
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Membership Testing on Monotonic Linear

Recurrence Relation Using Matrix Exponentiation

and Decrease and Conquer Algorithm

Farizki Kurniawan - 13521082

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13521082@std.stei.itb.ac.id

Abstract— Linear recurrence relations are mathematical

objects that describe a sequence of numbers in terms of its

previous terms. In this paper, an algorithm based on matrix

exponentiation and decrease and conquer approach is proposed to

solve one of the problem regarding these relations, namely

membership testing, where there is a need to determine whether a

given number belongs to the sequence generated by a particular

recurrence relation. The algorithm works specifically on

monotonic linear recurrence relation, where the relation should be

either increasing or decreasing constantly, to ensure that the

decrease and conquer part of the algorithm works as intended.

Keywords—membership testing; linear recurrence; matrix

exponentiation; decrease and conquer

I. INTRODUCTION

Linear recurrence relations are mathematical objects that
describe a sequence of numbers in terms of its previous terms.
They have wide applications in various areas, such as computer
science, cryptography, and physics. A problem in linear
recurrence relations is to determine whether a given number
belongs to the sequence generated by a particular recurrence
relation, called membership testing.

In this paper, an algorithm to test whether or not a given
number is a member of a recurrence relation is proposed. This
algorithm combines two well-known algorithms, namely matrix
exponentiation and decrease and conquer (DnC). Matrix
exponentiation is used to compute the nth term of the sequence
generated by the recurrence relation, while decrease and conquer
is used to reduce the computation time by recursively dividing
the exponent into smaller subproblems. However, due to the
nature of the decrease and conquer algorithm, the linear
recurrence relation needs to be monotonic, i.e. every elements of
the recurrence relation needs to be strictly larger or smaller than
the element before it.

Later on, an analysis of the proposed algorithm is detailed,
including its time complexity and space requirements. An
example of the algorithm being used is also given, both for the
searching the n-th term of the monotonic linear recurrence
relation and the algorithm of membership testing of a given
number in the linear recurrence relation.

II. THEORETICAL FRAMEWORK

A. Linear Recurrence Relation

A reccurence relation is a mathematical relationship

expressing 𝑓𝑛 as some combination of 𝑓𝑖 with 𝑖 < 𝑛. When

formulated as an equation to be solved, recurrence relations are

known as recurrence equations, or sometimes difference

equations [1].

A linear recurrence equation is a recurrence equation on a

sequence of numbers 𝑥𝑛 expressing 𝑥𝑛 as a first-degree

polynomial in 𝑥𝑘 with 𝑘 < 𝑛 [2]. An example of such equation

is as follows.

A monotonic recurrence relation is a type of recurrence
relation where the terms of the sequence either consistently
increase or consistently decrease as the index of the sequence
increases. In a monotonic increasing recurrence relation, each
term of the sequence is greater than or equal to the previous term.

Mathematically, if we have a recurrence relation where aₙ
represents the nth term of the sequence, the sequence is called
monotonic increasing if

for all n.

On the other hand, the sequence is called monotonic
decreasing if

for all n.

B. Membership Testing

Membership testing is the problem of testing whether or not

an element is in a set of elements [3]. This set of elements may

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

be stated may be either finite or infinite. Finite set of elements

are usually elements with clearly stated boundaries and

explanation on what the members are.

On the other hand, an infinite set is usually generated with

some kind of functions or languages with predetermined rules

on determining the members of the set.

C. Matrix Exponentiation

The concept of matrix exponentiation in its most general
form is very useful in solving questions that involve calculating
the term of a linear recurrence relation in time of the order of
log2 𝑛 [4]. Matrix exponentiation is useful in solving these linear
recurrence relation due to the fact that multiple variables can be
calculated at once in a matrix, and also the fact that
exponentiating a matrix will cost less in terms of multiplication
rather than iterative solving makes it an efficient choice for
solving linear recurrence relation problems.

