
Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

Implementation & Application of Binary

Segmentation Algorithm for Change Point Detection

William Nixon - 135211231

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521123@std.stei.itb.ac.id

Abstract— This paper presents the implementation of a

binary segmentation algorithm for change point detection in

a given dataset. The algorithm offers efficient and fast signal

segmentation by recursively detecting change points and

splitting the signal into sub-segments with a specified cost

function. With a computational complexity of O(nlogn),

where n is the number of samples, the algorithm is suitable

for large datasets. It is also customizeable and can run with

multiple custom cost functions. Experimental evaluations on

the algorithm includes a case study on segmentation in

Bandung’s COVID Dataset.

Keywords— Binary Segmentation Algorithm, Algorithm,

Change Point Detection, Implementation, Signal

Segmentation, Computational Complexity, COVID Dataset.

I. INTRODUCTION

Change point detection is a fundamental problem in various

domains, including signal processing, finance, and

environmental monitoring. The ability to identify and

characterize transitions in data is crucial for understanding

underlying patterns, making informed decisions, and taking

appropriate actions. In this paper, we focus on the

implementation of a binary segmentation algorithm for change

point detection in signals and its application to COVID-19 data

in Indonesia.

The binary segmentation algorithm offers a sequential

approach to signal segmentation, where a single change point is

detected in the complete input signal. The signal is then split into

two sub-signals based on this change point, and the process is

recursively applied to each sub-signal. This approach enables

efficient segmentation of signals with a computational

complexity of O(nlogn), where n represents the number of

samples.

Through this study, we aim to highlight the practical utility of

the binary segmentation algorithm for change point detection

and its relevance in addressing real-world problems such as

monitoring and managing the COVID-19 pandemic. The choice

of using COVID-19 data for testing the application of binary

segmentation algorithm is motivated by the nature of the

pandemic.

The number of active cases in a given region can be

considered as a change point, fluctuating over time. By detecting

these change points, we can identify periods with rising or

falling cases, helping to assess the severity of the situation and

determine appropriate measures for disease control.

II. DEFINITIONS

A. Change Point Detection

Change point detection refers to the task of identifying points

or locations in a sequence of data where the underlying

statistical properties of the data change. These changes can

manifest as shifts in mean, variance, distribution, or other

relevant characteristics. A change point, also known as a

structural break, is the specific point in the sequence where the

change in properties occurs. Change point detection aims to

locate and characterize these change points, providing insights

into the dynamics and transitions within the data.

Change point detection problems usually consists of 3

components, which include:

1. Search Function, the search function is responsible for

exploring and examining the potential change points in

the input sequence. It systematically scans the data and

identifies candidate locations where a change in the

underlying properties may occur.

2. Cost Function, measures the degree of change at a

specific location or split point in the input sequence.

The cost function serves as a criterion for selecting the

most suitable change points based on fit.

3. Constraint, determines the point at which a given

search function should stop searching.

Together, the search function and the cost function form the

core components of a change point detection algorithm. The

search function identifies potential change points in the data,

while the cost function evaluates the significance of these points

based on the observed discrepancies, while satisfying the

constraint. By combining these components, change point

detection algorithms can efficiently and effectively locate and

characterize transitions in the input sequence.

Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

A change point detection algorithm usually accepts a set of

input sequence X as an argument, returning the index of change

points in said sequence as follows:

The input sequence: X = {x₁, x₂, ..., xn}

The index of the change point: t (t ∈ {1, 2, ..., n-1})

Figure A.1. Change Points in Various Types of Distribution Shift

Denoted by Orange Vertical Lines (Source: https://pro.arcgis.com)

B. Some Cost Functions

Some of the cost functions that we are going to implement in

the paper are:

1. Least Absolute Deviation (LAD/L1):

This cost function detects changes in the median of a

signal. The Least Absolute Deviation (L1-norm or absolute

error), is a robuest estimator of a shift in the central point

(mean, median, mode) of a distribution. It computes the

sum of the absolute differences between the observed data

points and the median between the interval. It minimizes the

sum of the absolute residuals, making it robust against

outliers.

