta value represents the best (lowest) score 
found for the minimizing player (opponent) up to the current 
point in the search. It starts with an initial value of positive 
infinity and also gets updated during the search. It keeps track 
of the minimum score that the minimizing player can achieve. 

As the search algorithm explores different branches of the 
game tree, it passes the alpha and beta values along to evaluate 
the possible outcomes. The values are updated as follows: 

1. At maximizing (max) nodes: 

When evaluating the children of a max node, if a child's 
score is found to be greater than the current alpha value, it 
means the maximizing player has found a better move. In 
this case, the alpha value is updated with the new, higher 
score. 

2. At minimizing (min) nodes: 

When evaluating the children of a min node, if a child's 
score is found to be less than the current beta value, it 
means the minimizing player has found a better move. In 
this case, the beta value is updated with the new, lower 
score. 

The pruning occurs when the following conditions are met: 

1. At maximizing (max) nodes: 

If a child's score is greater than or equal to the current beta 
value, the remaining branches under that max node can be 
pruned. This is because the minimizing player (opponent) 
would never choose this branch as it leads to a worse 
outcome for them. 

2. At minimizing (min) nodes: 

If a child's score is less than or equal to the current alpha 
value, the remaining branches under that min node can be 
pruned. This is because the maximizing player (current 
player) would never choose this branch as it leads to a 
worse outcome for them. 

By updating and comparing the alpha and beta values, 
alpha-beta pruning selectively explores only the most 
promising branches of the game tree while disregarding less 
desirable branches. This optimization significantly reduces the 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

number of nodes that need to be evaluated, leading to a more 
efficient search process and improved performance in game-
playing scenarios. 

III. IMPLEMENTATION 

The program used to test and play the Connect Four game 
is made using python, a simple to use, but powerful 
programming language. The program will display a Connect 
Four board that, instead of colored discs, will display X, O, and 
– (hyphens) as an indicator of whether or not a cell is filled 
with a discs and which player has which disc. In the 
implementation the board is simply a two dimensional numpy 
array fille with numbers corresponding to the player who 
dropped the disc. In this case, the player that has their moves 
chosen by the branch and bound algorithm will be the second 
player, referred to as the “opponent”, while the player that gets 
the first chance to move and will be controlled by the human is 
the first player. 

The main program will only concern with the logic of 
receiving an input, the logic of validating whether or not the 
input is valid, and also the logic of checking whether or not a 
game over scenario is reached, whether it be due to a draw or 
one of the two players winning. The implementation of the 
main program is as follows, 

def play_game(): 
    board = create_board() 
    current_player = 1 
 
    while True: 
        if current_player == 1: 
            display_board(board) 
            col = 
get_next_move(current_player) 
            print(f"Opponent played {col}") 
        else: 
            col = get_opponent_move(board, 
current_player, DEPTH) 
 
        if is_valid_move(board, col): 
            make_move(board, col, 
current_player) 
 
            if check_win(board, 
current_player): 
                display_board(board) 
                print(f"Player 
{current_player} wins!") 
                break 
 
            if np.count_nonzero(board == 0) == 
0: 
                display_board(board) 
                print("It's a draw!") 
                break 
 
            current_player = 3 - 
current_player  # Switch players (1 -> 2, 2 -> 
1) 

            print() 
        else: 
            print("Invalid move. Please choose 
another column.") 

 

 The main program also handles the turn of the current 
player, alternating between the player and the computer 
algorithm. Checking whether or not there is a winning 
condition in every turn is done with a brute force approach 
where every possibility of a consecutive four discs of the same 
color being positioned horizontally, vertically, or diagonally. 
The brute force algorithm is as follows, 

def check_win(board, player): 
    # Check horizontally 
    for row in range(ROWS): 
        for col in range(COLS - 3): 
            if board[row][col] == player and 
board[row][col + 1] == player and 
board[row][col + 2] == player and 
board[row][col + 3] == player: 
                return True 
     