Matrix exponentiation uses the concept of divide and
conquer to make the amount of matrix multiplication operations
as minimum as possible. For example, to calculate the value of
a matrix exponentiated to the power of 16, instead of multiplying
the matrix by itself 16 times, it calculates power of 16 as power
of 8 times power of 8, then power of 8 as multiplication of power
of 4s, all the way to multiplication of the original matrices,
resulting in about log2 𝑛 number of matrix multiplication.

D. Decrease And Conquer Algorithm

Decrease and conquer algorithms are algorithms which

attempt to reduce a problem into smaller sub-problems to

finally compute only one sub-problem. This approach can be

seen as a modification to the more popular divide and conquer

algorithms, which divide a problem into smaller subproblems,

processing both, and combining the solutions of each sub-

problem [5].

Decrease and conquer algorithms have two steps, which are

decrease and conquer. The first step of the algorithm, decrease,

is about reducing a problem into smaller sub-problems. On the

other hand, the conquer step is where the algorithm processes

only one of the divided subproblem. There is no “combine” step

in the decrease and conquer algorithm, as there is only one

processed sub-problem [6].

There are three variants of decrease and conquer:

1. Decrease by a constant: the problem is reduced by a

constant value in each iteration. Some examples include

insertion sort and selection sort.

2. Decrease by a constant factor: the problem is reduced by

a constant factor in each iteration. Some examples include

binary search and fake-coin problems.

3. Decrease by a variable size: the problem is reduced by

different amounts in each iteration. Some examples include

Euclid’s algorithm and selection by partition.

The algorithm designed in this paper will take the second

variant, decrease by a constant factor.

III. ALGORITHM TO CALCULATE THE N-TH TERM OF A LINEAR

RECURRENCE RELATION

In this paper, the linear recurrence solved is going to have
the form of

We can construct a k*k matrix T:

And k*1 matrix F

Where T*F equals to

To calculate the n-th term of the recurrence relation using
this method, we can calculate the matrix

where the n-th term is the first term of the matrix 𝐶𝑛 [4].
Then, using the divide and conquer method, we can easily get
𝑇𝑛 using the fact that

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

We can find the matrix 𝑇𝑛 in around log2 𝑛 matrix
multiplications. Given that each matrix multiplication requires
around 𝑘3 operations, the time complexity of calculating the n-
th term of a linear recurrence relation is about 𝑂(𝑘3 log2𝑛).

As an example, suppose we are searching for the 10-th term
of the Pell sequence where:

 The steps to calculate the 10-th term is as follows:

1. Construct the 2 * 2 matrix T as follows

2. Calculate 𝑇10, notice that 𝑇10 = 𝑇5 ∗ 𝑇5 , where

𝑇5 = 𝑇4 ∗ 𝑇, 𝑇4 = 𝑇2 ∗ 𝑇2 and 𝑇2 = 𝑇 ∗ 𝑇.
Then, the value of 𝑇10 is obtained as

3. Construct the matrix F as follows

4. Calculate C10 as follows

where we got the value of C10 as

5. The 10-th term of the recurrence relation is then
obtained as the first value of C10. Thus, the following
value is obtained.

 From the explanation before, we can see that the
algorithm to get th n-th term of the linear recurrence relation
works by using the concept of matrix exponentiation, where we
find the n-th power of a matrix using a divide and conquer
approach. The value of the matrix is then used to be multiplied

with a starting state values of the recurrence relation to finally
get the correct term of the linear recurrence.

IV. ALGORITHM TO TEST MEMBERSHIP OF A GIVEN NUMBER IN

A MONOTONIC LINEAR RECURRENCE RELATION

The algorithm starts with a state of testing whether or not the
given number is the first element of the linear recurrence
relation. If the number is not the first element of the linear
recurrence relation, then we can check the second element of the
linear recurrence relation to see if the linear recurrence is
increasing or decreasing.