Objective function: minimize Σ|Yᵢ - Ŷᵢ|

Notation: min Σ|Yᵢ - Ŷᵢ|

2. Least Squared Deviation (LSD/L2):

This cost function detects mean-shifts in a signal. The

Least Squared Deviation cost function (L2-norm or mean

squared error), calculates the sum of squared differences

between the observed data points and the estimated average

values. It minimizes the sum of squared residuals and is

commonly used in linear regression problems.

Objective function: minimize Σ(Yᵢ - Yᵢ̄)²

Notation: min Σ(Yᵢ - Yᵢ̄)²

C. Binary Segmentation (Search Function)

Binary segmentation is search function in change point

detection that follows the divide and conquer paradigm. In

binary segmentation, the input sequence is divided into two sub-

segments by detecting a single change point. The algorithm

recursively applies the same process to each resulting sub-signal

until no further change points are detected or a stopping criterion

is met.

The steps required by the search function in determining the

change points are:

1. Initialization: Define the initial interval as the full

segment, set cost thresholds and hard limits.

2. Segmentation: Divide the initial interval into two sub-

segments, evaluate the cost of each sub segment

independently. The cost function will be fitted into the

sub-segments.

3. Cost evaluation: Cost function will compute the cost of

each fitted sub-interval in phase 2. The purpose of this

cost evaluation is to gain a numeric value of the

effectiveness of the segmentation itself.

4. Change point determination: If the cost of either sub-

interval exceeds the predefined threshold or

significance level, then a potential change point is

found. We will select the subsegment with the highest

cost as the candidate for change point.

5. Recursive process: Recursive application of step 1-4

will be done on sub-interval before the candidate

change point and the sub-interval after it. The process

recursively continues while a hard limit for change

point has not been reached, or the cost of any sub

interval has not fallen below a predefined limit.

By combining the search function (segmentation) and the

cost function, binary segmentation iteratively identifies change

points by evaluating the cost of sub-intervals and splitting them

until no further significant changes are detected.

Figure C.1. Binary Segmentation In Action, Segmenting A Given

Signal Whenever A Change Point Has Been Detected (Source:

https://centre-borelli.github.io/ruptures-docs/user-

guide/detection/binseg/)

D. Binary Segmentation Search as a Divide and Conquer

Algorithm

A divide and conquer algorithm is a problem-solving

approach that involves breaking down a complex problem into

smaller sub-problems, solving them independently, and then

combining the solutions to solve the original problem. The main

idea is to divide the problem into manageable parts, conquer

each part by solving it recursively or iteratively, and then

merging the solutions to obtain the final solution. This technique

is often employed when the problem exhibits overlapping sub-

problems or can be naturally divided into smaller instances.

Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

Binary segmentation can be considered a divide and conquer

algorithm due to its iterative nature and the recursive splitting of

the input signal.

The two distinct steps are as follows:

1. Divide: The algorithm starts with the complete input

sequence and detects a change point, dividing it into two

sub-signals. This process is then repeated on each

resulting sub-signal until the desired level of

segmentation is achieved.

2. Conquer: Upon being bounded by a constraint (no further

changes detected), each sub-segment would return the

changepoint detected from itself. The final change point

array is a concatenation of all of each sub-segment’s

change point.

Figure D.1. Conquer Phase, Propagating Sub Segment’s Change

Point Back To Original Segment (Source: https://centre-

borelli.github.io/ruptures-docs/user-guide/detection/binseg/)

E. Several COVID19 Dataset Metrics

COVID-19 active cases refer to the number of individuals

who are currently infected with the COVID-19 virus and are

actively undergoing treatment or isolation. It represents the

difference between the total number of confirmed COVID-19

cases and the sum of recovered cases and deaths.

COVID-19 daily recoveries refer to the number of individuals

who have recovered from the COVID-19 virus within a 24-hour

period. It represents the number of people who were previously

infected and have now completed their treatment or isolation

successfully.

Tracking both metrics provides crucial information about the

current state of the COVID-19 outbreak in a specific region or

population. Utilizing change point detection techniques on

COVID-19 active cases can help identify significant shifts in the

infection rate, indicating periods of increased transmission or

the effectiveness of control measures. This information can aid

in making informed decisions regarding public health

interventions and resource allocation.

