
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

E-Commerce Recommender System Prototype Using

Pattern Matching on Recent Purchase History and

Recent Search History

Antonio Natthan Krishna - 135211621

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113521162@std.stei.itb.ac.id

Abstract—This paper discusses simple recommender system

prototype using Boyer-Moore pattern searching algorithm and

Levenshtein pattern similarity algorithm. It starts discussing types of

pattern matching algorithms and use it as a core of recommender

system this paper proposes. At the end of this paper, a

recommendation system will be shown that can select 10 out of 100

most suitable products by using pattern matching on recent search

history and recent purchase history which corresponds to the property

in e-commerce.

Keywords— Boyer-Moore, Levenshtein, Pattern Matching, E-

Commerce, Recommender System.

I. INTRODUCTION

Every day, millions of people shop through e-commerce. E-

commerce has now become a favorite shopping method for

many people because of the ease of shopping it offers. There

are many things that e-commerce offers to its users: ease of

shopping, discount promos, product prices that are below the

average market price, etc. This makes e-commerce a primary

shopping method for some people.

E-commerce nowadays has a lot of features that serve to

pamper its users and attract more customers. Some make the

application look like social media so that users can interact

more naturally, some spoil their users by giving big promos on

certain days, and there are so many business strategies that e-

commerce uses so that users can spend more money through

their platform.

To attract users to spend their money, e-commerce must

have an effective recommender system. A good recommender

system must be able to provide product recommendations that

match the characteristics of each user. These characteristics

can be seen from the user's personal data, e.g., gender and

residential address, users’ recent purchase history, users’ recent

search history, and many more. This will increase the

likelihood that users will spend their money by buying

products offered by the recommender system.

In this paper, a simple recommender system will be

simulated using recent purchase history and recent search

history. The recommender system will use a pattern matching

algorithm and measure the degree of difference between

patterns. Pattern matching algorithm is one of the most

powerful basic algorithms in computer science today. In this

paper, it will be shown how this algorithm will support the

development of this recommender system.

This prototype recommender system is certainly very far

from the one that exists and is used in e-commerce today. The

real ones already utilize more sophisticated algorithms, e.g.,

artificial intelligence, machine learning, deep learning, etc.

However, every recommender has the same principle:

recommend products with the highest level of suitability. This

method is expected to provide a simple overview of how

recommendation systems work and the application of pattern

matching in the real world.

II. THEORETICAL BASIS

A. Pattern Matching

Pattern matching is comparing two patterns in order to

determine whether they match (i.e., that they are the same) or

do not match (i.e., that they differ) (Tony Hak & Jan Dull,

2009). A string will be evaluated character by character and

compared with other strings. The comparison method is

different for each algorithm. At the end of the pattern matching

algorithm, it will be determined whether the two compared

strings are the same, similar, or not the same.

Pattern matching consists of many properties. However, in

this paper, only the pattern searching algorithm and the pattern

similarity algorithm will be discussed and used in this

prototype recommender system. These two algorithms are

sufficient to simulate how pattern matching is used in the

recommender system's algorithm development.

B. Pattern Searching Algorithms

The three most popular pattern searching algorithms are

brute force algorithm, Knuth Morris Pratt algorithm, Boyer

Moore algorithm. In the subsequent examples, we are going to

locate “abacab” and “acaacc” on string

“abacaadaccabacabaabb” using those three algorithms.

1. Brute Force

By using brute force definition: obvious, the idea of

searching pattern using brute force algorithm is comparing

each character of the pattern and shift pattern to the right by

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

one character if there is a mismatch. The illustration of pattern

searching using brute force algorithm is shown below. For the

next and rest pattern searching illustration, T stands for pattern

to search, P stands for pattern to match. Every comparison

happens is shown with underline on the P character. Bold

pattern means there is a match.

a. “abacab”

T: a b a c a a d a c c a b a c a b a a b b

P: a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

b. “acaacc”

T: a b a c a a d a c c a b a c a b a a b b

P: a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

2. Knuth Morris Pratt

This algorithm is a fixation of the brute force algorithm (in

context of pattern searching). We no longer shift only one

character, but we shift pattern based on how many prefix

characters of the pattern which are the same with the suffix

character of the pattern. Knuth Morris Pratt algorithm

(hereinafter will be referred to as KMP). Hence, KMP will do

preprocessing algorithms to pattern to match.

The patterns to match are “abacab” and “acaacc”. Hence

first we are going to preprocess “abacab” first using this steps,

a. “abacab” is consisted by 6 characters.

a b a c a b

b. There is no character before character index 0 (a). If

there is a mismatch happens in character index 0, hence

there is no prefix which is the same with suffix before

index 0.

a b a c a b

0

c. There is only one character before character index 1 (b).