    # Check vertically 
    for row in range(ROWS - 3): 
        for col in range(COLS): 
            if board[row][col] == player and 
board[row + 1][col] == player and board[row + 
2][col] == player and board[row + 3][col] == 
player: 
                return True 
     
    # Check diagonally (positive slope) 
    for row in range(ROWS - 3): 
        for col in range(COLS - 3): 
            if board[row][col] == player and 
board[row + 1][col + 1] == player and 
board[row + 2][col + 2] == player and 
board[row + 3][col + 3] == player: 
                return True 
     
    # Check diagonally (negative slope) 
    for row in range(3, ROWS): 
        for col in range(COLS - 3): 
            if board[row][col] == player and 
board[row - 1][col + 1] == player and 
board[row - 2][col + 2] == player and 
board[row - 3][col + 3] == player: 
                return True 
     
    return False 

 

 After the first player inputs the position to drop their disc, 
the program immediately  switches into the second player and 
computes the best move to make as the opponent. As 
previously mentioned before, the opponent uses an alpha beta 
pruning algorithm, which is a type of branch and bound 
algorithm that uses extra variables, being alpha and beta, to 
determine the score, effectiveness, and relevance of the current 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

state being evaluated. The main alpha beta pruning algorithm 
and the function to extract the best move out of the alpha beta 
algorithm is as follows, 

def alpha_beta_pruning(board, player, depth, 
alpha, beta): 
    best_move = None 
 
    # Check game state and evaluate if depth 
is reached or game is over 
    if depth == 0 or check_win(board, player) 
or no_more_moves(board): 
        return evaluate(board, player), 
best_move 
 
    for move in get_possible_moves(board): 
        make_move(board, move, player) 
        score, _ = alpha_beta_pruning(board, 
get_opponent(player), depth - 1, -beta, -
alpha) 
        score *= -1 
        undo_move(board, move) 
 
        if score >= beta: 
            return beta, move 
        if score > alpha: 
            alpha = score 
            best_move = move 
 
    return alpha, best_move 

  

 As shown in the implementation, the get_opponent_move 
function returns the best possible move evaluated by the 
alpha_beta_pruning function. The alpha_beta_pruning function 
returns a tuple containing the score of the evaluated state and 
also the best move that is most beneficial coming from that 
evaluated state. The algorithm goes into the max depth that it is 
allowed to go in this case the max detph is set to 4, or until it 
reaches a state where one of the player win or the both draw, 
where in that case the algorithm calculates and return the score 
for that particular case. The alpha beta pruning doesn’t directly 
check which player it is currently evaluating, whether it is the 
maximizing player (opponent) or the minimizing player 
(human). Instead, the algorithm switches the alpha and beta 
values of the algorithm everytime it goes to a deeper level and 
also the algorithm negates the score that it receives from a 
lower level, since it was maximized for the other player, while 
in the current level the value for the other player should be 
minimized. 

 The alpha beta pruning function compares the values of 
each state by evaluating a score for each state it has reached, in 
order to evaluate that state, there needs to be a heuristic 
calculated for that current state. The heuristic chosen should be 
able to reduce a certain state into a value that represents the 
advantage and disadvantage a current player has by being in 
that state. Knowing that there are some considerations in 
choosing the heuristic, 

1. Threats and Opportunities:  

Identify potential threats and opportunities on the board. 
Look for patterns that can lead to a win or block the 
opponent's winning moves. Assign higher values to game 
states that have more potential winning moves and fewer 
opportunities for the opponent. 

2. Connected Discs: 

Evaluate the number of connected discs in rows, columns, 
and diagonals. Connected discs contribute to winning 
possibilities. Assign higher weights to longer chains of 
connected discs, as they represent stronger positions. 

3. Center Control: 

Recognize the importance of controlling the center 
columns, as they offer more opportunities for creating 
winning sequences. Assign higher values to game states 
where the player has discs in the center columns. 

4. Safe Moves: 

Evaluate the safety of moves by considering their 
vulnerability to being blocked by the opponent in 
subsequent turns. Avoid moves that can easily be countered 
by the opponent and prioritize moves that maximize the 
player's chances of connecting four discs. 

