
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Dynamic Syntax Highlighter for Python, Java, and

JSX/TSX Code using Regular Expressions

Made Debby Almadea Putri - 13521153

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13521153@std.stei.itb.ac.id:

Abstract—Code readability and comprehension are significantly

impacting productivity. Syntax highlighting, a technique used in

Integrated Development Environments (IDEs), enhances code

readability by visually distinguishing different elements of source

code. This paper presents the development and implementation of

a web-based syntax highlighter using Next.js and regular

expressions. Testing and analysis demonstrate the reliability of the

syntax highlighter, supporting multiple programming languages

such as Python, Java, and JSX/TSX. By leveraging regular

expressions, the highlighter accurately identifies code elements

and enhances their visual representation

Keywords—Pattern Matching, Regular Expression, Syntax

Highlighting

I. INTRODUCTION

In a world of software development, code readability and
comprehension plays a vital role in increasing productivity
among developers. As the software and the developer team gets
bigger, the time spend in reading, understanding, and modifying
the code will also increase significantly. Thus, a tools that helps
enhancing code readability is essential. The modern Integrated
Development Environment (IDEs) recognize this problem and
forms one of the key functionality for IDEs, syntax highlighting.

Syntax highlighting is a technique used by text editor to
distinguish between different elements of the source code using
color and/or typefaces. It typically highlights keywords,
variables, strings, comments, and function calls [1]. This allows
developer to quickly identified parts of the code, reducing the
work needed to understand complex structure.

Reference [2] conducted a research on the effect of richer
visualization on code comprehension. This research
demonstrates the impact of richer code visualization in reducing
the comprehension time of code feature. Contrary to developer’s
subjective perception, it is also observed that richer code
visualization do not result in visual overload. One example that
we commonly see is the difference between commented blocks
and uncommented blocks. Commented blocks are more dimmed
compared to uncommented blocks, thus the developers can
distinguish between commented and uncommented blocks in
just one look.

While IDEs provide built-in syntax highlighting capabilities,
understanding the underlying mechanism and showcasing its
functionality is a key objective of this paper. To achieve this, this

paper presents a web-based syntax highlighter developed using
Next.js, a powerful JavaScript framework, and utilize the
capabilities of regular expression to implement language
detection and syntax highlighting algorithm.

The primary focus of this paper is to explain the inner
workings of our syntax highlighter, which utilizes regular
expression for language detection and efficient code
highlighting. By showcasing its implementation details, this
paper aim to provides reader with insights into how syntax
highlighting operates.

II. BASIC THEORY

A. Regular Expression

Regular expression (often shortened to regex) is an algebraic
description of regular language, a class of languages that can be
recognized by finite automata, that offer a declarative way to
express the accepted strings [3]. The concept of regular
expression was introduced by mathematician Stephen Kleene in
the 1950s as a way to describe regular languages.

Regular expression is a powerful tools in searching through
text, especially if there is a specific pattern and corpus of texts
to search within. A regular function search will search through
the corpus and returns a first match or every match, if there are
more than one [4]. In describing a pattern, regular expression use
a combination of a sequence of characters and metacharacters.

B. Regular Expression in JavaScript

Regular expression in JavaScript can be constructed in two

ways

1. Expression literal, which consists of a pattern enclosed

between slashes. This method is preferable if the

regular expression remains constant through its runtime

[5]

2. Regular expression object by calling the constructor of

the object. This method is preferable if the regular

expression will be changing in runtime

Fig. 1 Regular expression construction in JavaScript

(Source: Personal Library)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

 This paper will use the expression literal in

constructing a regular expression because the regex will remain

constant. In writing a regular expression pattern, one can use a

simple pattern consist of characters to find a direct match in a

text. For example, the pattern /abc/ will only match if there is

an exact sequence of ‘abc’ in a text. The other one is to use

special characters to find match that require more than direct

match.