If the number is still not found as a member in the linear
recurrence relation at this point, we should check whether the
given number may appear in the later elements of the sequence.
We can check from the first element and rule out the possibilities
of the number appearing if one of the followings is true:

1. The monotonic linear recurrence relation is increasing
and the given number is smaller than the first element,
or

2. The monotonic linear recurrence relation is decreasing
and the given number is larger than the first element.

If it is shown that the given number may appear in the later
indices of the linear reccurence relation, then we may proceed to
make the set to be tested larger by increasing the checked
number of the linear recurrence relation by a constant multiplier
until either one of the three conditions is met:

1. The monotonic linear recurrence relation is increasing
and the current checked index of the recurrence relation
is larger than the given number, or

2. The monotonic linear recurrence relation is decreasing
and the current checked index of the recurrence relation
is smaller than the given number, or

3. The current checked index of the recurrence relation is
same as the given number.

 At this point, if we found a number in the recurrence relation
to be the exact same as the given number, we can proceed to
declare that the given number is, in fact, a member of the
recurrence relation. If not, then we can proceed with the next
part of the algorithm.

When the testing state is finalized, i.e. we know that the
given number may only be a member in that state, then we can
proceed to implement a decrease and conquer technique to find
whether the given number is a member in the monotonic linear
recurrence relation. The algorithm used is as follows:

1. Establish three variables, namely left, middle, and right,
with left being the number one and right being the
number of the largest index of the testing state.

2. Calculate middle as the midpoint between left and right.

3. Check whether the middle’s element of the linear
recurrence relation is the given number. If not, check
whether the given number should be in the leftside of
the midpoint or the rightside of the midpoint. We can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

know whether a given number may appear in the leftside
or the rightside of the midpoint with rules as follows:

a. If the monotonic linear recurring relation is
increasing, the given number may appear on the
leftside of the midpoint if the given number’s value
is smaller than the midpoint’s value. Otherwise, it
may lie on the rightside of the midpoint.

b. If the monotonic linear recurring relation is
decreasing, the given number may appear on the
leftside of the midpoint if the given number’s value
is larger than the midpoint’s value. Otherwise, it
may lie on the rightside of the midpoint.

4. If the given number may lie on the leftside of the middle
point, change the value of right to middle-1. Otherwise,
change the value of left to middle+1.

5. If the given number is already found in the linear
recurrence relation declare the given number as a
member of linear recurrence relation and stop the
algorithm. On the other hand, if the size of the testing
state is one and the given number is not found, it is
declared as not a member of the linear recurrence
relation. Otherwise, go to step 2 of the algorithm.

As an example, suppose the algorithm attempts to check the
membership of the number 6765 in the linear recurrence with
the formula of

The following are the steps taken to test the membership of
the given number:

1. Check the first number of the recurrence relation. 𝐹1 =
1 and the given number 6765 may occur in the later
index of the sequence since the relation is increasing.

2. Expand the testing size with constant multiplier of 2.

𝐹2 = 2 < 6765, expand space by a factor of 2.

3. 𝐹4 = 3 < 6765, expand space by a factor of 2.

4. 𝐹8 = 21 < 6765, expand space by a factor of 2.

5. 𝐹16 = 987 < 6765, expand space by a factor of 2.

6. 𝐹32 = 2178309 > 6765, the testing state is
finalized.

7. Establish left = 1, right = 32, and mid = 16.

8. Check 𝐹𝑚𝑖𝑑 . 𝐹16 = 987 < 6765, the given number
may appear on the rightside of the midpoint.

9. Change left’s value to mid+1. left <- 17.

10. Calculate new mid index = 24.

11. Check 𝐹𝑚𝑖𝑑 . 𝐹24 = 46368 > 6765, the given
number may appear on the leftside of the midpoint.

12. Change right’s value to mid-1. right <- 23.

13. Calculate new mid index = 20.

14. Check 𝐹𝑚𝑖𝑑 . 𝐹20 = 6765 = 6765.

15. It is concluded that 6765 is a member of the linear
recurrence given 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 𝑤𝑖𝑡ℎ 𝐹0 =
0 𝑎𝑛𝑑 𝐹1 = 1.

