
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Application of Branch and Bound Algorithm to Solve
Rider-Driver Batched Matching Problem

Puti Nabilla Aidira - 13521088
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13521088@std.stei.itb.ac.id

Abstract—The Rider-Driver Batched Matching Problem is a

significant challenge in online transportation services, where a
group of riders needs to be effectively matched with available
drivers to minimize average waiting time. This paper explores the
application of the Branch and Bound Algorithm to address this
problem. This paper also discusses testing and analysis of the
Branch and Bound algorithm compared to Exhaustive Search.

Keywords—Branch and Bound; Rider-Driver Batched
Matching; Online Transportation Services

I. INTRODUCTION
Rider-Driver Batched Matching is a technique used in online

transportation services where a set of riders is matched with a
set of available drivers. This batched matching is proven to
reduce the average wait time more effectively compared to
closest-pair matching, where a single rider immediately matched
with the closest driver. However, this technique leads to a new
problem which this paper address as the Rider-Driver Batched
Matching Problem.

The Rider-Driver Batched Matching Problem’s goal is to
effectively and efficiently match a set of riders with available
drivers in order to minimize average waiting time. With the same
nature of minimizing average cost and the same matching
process involved, this problem can be viewed as a variation of
the popular job assignment problem. One of the generally used
algorithms to solve this kind of optimization problem is Branch
and Bound Algorithm.

The Branch and Bound Algorithm is an algorithm usually
used to solve optimization problems. The algorithm considers a
set of potential solutions as a rooted tree and systematically
explores different combinations. The algorithm also
systematically prunes unproductive branches, leading to an
efficient search.

Fig 1. Example of Batched Matching Problem’s Solution

(Source: www.uber.com/gb/en/marketplace/matching)

II. THEORY

A. Branch and Bound Algorithm
The branch and Bound Algorithm is an algorithm commonly

used for optimization problems. Optimization problems are
problems related to either minimizing or maximizing an
objective function of some variables under a certain constraint.
As seen in [1], this definition can be written in formal notation:

 min x Î S f(x) or max x Î S f(x) (1)

where, x : variables (x1 ··· xn),

f : objective function,

S : a region of feasible solutions.

Some terms and techniques used in Branch and Bound
Algorithm are discussed below.

1. State Space Search

 The Branch and Bound Algorithm conceptualizes the
set of potential solutions as a rooted-tree structure, where the
complete set of solutions serves as the root node. This
rooted-tree structure is often called a state-space tree, while
this searching process is usually called a state-space search.
An example of a state-space tree constructed using Branch
and Bound Algorithm is shown in Figure 2.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Fig 2. Example of a State-Space Tree Constructed Using

Branch and Bound Algorithm
(Source: codecrucks.com/branch-and-bound-the-dummies-

guide/)

2. Best-First Search

 The traversal approach of the state-space tree can be
done in a breadth-first, depth-first, or best-first manner.
However, the most commonly used approach is a best-first
search based on bounding estimation cost calculation. In this
approach, each node is assigned a cost value ĉ(i) calculated
by a certain bounding estimation approach. Then, the next
expanded nodes will be chosen from the least-cost node (for
minimizing problems) or the most-cost node (for
maximizing problems).

3. Bounding Function

 One of the key processes in the Branch and Bound
algorithm is the pruning of sub-problems that do not lead to
the optimal solution. This pruning process is done using a
bounding function. According to [1] the value of a bounding
function for a given sub-problem should be an estimation of
the best feasible solution to the problem. Some general
criteria for bounding function, according to [2], are:

• The last unexpanded node of a given sub-problem
has a cost whose value is not better than the value
of the best solution found so far.

• The sub-problem does not represent a feasible
solution due to the violation of some constraints.

• The solution at the given node consists of only one
point.