TABLE I. REGEX CHARACTER CLASSES

Characters Meaning

[xyz]

[a-c]
Any characters in the enclosed tag

[^xyz]

[^a-c]
Anything besides the characters in the enclosed tag

. Any single character except line terminators

\d Any digit from 0 to 9

\D Any characters besides digit

\w Any alphanumeric character

\W Any characters besides alphanumeric character

\s Any single white space characters

\S Any characters beside single white space characters

x|y Either x or y

(Source: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet)

TABLE II. REGEX ASSERTIONS

Characters Meaning

^ The beginning of an input

$ The end of an input

\b
Word boundary, a character does not have another word-

character before or after it

\B Non-word boundary character

x(?=y) Matches x only if x is followed by y

x(?!y) Matches x only if x is not followed by y

x(?<=y) Matches x only if x is preceded by y

x(?<!y) Matches x only if x is not preceded by y

(Source: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet)

TABLE III. GROUPS AND BACKREFERENCES

Characters Meaning

(x) Matches x and remembers the match

(?<Name>x)
Matches x and stores it on the groups property under the

specified name

(?:x) Matches x but does not remembers the match

(Source: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet)

TABLE IV. REGEX QUANTIFIERS

Characters Meaning

x* Matches the preceding token zero or more times

x+ Matches the preceding token one or more times

x? Matches the preceding token zero or one time

x{n} Matches the preceding token n times

x{n,} Matches the preceding token n or more times

x{n,m} Matches the preceding token n to m times

x*?

x+?
x??

etc

Similar to the one before, except it will stop as soon as it
finds a match

(Source: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet)

C. Python Syntax

Python is an interpreted object-oriented high-level
programming language released on 1990s by Guido van
Rossum. Unlike other programming language that needs explicit
curly braces or semicolon, python emphasizes the use of white
space and indentation to define code blocks.

Python include set of control-flow structures, such as if-else-
elif, for-while loop, and exception handling. In defining a
method, it starts with keyword “def” and the name of the
function along with its parameters followed by a colon.

Python is a dynamically-typed language. This means the
variables can hold any types and its type can be change through
the runtime.

As an object oriented programming language, python also
provides object oriented approach. Defining a class begins with
keyword “class” and the name of the class. Unlike java or C++,
to reference the instance of class, python use keyword “self”.
The class constructor is defined inside “__init__” method.

D. Java Syntax

Java is an object oriented programming language developed
by James Gosling in the mid 1990s. Java’s syntax is derived
from C and C++, making it familiar to the developers from those
backgrounds.

Java’s codes are structured into classes and objects that
interacts with each other. Java is a strong-typed language,
meaning variable’s type should be explicitly declared that
encourages type safety. Every code blocks is defined within a
curly braces and each line is ended by a semicolon.

Java include set of control-flow structures, such as if-else-
else if, for-while loop, and exception handling. In defining a
method, it starts with modifier e.g. public, private, and protected
if needed then the method return type followed by its name and
parameters.

To define a class, it starts with the class modifier then the
class name. The class constructor is defined inside a method
without any return type with the name equals to the class name.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions/Cheatsheet

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

E. JSX/TSX Syntax

JavaScript XML (JSX) and TypeScript XML (TSX) are
JavaScript syntax extensions to write component-based user
interfaces. JSX and TSX are used by React, a JavaScript
frontend web-framework. JSX and TSX are grouped into one
because of its similar syntax. TypeScript is an extensions of
JavaScript that adds types annotation and static typing to the
usual JavaScript making developers detect errors early in
compile time.

JSX and TSX allows developers to write HTML code inside
the JavaScript or TypeScript file. Thus in the making of syntax
highlighter for JSX and TSX code, HTML syntax also needs to
be considered.

Because it’s an extension of JavaScript, the syntax also
follows JavaScript’s syntax. JavaScript provides dynamic
behavior of a website and developed by Brendan Eich in the mid
1990s. JavaScript’s syntax is derived from the Java and C
programming language. However, unlike Java and C, JavaScript
is a dynamically-typed language, meaning its variable can hold
any types and its type can be change through the runtime.