Another example is the case where the given number is not
a member of the given linear recurrence relation. For example,
suppose the algorithm attempts to check the membership of the
number 600 in the linear recurrence with the formula of

The following are the steps taken to test the membership of
the given number:

1. Check the first number of the recurrence relation. f1=1
and the given number 600 may occur in the later index
of the sequence since the relation is increasing.

2. Expand the testing size with constant multiplier of 2.

𝐿2 = 3 < 600, expand space by a factor of 2.

3. 𝐿4 = 7 < 600, expand space by a factor of 2.

4. 𝐿8 = 47 < 600, expand space by a factor of 2.

5. 𝐿16 = 2207 > 600, the testing space is finalized.

6. Establish left = 1, right = 16, and mid = 8.

7. Check 𝐿𝑚𝑖𝑑. 𝐿8 = 47 < 600, the given number may
appear on the rightside of the midpoint.

8. Change left’s value to mid+1. left <- 9.

9. Calculate new mid index = 12.

10. Check 𝐿𝑚𝑖𝑑 . 𝐿12 = 322 < 600, the given number
may appear on the rightside of the midpoint.

11. Change left’s value to mid+1. left <- 13.

12. Calculate new mid index = 14.

13. Check 𝐿𝑚𝑖𝑑. 𝐿14 = 843 > 600, the given number may
appear on the leftside of the midpoint.

14. Change right’s value to mid-1. right <- 13.

15. Check 𝐿𝑚𝑖𝑑. 𝐿13 = 233 != 600 and the testing state size
is <2.

16. It is concluded that 600 is not a member of the linear
recurrence given 𝐿𝑛 = 𝐿𝑛 − 1 + 𝐿𝑛 − 2 with 𝐿0 =
2 𝑎𝑛𝑑 𝐿1 = 1.

From the examples, we can see that the algorithm starts with
expanding the testing state first, until we can be sure that the
given number may only lie inside the established testing state.
This is done so that the decrease and conquer algorithm used

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

afterwards can guarantee whether or not the given number is a
member of the monotonic linear recurrence relation.

V. COMPLEXITY ANALYSIS

A. Time Complexity

The time complexity analysis can be divided into the two

parts of the algorithm, namely matrix exponentiation algorithm

and decrease and conquer algorithm. The relation between the

two algorithm is that the decrease and conquer algorithm uses

the matrix exponentiation in its part to calculate the n-th term

of the linear recurrence relation.

The time complexity of the matrix exponetiation first comes

from the multiplication of the matrices with complexity of

𝑂(𝑘3) where k is the number of row of the matrix being

multiplied. This matrix multiplication will then be done with

the complexity of 𝑂(log2 𝑛) due to divide and conquer, where

n equals to the term that is currently being searched. Thus, the

final time complexity of the matrix exponentiation is

𝑂(𝑘3 log2𝑛).

The time complexity of the decrease and conquer first

comes from the expanding the state size to accommodate the

given number in the linear reccurence. This takes the

complexity of 𝑂(𝑘3 log2𝑛). * 𝑂(log2 𝑛) or equals to

𝑂(𝑘3 log2
2 𝑛) where 𝑂(𝑘3 log2𝑛) is obtained from the

complexity of the matrix exponentiation used for every term

checked. The variable n refers to the minimum number needed

to accommodate the given number and k refers to the highest

value in the recurrence relation formula 𝑥𝑛.

The decrease and conquer then takes another time

complexity of 𝑂(𝑘3 log2𝑛)* 𝑂(log2 𝑛)) or equals to

𝑂(𝑘3 log2
2 𝑛) to search for the given number in the recurrence

relation. This is due to the algorithm using matrix

exponentiation and the narrowing-down of the decrease and

conquer in the later parts.