Using the terms and techniques explained above, the
pseudocode of the Branch and Bound algorithm is shown below.

function BranchAndBound(problem)
begin

 create an empty priority queue Q
 create an initial node
 compute initial node’s cost
 add the initial node to Q

 while Q is not empty do
 select the node with the best cost
 from Q
 if the selected node represents a

 complete solution
 then
 update the current best
 solution
 else
 generate child nodes
 for each child node do
 compute the cost of the
 child node
 if the cost is better than
 the current best
 solution
 then
 add the child node to Q
 else
 do nothing {bounding}
 return the best solution found

end

B. Rider-Driver Batched Matching Problem
 Rider-Driver Batched Matching Problem is an optimization

problem that arises from the Rider-Driver Batched Matching
technique. Rider-Driver Batched Matching is a technique used
in online transportation services where a set of riders is matched
with a set of available drivers. In contrast to closest-pair
matching, where a single rider immediately matched with the
closest driver, batched matching involves batching time. The
batching time is a few seconds of waiting time used to
accumulate a batch of potential rider-driver matches. This
batching time is important to avoid potentially long wait times
for other slightly later requests. The illustration of a case where
batch matching is minimizing average wait time more
effectively compared to closest-pair matching is shown in Figure
3.

Fig 3. Batch Matching (top) vs Closest-Pair Immediate

Matching (bottom)
 (Source: www.uber.com/gb/en/marketplace/matching/)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

 In Figure 3, the second rider’s request is a few seconds late
than the first rider’s request. So, with Closest-Pair Immediate
Matching the first rider will immediately get the driver with a
two-minute waiting time first. However, that match extremely
increases the waiting time for the second rider. Resulting in a
longer total waiting time hence longer average waiting time.
This problem is solved with a few seconds of batching time,
waiting for the second rider’s request. After some batching time,
a specific matching optimization can be used to minimize the
average waiting time considering both riders. Even though this
solution involves extra wait time, it is still considered the most
effective in average cases.

 The matching optimization in the Rider-Driver Batched
Matching technique is the goal of the Rider-Driver Batched
Matching Problem. However, the problem discussed in this
paper will be limited to the problem where in one batch the
number of riders is equal to the number of drivers. Hence, every
rider will be matched to one driver and vice versa.

III. IMPLEMENTATION
The detailed implementation of the Branch and Bound

algorithm to solve the Rider-Driver Batched Matching Problem
is discussed below. A Java program containing the
implementation of Branch and Bound algorithm as well as the
simulation of its application in Rider-Driver Batched Matching
is provided in [3]. The program will be walked through in the
following discussion.

A. Cost Matrix Representation
The problem is represented in the form of a cost matrix

whose element[i][j] is the amount of waiting time between rider
i and driver j. Figure 4 illustrates the cost matrix with n riders
and n drivers.

𝐶 =

⎣
⎢
⎢
⎢
⎡
𝑑𝑟𝑖𝑣𝑒𝑟	1 𝑑𝑟𝑖𝑣𝑒𝑟	2 … 𝑑𝑟𝑖𝑣𝑒𝑟	𝑛
𝑥!,! 𝑥!,# … 𝑥!,$
𝑥#,! 𝑥#,# … 𝑥#,$
⋮ ⋮ 	 ⋮
𝑥$,! 𝑥$,# … 𝑥$,$ ⎦

⎥
⎥
⎥
⎤

	

	
𝑟𝑖𝑑𝑒𝑟	1
𝑟𝑖𝑑𝑒𝑟	2

⋮
𝑟𝑖𝑑𝑒𝑟	𝑛

Fig 4. Cost Matrix with n Riders and n Drivers

To better illustrate the implementation, the case represented

by the cost matrix in Figure 5 shall be used throughout this
implementation section.