The syntax of JavaScript also includes control-flow such as
if-else-else if, for and while loop, and exception handling. There
are two ways of defining a function or method in JavaScript,
with function keyword or an arrow function. JavaScript also
supports object-oriented programming. An object in JavaScript
can be created in two ways, calling the class constructor or by
using anonymous objects.

The syntax that differentiate between JSX/TSX and Java,
beside the HTML syntax is in its variable declaration. While it
does not need type declaration, JavaScript provided a variable
scoping declaration. It includes keyword var, let, and const.
Variable that defined with var and let keyword can be updated
but cannot be re-declared. While variable with var keyword
exists within a function, let keyword only exists within a scope
bounded by curly braces. On the other hand, variable with const
keyword, much like its name, cannot be updated nor re-declared.

III. IMPLEMENTATION

In building syntax highlighter web-based app involves two

crucial steps, each contributing to the overall functionality and

effectiveness of the highlighter. The first step focused on

developing programming language detection mechanism using

regular expression. The second step focused on the creation of

regular expressions to match and categorize individual code

elements.

A. Programming Language Detection

Before categorizing individual code elements to highlight
the syntax, detecting the programming language is an important
thing to do. Each language, in this case python, java, and jsx/tsx,
have different keywords and patterns so the categorization for
each programming language is different.

1. Python Source Code Pattern

Python can easily be differentiated with java and jsx/tsx
because of its different ways to define a code blocks. Python
keywords are also very different with java and jsx/tsx, with using
def for function and elif, which will be else if in java and jsx/tsx.
Each of this function or control-flow definition is followed by a
colon to mark the beginning of a code blocks. Based on this
facts, the regular expression for python source code pattern can
be constructed as follows

The regex above will match the definition of function block,
class block, if-elif control block, and for-while loop control
block. The regex is inside a non-capturing group for
performance reason.

def\s+\w+\s*\(.*\)\s*\: will match an exact sequence of
“def”, the function keyword, followed by one or more white
space followed by a word, in this case a function name. \(.*\)
will match the parameters of the function enclosed by
parantheses. \: will match the colon that is mandatory to start a
function block.

class\s+\w+\s*\(?.*\)?\s*\: will match the class block. The

regex is similar to the function’s regex except the parantheses

is optional because parantheses in a class definition only needed

if the class is inheriting another class.

if\s+.+\:\s*.+ will match the if control-flow block. elif and

else keyword is not present in this regex because it can only

exists if “if” block exists. (?:for|while)\s+.+\:(?!.*\)) will match

the for and while loop control-flow block. The (?!.*\)) prevents

the regex to match the for-while loop block of java because

inside the for-while loop arguments can include colon for

iteration.

2. Java Source Code Pattern

One way to differentiate Java source code from Python and
JavaScript is through class and method definition. In class and
method definition usually includes access modifier e.g. public,
private, and protected. However, it is not mandatory.

The regex above will match the definition of class and
method block in Java. The regex is divided into two to make it
more readable.

(?:public|private|protected)?(?:class|interface)\s+(\w+)\s*
will match the access modifier, if present, and the class or
interface keyword followed by its name. (?:<[^>]+>)? will
detect a generic class. (?:\s+extends\s+\w+(?:\s*<[^>]+>)?)?
will match extends syntax in Java.
(?:\s+implements\s+[\w\s,]+)?\s*\{ will match the implements
syntax in Java. The curly brackets will start the class blocks.

(?:public|private|protected)?\s*(\w+)\s*\([^)]*\)\s* will
match the access modifier, name, and parameters of a method.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

(?:throws\s+\w+(?:\s*,\s*\w+)*)?\s*\{ will match the throws
keyword in a method. The curly brackets will start the method
blocks.