If there is a mismatch happens in character index 1,

hence there is no prefix which is the same with suffix

before index 1 which is not the same substring.

a b a c a b

0 0

d. There are two characters before character index 2 (a).

They are character index 0 (a) and character index 1 (b).

The only possible arrangement prefix and suffix which

is not the same substring and not null is,

Prefix Suffix Pre = Su

a b 0

a ≠ b, hence,

a b a c a b

0 0 0

e. There are three characters before character index 3 (c).

The possible arrangements prefix and suffix which is

not the same substring and not null is,

Prefix Suffix Pre = Su

a ba 1

ab a 1

Match prefix and suffix happens on character index 0

and character index 2, hence we take maximum value of

number of character prefix which are the same to the

suffix,

a b a c a b

0 0 0 1

f. Do step (e) to the rest of character of the pattern,

Prefix Suffix Pre = Su

a ba 1

ab a 1

Match prefix and suffix happens on character index 0

and character index 2, hence we take maximum value of

number of character prefix which are the same to the

suffix,

a b a c a b

0 0 0 1 0 1

Do the same step for patten “acaacc”, hence the results are,

a c a a c c

0 0 0 1 1 2

Number below the pattern will be the guide to shift pattern if

there is a mismatch. If there is mismatch at a certain character.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

Shift the pattern such that character index i will be parallel to

the location of mismatch. If mismatch happens at index 0. Shift

pattern by one character to the right. KMP algorithm is

illustrated below,

a. “abacab”

T: a b a c a a d a c c a b a c a b a a b b

P: a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

b. “acaacc”

T: a b a c a a d a c c a b a c a b a a b b

P: a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

3. Boyer Moore

Boyer-Moore algorithm (hereafter referred to as BM)

proposes a different approach to pattern search. It is based on

whether the characters in the pattern to search exist in the

pattern to match. It also performs preprocessing on the pattern

to match before finally performing the string-matching

algorithm.

The patterns to match are “abacab” and “acaacc”. Hence

first we are going to preprocess “abacab” first using this steps,

a. “abacab” is consisted by 3 distinct characters.

a b c

b. List the last occurrence of each character in the pattern

to match (start from index 0)

a b c

4 5 3

Hence, “acaacc”,

a. “acaacc” is consisted by 2 distinct characters.

a c

b. List the last occurrence of each character in the pattern

to match (start from index 0)

a c

3 5

Number below the pattern will be the guide to shift pattern if

there is a mismatch. If there is mismatch at a certain character.

Shift the pattern such that character index i will be parallel to

the location of mismatch. Comparison starts from the last

character in pattern to match. There are 3 situations that could

be happening when pattern match using BM,

a. If there is a mismatch and the last occurrence of the

pattern to search mismatch character in pattern to match

have not been evaluated yet. Shift pattern to match so

that the character is parallel to location of mismatch.

b. If there is a mismatch and the last occurrence of the

pattern to search mismatch character in pattern to match

have been evaluated. Shift pattern to match one to the

right.

c. If there is a mismatch and the pattern to search

mismatch character does not exist in pattern to match.

Shift pattern to match all the way to the right of

mismatch character.

One thing to note: BM compares characters starting from the

last index of pattern to match. BM algorithm is illustrated

below,

a. “abacab”

T: a b a c a a d a c c a b a c a b a a b b

P: a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

 a b a c a b

b. “acaacc”

T: a b a c a a d a c c a b a c a b a a b b

P: a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 a c a a c c

 …

C. Pattern Similarity Algorithms

In real-world practice, it is often the case that the desired

pattern is not available in its exact form. For example, we want

to find "aaab" but there is only "aab" or "aaa". Therefore, an

algorithm is needed to measure the similarity of two strings

(generally comparing strings that are different or not exactly

the same). There are 2 algorithms that will be discussed:

Hamming Distance and Levenshtein Distance.

1. Hamming Distance

Hamming distance is based on the similarity of

characters at the same index. Suppose we want to

compare “arose” with “ros”. The process is illustrated in

the table below,

a r o s e

r o s

X X X X X

Every mismatch will increase Hamming value of those

strings. Based on the example above, the Hamming

distance between “arose” and “ros” is 5 (number of

mismatch). Suppose we also want to compare “arose”

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

with “aro”. Hence, the Hamming process would be,

a r o s e

a r o

 X X

Based on the example above, the Hamming distance

between “arose” and “aro” is 2 (number of mismatch).

2. Levenshtein Distance

Levenshtein distance talks about how we can modify

the first string to become the second with minimum

number of edits. Types of edits is either replace, delete,

or insert. Levenshtein distance has a general equation,

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 max(𝑖, 𝑗) min(𝑖, 𝑗) = 0

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑖)

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Suppose we want to compare “arose” and “ros”.