𝐶%& =

⎣
⎢
⎢
⎢
⎡
𝑑𝑟𝑖𝑣𝑒𝑟	1 𝑑𝑟𝑖𝑣𝑒𝑟	2 𝑑𝑟𝑖𝑣𝑒𝑟	3 𝑑𝑟𝑖𝑣𝑒𝑟	4
65 2 31 37
32 26 30 14
35 15 22 32
43 72 9 74 ⎦

⎥
⎥
⎥
⎤
	

	
𝑟𝑖𝑑𝑒𝑟	𝐴
𝑟𝑖𝑑𝑒𝑟	𝐵
𝑟𝑖𝑑𝑒𝑟	𝐶
𝑟𝑖𝑑𝑒𝑟	𝐷

Fig 5. Cost Matrix for Example Case

 In the simulation program [3], the waiting time was
calculated using the Manhattan distance. While the cost matrix
is constructed randomly using this snippet of code:
MainSimulation.java

Position posFirstRider = new Position(firstRiderX,
firstRiderY); // form input
costMatrix[0][0] = posFirstRider.manhattanDist(new
 Position()); // random position
int lastAdded = 1;
// batchtime from input
for(int i = 0; i < batchTime; i++){
int thisAdded = rand.nextInt(4); // generate random num
 of drivers & riders
 for(int j = lastAdded ; j < lastAdded +
 thisAdded; j++){

 for(int k = 0 ; k < lastAdded +
 thisAdded; k++){
 // generate random position
 Position riderPos = new Position();
 costMatrix[j][k] = riderPos.manhattanDist(new
 Position());
 }
 }

 for(int j = 0 ; j < lastAdded; j++){
 for(int k = lastAdded ; k < lastAdded + thisAdded;
 k++){
 // generate random position
 Position riderPos = new Position();
 costMatrix[j][k] = riderPos.manhattanDist(new
 Position());
 }
 }
lastAdded += thisAdded;

}

B. Bounding Function
The bounding function is based on a lower bound cost ĉ(i).

The pruning is done implicitly using a priority queue of least
cost, nodes with bigger cost will not be accessed and hence be
pruned. The lower bound estimation used to calculate the cost
ĉ(i) is the sum of the minimum value in each of the cost matrix’s
rows. The formal notation is shown in (2).

 ĉ(i) = ∑ min	(𝑐𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥',()$
')* (2)

 As mentioned in [4], the basic idea is that in any given
solution, including the optimal solution, the total matching cost
is not less than the sum of all the smallest values in each row.
Other than that, for any legitimate solution (with no overlapping
matching) if a rider is matched to a driver, then the cost of the
matching is calculated as one of the smallest value components
in the sum. The code implementation in [3] for this cost
calculation is shown below.
BatchedMatchingBnB.java
private int calculateCost(int riderIdx, boolean[]
 assigned)
{
 int cost = 0;
 for (int i = riderIdx + 1; i < N; i++) {

int min = Integer.MAX_VALUE;
for (int j = 0; j < N; j++) {
 if (!assigned[j] && costMatrix[i][j] < min) {
 min = this.costMatrix[i][j];
 }
 }
cost += min;

 }
 return cost;
}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

C. State-Space Tree Construction
The state-space tree is implemented as a group of nodes with

a parent. The root node has null as its parent. The node class is
implemented with the code below.
Node.java
class Node {
 // parent node

private Node parent;

// cost for ancestors nodes including current node
private int pathCost;

// least promising cost
private int cost;

// matched rider number
private int riderID;

// matched driver number
private int driverID;

// available driver info
private boolean[] assigned;

// .. constructor, getter/setter

}

The implementation of state-space tree construction is
shown in the below code.
BatchedMatchingBnB.java
public int branchAndBound() {
 // initialize priority queue based on less cost

PriorityQueue<Node> pq = new PriorityQueue<>(
 newNodeComparator());
// set root
Node root = new Node(-1, -1, new boolean[N], null);
root.setPathCost(0);
root.setCost(0);
pq.add(root);
while (!pq.isEmpty()) {
 Node min = pq.poll();
 int i = min.getRiderID() + 1;
 if (i == N) {
 // all rider has been matched
 // solution found
 printAssignments(min); // print solution
 return min.getCost();
 }
 for (int j = 0; j < N; j++) {
 if (!min.getAssigned()[j]) {
 // create child node with
 // riderId = i, driverId = j, parrent = min,