3. JSX/TSX Source Code Pattern

Differentiating JSX and TSX source code can be tricky
because its blocks are enclosed by curly braces, similar to Java.
One obvious way is to look at the HTML syntax in the code
which neither java and python have. However, there is another
way to detect JSX/TSX source code by using the variable
scoping inherited from the JavaScript syntax.

The regex above will match the variable and function definition
in JSX/TSX. It will also match the HTML parts of JSX/TSX.

(?:const|function|var|let)\s+\w+ will match the definition of
variable with const, var, and let keyword and the definition of
function with function keyword.

There are two ways to write an HTML tag: by using an
opening and closing tag or by using a self-closing tag. For the
opening and closing tag, the pattern <[A-Za-z]*\s*[^>]*>
matches the opening tag of an HTML element. The pattern
[^<]* matches the content inside the HTML tag.

Lastly, the pattern <\/[A-Za-z]*> matches the closing tag of
the HTML element. On the other hand, for self-closing tags, the
pattern <[A-Za-z]*\s*[^>]*\/> is used.

B. Regular Expression for Common Pattern

In creating syntax highlighter, there are several common
category or pattern that are presents in multiple programming
language, in this case Python, Java, and JSX/TSX. Those
categories are:

1. Operators and Punctuation

Operators such as binary operators (+, -, /, *, ^, %, |, &&),
unary operators (!), assignment operators (=, +=, -=), and
comparison operators (==, <=, >=, <, >) along with punctuation
(., ,, :, ;, ?, @) can be matched using

[\+\/\-*\%\!\=\,\.\:\;\@\\\?\|\^]|<|>|&&

< and > is the entity name for less-than (<) and greater-
than (>). This encoding is used because browser might mixed
up (<) and (>) with tags.

2. Char and String

Char and string literals are enclosed with quotes and can be
matched with pattern

(?<!\/(\S)*)(["][^"]*["]|['][^']*[']|[`][^`]*[`])

The regex (?<!\/(\S)*) at the beginning prevents the regex to
match the string pattern inside a regex.
(["][^"]*["]|['][^']*[']|[`][^`]*[`]) is a pattern for
each type of quotes: double quote (“), single quotes (‘), and (`).

3. Default Parameters

A function or procedure can have default parameters that
can be override when calling a function or procedure by using
assignments. This can be matched using

(?<=\([^\)]*)(?<!=)(\w+)(?==.*\)

Passing props in HTML tags are similar to default parameters
in function or procedure, thus passing props in HTML tags can
be matched using

(\w+)(?==(?:\{[^\}]*\}|<[^>]*?"[^"]*"|<[^>]*?'[^']*'

))

4. Parentheses

Parentheses, all round brackets (()), curly brackets ({}),

and square brackets ([]), can be matched using
[\(\)\[\]\{\}]

5. Number

Number can be matched using digit character class \d+. This
is because the dot in floating point will be captured first by
operator regex and thus the floating point will be read as two
separated digit and can be captured using \d+ only.

6. Decorator

Decorator are typically identified by an @ symbol followed
by an identifier. A pattern like @(\w+) can be used to match
decorators.

7. Regex

Regex are typically identified by enclosed // thus a pattern
like \/(\S)*\/[gimuy]* can be used to match regex. The regex
in python are bounded by double quotes thus the string pattern
will took care of it.

C. Regular Expression for Programming Languge-

specific Pattern

As mentioned in the Programming Language Detection
segment, each programming language has specific keywords
and syntax. For example, function definition for Python, Java,
and JSX/TSX are all different. Thus, a regular expression that
match a pattern for specific programming language is necessary.