III. IMPLEMENTATION AND ANALYSIS

 We will be implementing Binary Segmentation and 2 Cost

Functions, L1 and L2 Cost to compare the differences both these

cost functions can make. The code will be implemented in

Python, and the excerpt found in this document will only include

snippets important parts, in other words, it is not complete /

compilable. Please refer to Part V for the complete source code.

A. Implementation of Cost Function

class CostL1:

 def error(self, start, end) -> float:

 if end - start < self.min_size:

 raise NotEnoughPoints

 sub = self.signal[start:end]

 med = np.median(sub, axis=0)

 return abs(sub - med).sum()

class CostL2:

 def error(self, start, end):

 if end - start < self.min_size:

 raise NotEnoughPoints

 return self.signal[start:end].var(axis=0).sum() * (end - start)

 Both cost functions classes implement a function called cost,

which returns the corresponding cost for values in range from

start till end. CostL1 Takes the sum of absolute difference

between all of the values and the median value, while CostL2

returns the sum of all the variances in the interval, multiplied

by the end and the start date to account for the number of

ranges being evaluated.

B. Implementation of Binary Segmentation

class Binseg():

 def _seg(self, n_bkps=None):

 bkps = [self.n_samples]
 stop = False

 while not stop:

 stop = True
 new_bkps = [

 self.single_bkp(start, end) for start, end in pairwise([0] + bkps)

]
 bkp, gain = max(new_bkps, key=lambda x: x[1])

 if bkp is None: # all possible configuration have been explored.
 break

 if n_bkps is not None:
 if len(bkps) - 1 < n_bkps:

 stop = False

 if not stop:

 bkps.append(bkp)
 bkps.sort()

 partition = {
 (start, end): self.cost.error(start, end)

 for start, end in pairwise([0] + bkps)

 }
 return partition

 def single_bkp(self, start, end):
 segment_cost = self.cost.error(start, end)

 if np.isinf(segment_cost) and segment_cost < 0: # if cost is -inf

Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

 return None, 0

 gain_list = list()
 for bkp in range(start, end, self.jump):

 if bkp - start >= self.min_size and end - bkp >= self.min_size:

 gain = (
 segment_cost

 - self.cost.error(start, bkp)

 - self.cost.error(bkp, end)
)

 gain_list.append((gain, bkp))

 try:
 gain, bkp = max(gain_list)

 except ValueError: # if empty sub_sampling

 return None, 0
 return bkp, gain

 def fit(self, signal):
 self.signal = signal.reshape(-1, 1)

 self.n_samples, _ = self.signal.shape

 self.cost.fit(signal)

 return self

 def predict(self, n_bkps=None):

 partition = self._seg(n_bkps=n_bkps)
 bkps = sorted(e for s, e in partition.keys())

 return bkps

The _seg function is a method that performs the actual

segmentation. It takes an optional parameter n_bkps, which

specifies the desired number of breakpoints. Initially, the

function sets the breakpoints to include the entire length of the

input data. It then will divide and conquer the segment

iteratively, entering a loop where it tries to find the best

breakpoint based on the cost function. It calculates the cost for

all possible breakpoints and selects the one with the highest

gain. Upon doing so, it will create new subsegments for the

loop to evaluate (Divide). For each subsegment explored, it

will append the results to a global array bkps (Conquer). If

n_bkps is specified, the loop continues until the number of

breakpoints reaches n_bkps. It returns a partition dictionary

that contains the start and end indices of each segment along

with their associated error costs.

The single_bkp function calculates the gain for a single

breakpoint given a start and end index. It first computes the

error cost for the entire segment. If the segment cost is

negative infinity or less than 0, it means the cost is invalid, and

the function returns None and 0 gain. Otherwise, it iterates

over possible breakpoints within the segment, considering

only those that satisfy the minimum segment size condition.

For each valid breakpoint, it calculates the gain by subtracting

the error costs of the left and right segments from the total

segment cost. The function returns the breakpoint and its

corresponding gain.