 // and boolean array assigned passed from
 // parent nodes

 Node child = new Node(i, j,
 min.getAssigned(), min);
 // set path cost to child node

 child.setPathCost(min.getPathCost() +
 this.costMatrix[i][j]);
 // set cost to child node

 child.setCost(child.getPathCost() +
 calculateCost(i, child.getAssigned()));

 pq.add(child); // add child to prioqueue
 }

 }
}
return -1; // solution not found

}

The algorithm iteratively explores nodes in the priority
queue until it finds a complete matching (all riders are matched).
In each iteration, it retrieves the node with the minimum cost
from the priority queue. If the last retrieved nodes indicate that
all riders are matched (min.getRiderID() + 1 = N), the solution
found thus it will be printed.

However, if it doesn’t, the algorithm will generate child
nodes for each unassigned driver at the current level. It creates a
child node by cloning the assigned array and setting the assigned
status for the current driver. The child node's path cost is updated
by adding the cost of assigning the rider i to the driver j. The
total cost of the child node is computed by adding the path cost
and the lower bound estimated cost for the remaining unassigned
riders.

The child node is then added to the priority queue for further
exploration. The algorithm continues this process until the
priority queue is empty, indicating that all possible assignments
have been explored without finding a complete assignment.

Using the case in Figure 5, the state-space tree construction
as well as the node cost calculation and priority queue condition
in each iteration is shown below.

1. Iteration 1: Rider A Matching

Fig 6. State-Space Tree for The 1st Iteration with Cost

Calculation

 The circled numbers in the matrices indicate the
minimum cost chosen for each row. Based on the cost ĉ(i),
the priority queue will look like this:

// start node added then immediately polled
pq = [40]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

// queue after 1st iteration finished
pq = [47, 87, 103, 103]

2. Iteration 2: Rider B Matching

Fig 7. State-Space Tree for The 2nd Iteration with Cost

Calculation

 The numbers marked in red indicate the matching from
the previous iteration. The driver that is already matched can
not be chosen for minimum cost. Based on the cost ĉ(i), the
priority queue will look like this:

// queue after polling
pq = [87, 103, 103]

// queue after 2nd iteration finished
pq = [47, 65, 87, 103, 103, 107]

3. Iteration 3: Rider C Matching

Fig 8. State-Space Tree for The 3rd Iteration with Cost

Calculation

Based on the cost ĉ(i), the priority queue will look like this:

// queue after polling
pq = [65, 87, 103, 103, 107]

// queue after 3rd iteration finished
pq = [60, 65, 81, 87, 103, 103, 107]

4. Iteration 4: Rider D Matching

Fig 9. State-Space Tree for The 4th Iteration with Cost

Calculation

Since there are no other nodes that cost less than 60
and all riders are already matched, the other nodes are
pruned. The pruned nodes are marked with a red “B”
(bounded). The solution path is marked red, which is A à

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

2, B à 4, C à1, D à 3. The total waiting time is 60
minutes. Hence, the minimum average waiting time is 60/4
= 15 minutes.

IV. TESTING AND ANALYSIS
To evaluate the efficiency of the Branch and Bound

application to the Rider-Driver Batched Matching Problem, the
program is being tested on various cases and against Brute Force
exhaustive search. The detailed testing and analysis are
discussed below.

A. Time Complexity Analysis
In Branch and Bound, the algorithm iterates through the

matrix with a double loop. Since the matrix size is N x N, the
time complexity of Branch and Bound algorithm is O(n2). In
Exhaustive Search, the algorithm generates all permutations of
matching, hence the time complexity is O(n!).