Similarity measurements use these steps,

a. Make a matrix table like the following table

 “ a r o s e

“

r

o

s

b. Fill the first column and row such that the table

looks like the table below

 “ a r o s e

“ 0 1 2 3 4 5

r 1

o 2

s 3

c. Evaluate other cells value using Levenshtein

equation. The table would be,

 “ a r o s e

“ 0 1 2 3 4 5

r 1 1 1 2 3 4

o 2 2 2 1 2 3

s 3 3 3 2 1 2

d. The value of levenshtein distance is the value of

the most bottom right cell in the matrix. In this

case, the value would be 2

With the same algorithm, the Levenshtein score for

“arose” and “aro” can be evaluated with levenshtein

matrix below.

 “ a r o s e

“ 0 1 2 3 4 5

a 1 0 1 2 3 4

r 2 1 0 1 2 3

o 3 2 1 0 1 2

III. ALGORITHM AND DATA STRUCTURE

A. Big Picture

In this experiment, there is already 100 product data

generated by data faker. Every product data has name and

category. For example,

ut ultrices_grain

Source: Documentation (src/data/product.txt)

The data snippet above shows a product with name “ut

ultrices” in category “grain”. This will be target variable since

e-commerce recommender system would recommend products

to its users.

Based on three string searching algorithms discussed in the

previous chapter, we can conclude that BM algorithm is more

efficient compared to the others. BM algorithm is becoming

more effective with increasing numbers of distinct character

used in pattern. Since English alphabet contains 26 distinct

characters, BM is the most suitable algorithm for the

development of this recommender system.

Based on three string similarity algorithms discussed in the

previous chapter, we are going to use Levenshtein distance to

determine the degree of differences between two strings, since

Levenshtein focused on how one string can be the other, not

only comparing character on certain index or on a certain

order.

System would recommend product based on users’ recent

purchase history and recent search history. System would

match every data from those sources and calculate match value

to every product exist in product data. And recommend 10

products which have the highest match value.

All program is written in Python.

B. Algorithms

1. Pattern Searching using Boyer-Moore Algorithm

Pattern searching using Boyer Moore algorithm

Pre process

def generateCharTable(pattern):

 chartable = [-1 for i in range (256)]

 pattern = str(pattern)

 for i in range (len(pattern)):

 chartable[ord(pattern[i])] = i

 return chartable

Searching algorithm

def search(text, pattern):

 chartable = generateCharTable(pattern)

 m = len(pattern)

 n = len(text)

 s = 0

 while(s <= (n - m)):

 j = m - 1

 while (j >= 0 and

 pattern[j] == text[s + j]):

 j = j - 1

 if (j < 0):

 return s

 else:

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

 s += max(1,

 j - chartable[ord(text[s + j])])

 return -1

2. Pattern Similarity using Levenshtein Distance

def lev_dist(a, b):

 def min_dist(s1, s2):

 if s1 == len(a) or s2 == len(b):

 return len(a) - s1 + len(b) - s2

 # no change required

 if a[s1] == b[s2]:

 return min_dist(s1 + 1, s2 + 1)

 return 1 + min(

 min_dist(s1, s2 + 1),

 min_dist(s1 + 1, s2),

 min_dist(s1 + 1, s2 + 1),

)

 return min_dist(0, 0)

3. Reader data (for product)

Reader for Product

def readerProduct(path):

 f = open(path, "r")

 li = []

 for x in f:

 name = ""

 category = ""

 i = 0

 while (x[i] != "_"):

 name = name + x[i]

 i = i + 1

 i = i+1

 while (x[i] != "\n"):

 category = category + x[i]

 i = i + 1

 li.append(Product(name, category))

 f.close()

 return li

4. Reader data (for search history)

Reader for Search History

def readerSearch(path):

 f = open(path, "r")

 li = []

 for x in f:

 li.append(x.splitlines()[0])

 f.close()

 return li

C. Data Structure

1. Product (Class)

class Product:

 def __init__(self, name, category):

 self.name = name

 self.category = category

 self.match = 0

 def getName(self):

 return self.name

 def getCategory(self):

 return self.category

 def getMatch(self):

 return self.match

 def info(self):

 print(self.name, self.category,

self.match)

 def updateMatch(self, newmatch):

 self.match = newmatch

D. Recommender Algorithm

1. evaluateData

Type: Function returns match score on a certain product
def evaluateData(text, pattern):

 val = 0

 if (search(text, pattern) != -1):

 val = val + 1

 similarity = lev_dist(text, pattern)

 if (len(text) > len(pattern)):

 val = val +

 (len(text) - similarity) / len(text)

 else:

 val = val +

 (len(pattern) - similarity) / len(pattern)

 return val

2. processRecommend

Type: Procedure to update all match score in product

database returns dictionary
def processRecommend(products,

 search, purchased):

 for x in products:

 newmatch = 0

 for y in search:

 newmatch +=

 evaluateData(y, x.getName())

 newmatch +=

 evaluateData(y, x.getCategory())

 for y in purchased:

 newmatch +=

 evaluateData(y.getName(), x.getName())

 newmatch +=

evaluateData(y.getCategory(), x.getCategory())

 x.updateMatch(newmatch)