5. Positional Advantage: 

Consider the positional advantage of certain columns or 
cells on the board. Assign higher weights to moves that 
provide strategic advantages, such as creating multiple 
potential winning sequences or blocking the opponent's 
important positions. 

 A simple implementation for the heuristic that considers the 
treats and opportunities based on the connected discs and also 
whether or not the move puts the computer in a worse position 
is by calculating the number of possible winning moves a 
player can get from a single move from that state and also by 
evaluating whether or not that state is already a winning state 
for the current player or the opposing player. The 
implementation of the evaluate function is as follows, 

def evaluate(board, player): 
    opponent = 3 - player  # Get the opponent 
player 
 
    # Evaluate for winning moves 
    if check_win(board, player): 
        return float('inf')  # Current player 
has a winning move, return positive infinity 
    elif check_win(board, opponent): 
        return -float('inf')  # Opponent has a 
winning move, return negative infinity 
 
    # Evaluate for the number of potential 
winning moves 
    player_winning_moves = 
count_winning_moves(board, player) 
    opponent_winning_moves = 
count_winning_moves(board, opponent) 
 
    # Calculate the heuristic score 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

    score = player_winning_moves - 
opponent_winning_moves 
 
    return score 

 

 The evaluate function will return a positive or negative 
infinity in the case that a certain state will result in a win or loss 
for the current player. If the check_win function detects that the 
state is a win for the current player, the function will return 
positive infinity, causing the alpha_beta_pruning function to 
identify that state as the worst state. Since the branch and 
bound function alternates between players to consider, so a win 
for the current player in the evaluate function means that the 
opposite player is getting a winning state. But, if the check_win 
function detects that the current state causes a loss for the 
current player, the evaluate function will return a negative 
infinity, causing the alpha_beta_pruning function to identify 
the state as a best state for the current player int the 
alpha_beta_pruning function.  

 In the case that a state is not a winning or losing state, the 
evaluate functio will score the state based on the heuristic 
mentioned before. The function will calculate the possible 
winning moves using the count_winning_moves that will get 
the number of possible winning a player can get within a single 
turn. The evaluate function subtracts the possible winning 
moves of the current player with the possible winning moves of 
the opposing player. This heuristic should be able to predict 
which moves are beneficial and which are disadvantageous.  

 The count_winning_moves function uses a brute force 
approach, similar to the check_win function. The 
count_winnning_moves function only calculates the number of 
possible moves that a player can make which results in a win 
situation, whether it be a horizontal, vertical, or diagonal. The 
implementation is as follows, 

def count_winning_moves(board, player): 
    count = 0 
 
    # Check horizontally 
    for row in range(ROWS): 
        for col in range(COLS - 3): 
            if board[row][col] == player and 
board[row][col + 1] == player and 
board[row][col + 2] == player and 
board[row][col + 3] == 0: 
                count += 1 
 
    # Check vertically 
    for row in range(ROWS - 3): 
        for col in range(COLS): 
            if board[row][col] == player and 
board[row + 1][col] == player and board[row + 
2][col] == player and board[row + 3][col] == 
0: 
                count += 1 
 
    # Check diagonally (positive slope) 
    for row in range(ROWS - 3): 
        for col in range(COLS - 3): 

            if board[row][col] == player and 
board[row + 1][col + 1] == player and 
board[row + 2][col + 2] == player and 
board[row + 3][col + 3] == 0: 
                count += 1 
 
    # Check diagonally (negative slope) 
    for row in range(3, ROWS): 
        for col in range(COLS - 3): 
            if board[row][col] == player and 
board[row - 1][col + 1] == player and 
board[row - 2][col + 2] == player and 
board[row - 3][col + 3] == 0: 
                count += 1 

 

    return count 

 

 As shown in the implementation the count_winning_moves 
function  brute forces the possible chances of winning. The 
function is similar to the check_win function, but instead 
checks whether or not there are three consecutive discs and has 
an adjacent cell that results in a winnning condition. 