B. Test Results

TABLE I. TEST CASE 1

Test Case 1 (same as Figure 5.)
First rider position (x, y): (0, 0) Batch time (s): 2

Cost Matrix Result

Branch and Bound

Matching Result

Execution time:
4.053834 ms

Brute Force (Exhaustive Search)
Matching Result Execution time:

0.8275 ms

TABLE II. TEST CASE 1

Test Case 2
First rider position (x, y): (0, 0) Batch time (s): 2

Cost Matrix Result

Branch and Bound

Matching Result

Execution time:
2.764208 ms

Brute Force (Exhaustive Search)
Matching Result Execution time:

3.096084 ms

TABLE III. TEST CASE 1

Test Case 3
First rider position (x, y): (1, 1) Batch time (s): 5

Cost Matrix Result

Branch and Bound

Matching Result

Execution time:
6.474417 ms

Brute Force (Exhaustive Search)
Matching Result Execution time:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

 834.39675 ms

In all test cases, both Branch and Bound and Exhaustive
Search succeed in generating the least average waiting time. The
difference between Branch and Bound and Exhaustive Search
on those test cases is in terms of execution time needed.

In test case 1, the execution time needed for Branch and
Bound is longer than Exhaustive Search. That is because the
matrix size is relatively small. Exhaustive Search, with time
complexity O(n!), is better with a smaller sized matrix compared
to Branch and Bound, with O(n2). The graph that shows how
O(n!) behaves compared to O(n2) in small n is shown in Figure
10.

For a relatively average-sized matrix, like the one shown in
test case 2, the execution time needed for Branch and Bound is
shorter than Exhaustive Search. However, the difference is not
significant and often similar.

However, for the large-sized matrix, like the one in test case
3, the execution time needed for Exhaustive Search is extremely
longer than Branch and Bound. This is consistent with the
extremely steep graph of O(n!). The graph that shows how O(n!)
behaves compared to O(n2) in large n is shown in Figure 11.

Fig 10. O(n!) (red) compared to O(n2) (blue) in smaller input

size

Fig 11. O(n!) (red) compared to O(n2) (blue) in larger input

size

V. CONCLUSION
In conclusion, Branch and Bound algorithm is a promising

algorithm to solve Rider-Driver Batched Matching Problem.
The algorithm succeeds in generating a correct and complete
solution to the problem. It has O(n2) time complexity which is
generally better compared to Exhaustive Search in a large input.
However other limitations such as space complexity also need
to be further analyzed. Other real-life factors in Rider-Driver
Batched Matching such as driver acceptance rates, traffic, etc.
also need to be considered in a real Rider-Driver Batched
Matching Algorithm.

VIDEO LINK AT YOUTUBE
https://youtu.be/AHhN96L-uaE

ACKNOWLEDGMENT
First and foremost, I would like to thank Allah Swt. as

without his blessing I wouldn’t be able to finish this paper.
Second, I would also like to thank Dr. Nur Ulfa Maulidevi, S.T.,
M.Sc. as my Discrete Mathematics lecturer for her lectures that
inspire me to write this paper. Not to forget, I wish to show my
appreciation for Dr. Ir. Rinaldi Munir, MT. as his lecture
materials help me to compose this paper. Lastly, I also want to
thank all of my friends and colleagues who always support me.

REFERENCES
[1] Clausen, Jens (1999). Branch and Bound Algorithms—Principles and

Examples (PDF) (Technical report). University of Copenhagen, pp 4-13.
Archived from the original (PDF) on 2015/09/23. [Accessed May 21,
2023].

[2] Munir, Rinaldi. “Algoritma Branch & Bound (Bagian 1)”. Program Studi
Teknik Informatika STEI ITB: 2021,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf. [Accessed May
21, 2023].

[3] P.N. Aidira, “Rider-Driver-Batched-Matching-Simulation,” Github.
[Online]. Available: https://github.com/Putinabillaa/Rider-Driver-
Batched-Matching-Simulation. [Accessed May 21, 2023].

[4] R. Munir and Masayu L.K. “Algoritma Branch & Bound (Bagian 4)”.
Program Studi Teknik Informatika STEI ITB: 2021,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Branchand-Bound-2022-Bagian4.pdf. [Accessed May
21, 2023].

STATEMENT

With this I acknowledge that this paper is a writing of
my own, and neither a copy, translation of other papers, nor a
plagiarism.

Bandung, 22 Mei 2023

Puti Nabilla Aidira 13521088