The fit function is used to prepare the input data for

segmentation. It takes a signal parameter. The function

reshapes the signal to have a single column and determines the

number of samples. It then fits the cost function to the signal,

which is necessary for subsequent calculations.

The predict function is the main interface for obtaining

the segmented breakpoints. It takes an optional parameter

n_bkps to specify the desired number of breakpoints. It calls

the _seg function to obtain the partition dictionary. It then

extracts the start and end indices from the dictionary keys and

sorts them to obtain the breakpoints in ascending order. The

function returns the sorted list of breakpoints.

C. Application in Bandung COVID19 Dataset Data

The data for this study was obtained from the official

website of the West Java Provincial Government. It is publicly

available at https://opendata.jabarprov.go.id/id/dataset/

perkembangan-harian-kasus-terkonfirmasi-positif-covid-19-

berdasarkan-kabupatenkota-di-jawa-barat.

The dataset was downloaded as a zip file containing an

Excel file with metrics data for daily deaths, active cases, and

more. The data was loaded into a Python notebook for

analysis. The implemented binary segmentation algorithm was

then applied to detect change points in the COVID-19 active

cases data. The algorithm identified significant transitions in

the number of active cases, indicating potential changes in the

virus spread. The change points were determined using cost

functions such as Least Absolute Deviation (Cost1) or Least

Squared Deviation (Cost2).

The detected change points were then visualized using

Matplotlib, a Python library for data visualization. Matplotlib

enabled the creation of informative graphs representing the

COVID-19 active cases over time, highlighting the identified

change points.

D. Analysis Of Results

 Subsections D.1. and D.2. will show the results of analysis

obtained using the algorithm and an insight as to how change

point intervals can be used applicatvely.

D.1. Bandung’s Active Cases

Figure D.1.1 Segmentation of Active Cases Using L1 (a) and L2 (b)

Cost Function (Source: Writer)

Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

 The two above graphs show the different change points of the

number of active COVID19 cases in Bandung City, denoted by

vertical red lines, given by the binary segmentation using two

L1 and L2 Cost Function. A hard limit of 15 change points

(vertical lines) were given to both functions.

Although the two algorithms differed in how the change

points were allocated in the graph, the algorithm suceeded in

segmenting and detecting the change points that it deemed

existed in the graph. In this case, the L1 Cost function seemed

to have performed better than L2, allocating change points more

sparingly. The Cost L2 function placed higher error value on

sudden spikes, and as the result, ignored most of spikes that were

small (most distribution changes were given when cases spiked).

This is because the L1 Cost Function depends on the median

of the data on an interval, compared to the average function

which with L2. The sudden spikes caused a huge impact on the

average of values within the interval, as the result, the change

points were detected by CostL1 there. By using the median

instead of the mean, CostL1 is more robust to outliers / sudden

distribution changes.

One way of extracting insight from the figure is by looking at

the trend of generated change point interval. For example, using

Figure D.1.1.a, Interval 0 (03/2020 – 11/2020) showed a

relatively low amount of active cases, while interval 1 (11/2020

– 4/2021) showed a rise in infection, before seeing a huge spike

and drop at cases on interval 2 (4/2021 – 7/2021).

From that result, we can then hypothesize for the reason

behind the change in distrubution. For example, the reason

behind interval 0 might be that at the COVID pandemic hasn’t

been common yet in Bandung during March – November 2020.

As the infection spreads to the city, there is a gradual steady

increase of cases on November 2020 – Mei 2021, before cases

rapidly soared and dipped on Mei 2021 – July 2021, most

probably as the result of governmental measures such as

lockdown to contain the pandemic.

D.2. Bandung’s Daily Recovered Cases

Figure D.2.1. Segmentation of Daily Recovered Cases using L1 (a)

and L2 (b) Cost Function (Source: Writer)

The two above graphs show the different change points of the

number of daily recovered COVID19 cases in Bandung City, similar to

point D.1. with a hard limit of 15 change points.

The algorithm suceeded in segmenting and detecting the

change points that it deemed existed in the graph. The two

algorithms differed in how the change points were allocated in

the graph, however both cost functions seemed to have

performed similarly. The allocation of change points seemed not

very optimal as they were clustered tighly around spikes.