Thus, the total time complexity of the algorithm is

𝑂(𝑘3 log2
2 𝑛), where n refers to the minimum number needed to

accommodate the given number and k refers to the highest value

in the recurrence relation formula 𝑥𝑛.

However, it needs to be noted that the time complexity may

get worse for larger number higher than the 64-bit maximum

value due to the operations needed for such number gets more

and more time consuming as it gets further from the value.

Thus, in reality, one can not expect the algorithm to run

perfectly in 𝑂(𝑘3 log2
2 𝑛) as the constant gets larger for higher

numbered values.

B. Space Complexity

The space complexity of this algorithm comes from storing

the data of the matrix being used for matrix exponentiation.

Approximately, about log2 𝑛 of k*k matrices and two k*1

matrix are needed for this algorithm to work.

Around log2 𝑛 k*k matrices are needed for storing the value

of the matrices for every power of two if needed, and two k*1

matrix is needed for storing the starting values of the linear

recurrence term and the needed values of the linear recurrence

term.

Thus, the total space complexity needed for this algorithm

is 𝑂(𝑘2 log2𝑛). An important thing to note is for number larger

than the maximum 64-bit value, the constant of the space

complexity gets larger and the program can not be expected to

run in aforementioned space complexity.

VI. TESTING

The following shows the results of the program for some known

monotonic linear recurrence relation.

A. Fibonacci Sequence

A fibonacci sequence is defined as follows.

The result of testing a number’s membership in the fibonacci

sequence is as follows.

Given

Num

ber

Is A

Mem

ber

Resullt

1 Yes
2 Yes
3 Yes
5 Yes

9 No
20 No
100 No
1597 Yes
4181 Yes
4182 No

B. Padovan Sequence

A padovan sequence is defined as follows.

The result of testing a number’s membership in the padovan

sequence is as follows.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Give

n

Num

ber

Is A

Me

m

ber

Resullt

4 Yes

6 Yes
8 Yes
10 Yes
11 No
25 No

55 No

3329 Yes

5842 Yes
5845 No

VII. CONCLUSION

From the explanations and testing carried out, it can be seen

that the algorithm proposed in this paper can solve the

membership testing problem of a given number in a monotonic

linear recurrence relation. This algorithm uses the concept of

matrix exponentiation and decrease and conquer algorithm and

have the time complexity of 𝑂(𝑘3 log2
2 𝑛) and space complexity

of 𝑂(𝑘2 log2𝑛), where n refers to the minimum index whose

value is enough to accommodate the given number and k refers

to the highest value in the recurrence relation formula 𝑥𝑛.

ACKNOWLEDGEMENT

The author would like to express gratitude to Dr. Nur Ulfa

Maulidevi, S.T., M.Sc. for her guidance and lessons throughout

the semester as class lecturer for IF2211 Algorithm Strategies

course which insights have been invaluable to the completion

of this project.

REFERENCES

[1] Weisstein, Eric W. "Recurrence Relation." From MathWorld--A
Wolfram Web Resource.
https://mathworld.wolfram.com/RecurrenceRelation.html

[2] Weisstein, Eric W. "Linear Recurrence Equation." From MathWorld--A
Wolfram Web Resource.
https://mathworld.wolfram.com/LinearRecurrenceEquation.html

[3] Yanqing Peng, Jinwei Guo, Feifei Li, Weining Qian, Aoying Zhou.
”Persistent Bloom Filter: Membership Testing for the Entire History”
University of Utah, East China Normal University

[4] Rohan Bhandari, “A Complete Guide on Matrix Exponentiation”
https://codeforces.com/blog/entry/67776.

[5] R. Munir, “Algoritma Decrease and Conquer.” Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Decrease-and-Conquer-2021-Bagian1.pdf (Accessed
May 21, 2023)

[6] “Decrease and Conquer - GeeksforGeeks.”
https://www.geeksforgeeks.org/decrease-and-conquer/ (Accessed May
22, 2023).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Farizki Kurniawan 13521082