IV. RESULTS 

In order check the effectiveness of the algorithm, testing is 
done by playing against the algorithm and putting the 
algorithm in certain situations to see whether or not the 
algorithm responds to a situation accordingly. 

First, the opponent is put in a situation where there is an 
obvious move where it is beneficial and will result in a win, 

 

Figure 3 Possible Winning Condition for Player Two 

In that case, the algorithm (represented with O) can simply 
place their disc in the 0 column and be able to win the gane, in 
the case that the player (represented with X) doesn’t block that 
situation,  

 

Figure 4 Winning Condition for Player Two 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

The algorithm is able to identify that dropping a disc in column 
0 results in a win. 

 Another case to be tested is by testing whether or not the 
algorithm identifies winning situations with other orientations, 
such as horizontal or diagonal. Here the algorithm is given a 
clear choice of dropping their disc into a winnning position 
with a horizontal orientation, 

 

Figure 5 Possible Horizontal Winning Condition for Player Two 

In that case, the algorithm can simply place their O disc into 
column 3. The human player will simulate not realizing that 
losing condition by dropping an X disc into column 2, 

 

Figure 6 Winning Condition for Player Two 

The algorithm is able to identify that dropping a disc in column 
3 results in a win. 

 Lastly it should be tested whether or not the algorithm is 
able to block the human players potential winning condition. 
Here, the player already has two consecutive discs and 
dropping a third one means that the algorithm should block 
possible winning moves for the player, 

 

Figure 7 Possible Losing Condition for Player Two 

The human player will drop their X disc into column 4, where 
if the algorithm fails to block that three horizontal consecutive 
X discs into four consecutive discs, the algorithm will lose, 

 

Figure 4 Player Two Blocking Player One Winning Condition 

The player moving their disc into column four has successfully 
alterted the algorithm into blocking the players move. 

V. CONCLUSION 

 Using a branch and bound approach in implementing an 

algorithm to play connect four is proven to be effective in 

choosing the right moves in order for the algorithm to win. 

The alpha beta pruning algorithm has successfully pruned 

solutions that are deemed useless with branching into a depth 

level of four is not hindered by performance and the algorithm 

is able to produce a advantageous solution quickly. A next 

step in optimizing this implementation can be done by using a 

more accurate and complex heuristic to calculate an 

advantageous situation in the branching. 

 

VIDEO LINK 

https://bit.ly/video-makalah-13521134  

 

GITHUB LINK 

https://github.com/Rinaldy-Adin/connect-four-bnb 

 

REFERENCES 

[1] Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A 
Modern Approach (3rd ed.). Pearson Education. p. 167. ISBN 978-0-13-
604259-4. 

[2] Kuo, J. C. (2021, May 26). Artificial Intelligence at Play — Connect 
Four (Minimax algorithm explained). Medium. 
https://medium.com/analytics-vidhya/artificial-intelligence-at-play-
connect-four-minimax-algorithm-explained-3b5fc32e4a4f 

[3] Alpha-Beta - Chessprogramming wiki. (n.d.). Alpha-Beta - 
Chessprogramming Wiki. https://www.chessprogramming.org/Alpha-
Beta#:~:text=The%20Alpha%2DBeta%20algorithm%20(Alpha,of%20o
verlooking%20a%20better%20move. 

[4] https://shop.hasbro.com/en-us/product/connect-4-game/80FB5BCA-
5056-9047-F5F4-5EB5DF88DAF4. (n.d.). https://shop.hasbro.com/en-
us/product/connect-4-game/80FB5BCA-5056-9047-F5F4-
5EB5DF88DAF4 

 

https://bit.ly/video-makalah-13521134
https://github.com/Rinaldy-Adin/connect-four-bnb


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis 

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan 

dari makalah orang lain, dan bukan plagiasi. 

Bandung, 22 Mei 2023 

 
Rinaldy Adin 13521134 

    

 

 
 

 

 

 

 