3. recommendProduct

Type: Function returns 10 products with the highest

match score.
def recommendProduct(products):

 recommend = sorted(products, key=lambda x:

x.getMatch(), reverse=True)

 recommend = recommend[:10]

 return recommend

E. Main Program

The subsequent program is written in Python.

products = readerProduct("src/data/product.txt")

purchased =

 readerProduct("src/data/purchased.txt")

search = readerSearch("src/data/search.txt")

processRecommend(products, search, purchased)

recommend = recommendProduct(products)

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

print("RECOMMENDED PRODUCT")

for item in recommend:

 item.info()

IV. EXPERIMENT

1. Test Case 1

a. Recent Search History

vegetable

cras

feli

dairy

mas

b. Recent Purchase History

justo_grain

semper_grain

urna_fruit

volutpat_fruit

at diam_meat

c. Recommended Product Results

2. Test Case 2

a. Recent Search History

vegetable

cras

feli

meat

meat

b. Recent Purchase History

justo_grain

semper_grain

urna_fruit

integer_meat

at diam_meat

c. Recommended Product Results

3. Test Case 3

a. Recent Search History

semper

cras

metus

arcu

sapien

b. Recent Purchase History

justo_grain

semper_grain

urna_fruit

integer_meat

at diam_meat

c. Recommended Product Results

4. Test Case 4

a. Recent Search History

quis

lorem

nascetur

b. Recent Purchase History

quis augue_dairy

semper_grain

urna_fruit

nascetur_dairy

lorem vitae_dairy

c. Recommended Product Results

5. Test Case 5

a. Recent Search History

quis

lorem

nascetur

b. Recent Purchase History

potenti_fruit

semper_grain

urna_fruit

nascetur_dairy

massa_fruit

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2022/2023

c. Recommended Product Results

V. CONCLUSION

Pattern matching related algorithms can be applied in many

ways and can solve a wide variety of problems. In this paper, it

has been shown that pattern matching algorithms can be

applied in the development of a simple recommendation

system using only Boyer Moore’s string search algorithm and

Levenshtein’s string similarity algorithm. Both algorithms are

simple, yet powerful when brought to bear on a problem. Not

only that, but these algorithms can also simplify the way the

recommendation system works as explained in the previous

section. Hence, this algorithm can be used as an introduction in

developing more advanced recommendation system that uses

more feature engineering.

VI. ACKNOWLEDGMENT

Firstly, I want to thank myself and God for completing this

paper. I cannot express what I am feeling now because I cannot

believe that I wrote this paper fully in English. I want to thank

Mr. Rinaldi Munir and Ms. Nur Ulfa Maulidevi for the

fundamental knowledge that you have taught me earlier this

semester. That knowledge has helped me to explore string

matching algorithms at a level that I had not previously been

able to reach. Hope this paper helps beginner student like me

doing experiment on string matching algorithms and apply

those in various aspects.

APPENDIX

1. Code documentation on GitHub

https://github.com/natthankrish/String_Matching_Recomm

ender_System.git

2. Explanation Video (in Indonesian Bahasa)

 https://youtu.be/5thhHlve-Ew

REFERENCES

[1] Munir, Rinaldi, Nur Ulfa Maulidevi. 2021. Pencocokan String

(String/Pattern Matching). Accessed on

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf

[2] Khodra, Masayu Leylia. 2019. String Matching dengan Regular

Expression. Accessed on
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2018-2019/String-

Matching-dengan-Regex-2019.pdf

[3] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi Ke

Zhang, Tao Zho. 2012. Recommender Systems.
https://doi.org/10.1016/j.physrep.2012.02.006

[4] Tony Hak, Jan Dul. 2009. Pattern Matching.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1433934
[5] Nam, Ethan. 2019. Understanding the Levenshtein Distance Equation for

Beginners. Accessed on https://medium.com/@ethannam/understanding-

the-levenshtein-distance-equation-for-beginners-c4285a5604f0.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Antonio Natthan Krishna - 13521162

https://github.com/natthankrish/String_Matching_Recommender_System.git
https://github.com/natthankrish/String_Matching_Recommender_System.git
https://youtu.be/5thhHlve-Ew
https://doi.org/10.1016/j.physrep.2012.02.006
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1433934