In this case, both functions placed many change points on

spikes and sudden increases. This is because on the original data

distribution, cases were not distributed equally across days, and

instead were distributed as “spikes”. This is due to the nature of

the metric being collected itself.

Figure D.1.1 as the active case graph was more continuous

than Figure D.2.2. This is because people that have recovered

from COVID will only be counted once, meanwhile people that

have COVID will have several active cases count, ranging

several days, starting from they were sick until they recover. As

the result, the underlying distribution for active cases was more

smooth compared to recovered cases, which were more discrete

in nature.

CostL1 and CostL2 as simple cost functions that accounts for

average/mean did not perform very well because of the discrete

nature of the dataset, being treated as outliers that skew the

result. To gain better results, preprocessing discrete data or

using an alternative more robust cost functions like Gaussian

Process Change or Kernelized Mean Change can be used

instead.

IV. CONCLUSION AND SUGGESTIONS

In conclusion, this paper presented the implementation of a

binary segmentation algorithm for change point detection. The

algorithm follows a divide and conquer approach, recursively

splitting the input signal based on detected change points. The

algorithm was applied to COVID-19 active cases data in

Bandung, showcasing its effectiveness and customizability with

various cost functions. The change points identified using the

binary segmentation algorithm can provide valuable insights for

extracting distributions out of a given data, such as monitoring

the COVID-19 situation, identifying periods of rising or falling

dynamic of infection rates.

Makalah IF2211 Strategi Algoritma – Sem. 2 Tahun 2022/2023

Future works that can extend this paper include

experimentation on the various other types of cost function that

are slope/model based and are not mean distribution shift based

like CostL1 or CostL2. Other types of search functions like

using the Dynamic Programming approach can also be used to

do the segmentation, rather than Binary Segmentation.

V. MISCELLANEOUS

The source code from the program used for this paper can be

accessed from the following link:

https://colab.research.google.com/drive/1HB9Ksntwv6F930

EfEJXI7gfuW2hUlwwA?usp=sharing

The video briefly explaining about the paper can be found on

the following link:

https://www.youtube.com/watch?v=PMzVevzTd4E

VI. ACKNOWLEDGEMENTS

The author would like to express sincere gratitude and praise

to the Almighty God for the blessings and facilitation provided

throughout the completion of this paper entitled

"Implementation & Application of Binary Segmentation

Algorithm for Change Point Detection". The author would also

like to extend appreciation to all the instructors of the IF2211

Algorithm Strategies course, particularly Dr. Rinaldi Munir, for

their guidance and teachings during this semester.

Furthermore, the author would like to express gratitude to

their family and friends for their support and encouragement

throughout the duration of this semester. Their presence and

words of encouragement have been a source of strength and

motivation.

REFERENCES

[1] C. Truong, L. Oudre, N. Vayatis. (2020). Selective review

of offline change point detection methods. Signal

Processing, 167:107299.

[2] H. Poor. (1985). An Introduction to Signal Detection and

Estimation. New York: Springer-Verlag.

[3] Bai, J. (1997). Estimating multiple breaks one at a time.

Econometric Theory, 13(3), 315–352.

[4] Fryzlewicz, P. (2014). Wild binary segmentation for

multiple change-point detection. The Annals of Statistics,

42(6), 2243–2281.

[5] Bai, J. (1995). Least absolute deviation of a shift.

Econometric Theory, 11(3), 403–436.

[6] Munir, Rinaldi. (2022). Divide and Conquer (Bagian 2).

Accessed from https://informatika.stei.itb.ac.id/~rinaldi

.munir/Stmik/2020-2021/Algoritma-Divide-and-Conquer-

(2021)-Bagian2.pdf on 20 May 2023

[7] Munir, Rinaldi. (2022). Divide and Conquer (Bagian 3).

Accessed from https://informatika.stei.itb.ac.id/~rinaldi

.munir/Stmik/2020-2021/Algoritma-Divide-and-Conquer-

(2021)-Bagian3.pdf on 20 May 2023

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Mei 2023

William Nixon 13521123