To make the code readable and avoid redundancy, keywords
and patterns in a code are categorized as follows

1. Keywords

• basic will include the control-flow keyword as well
as Boolean value and imports keyword

• important will include the definition keyword such
as function and class definition as well as the
keyword that usually follows it

• types will include the basic type keyword defined in
each programming language

• specials will include keyword that needs to standout
from other keywords

2. Patterns

• className

• comment

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

• functionName

• special, a pattern that can’t be categorized into
className, comment, and functionName and also
needs to standout from other pattern

1. Patterns in Python

• className

A word is a class name if it’s preceded by “class”
keyword. To increase the readability, if a word is
bounded by words with dot in between, e.g.
word.class.word, then it is categorized as a class
except if it’s called by “self” keyword. Thus, the
pattern that will match the class name in python is

(((?<=class)\s*(\w+)(?=\s*\(?.*\)?:))|((?<

!self\.)(?<=\.)(\w+)(?=\.)))

• comment

Comment in python are classified into two: inline
comment and multi-line comment. Inline comment
are noted by “#” at the start or bounded by quotes.
Multi-line comment are bounded by triple single-
quotes (‘’’) or triple double-quotes (“””). However,
the quotes are already matched by the string pattern.
Thus, the pattern that will match the comment block
in python is

#(.*)

• functionName

A word is a function name if it’s followed by round
brackets. Thus, the pattern that will match the class
name in python is

(\w+)(?=\((.*))

2. Patterns in Java

• className

A word is a class name if it’s preceded by “class”
keyword. In Java, there is a naming convention for
a class name to always begin with upper-case letter,
method and variable begin with lower-case letter.
Thus the syntax highlighter will follow this naming
convention and the pattern that will match the class
name in Java is

((\b[A-Z]\w*\b)|(?<=\.)(\w+)(?=\.))

• comment

Comment in java are classified into two: inline
comment and multi-line comment. Inline comment
are noted by “//” at the start. Multi-line comment
are bounded by “/*”. Thus, the pattern that will
match the comment block in Java is

(\/\/(.*))|(\/*([\s\S]*?)*\/)

• functionName

Similar to Python, a word is a function name if it’s
followed by round brackets. Thus, the pattern that
will match the class name in Java is

(\w+)(?=\((.*))

3. Patterns in JSX/TSX

• className

The naming convention in JSX/TSX is not as strong
as the one in Java, thus there are some rules as how
a word can be classified as a class name. A word is
a class name if it’s preceded by “class”, “type”,
“as”, and “new” keyword. Additional rule for TSX
is if it is used as a type. A variable is used as a type
if the variable is inside angel brackets (<>) and after
a colon (:). Thus, the pattern that will match the
class name in JSX/TSX is

(((?<=(<)\/?.*)(\b[A-

Z]\w*\b))|((?<!>)(\w+)(?=<[^\/])(?!.

*\())|((?<=(type|as)\s+)(\w+))|((?<=new\s+

)(\w+))|((?<!case|default\:\s+)(?<=\w+\:\s

+)(\w+)))

• comment

Comment in JSX/TSX are similar to the one in
Java. Thus, the pattern that will match the comment
blocks in JSX/TSX is

(\/\/(.*))|(\/*([\s\S]*?)*\/)

• functionName

A word is a function name if it’s followed by round
brackets. However, there are some additional rule
in TSX because of type definition in a function. For
example when using useState() in TSX usually
done with a type definition by using (<>) such as
useState<String>(). The function pattern in Java
will not match this function name. Another special
thing in JSX/TSX is the arrow function. Thus the
pattern will need to match the arrow function syntax
and the pattern that will match all of it is

(((\w+)(?=(<.*>)?\((.*)))|((?<=funct

ion\s+)(\w+))|((?<=(?:const|let|var)\s+)(\

w+)(?=\s+\=\s+\()))

• Special

The special pattern in JSX/TSX is the pattern that
match HTML tag name. The pattern that will match
the tag name in JSX/TSX is

(?<=<\/?)(\w+)

 To further distinguish different elements of source code,
imported class, function, or package is also considered as a class.
For example, in Python, a good practice in importing classes
from other modules or third library is to import only the needed
class. In Python GUI development a file often consist of passing
message to the GUI object. Without considering imported class,
function, or module as a class then it will be treated as basic
variable, making it hard to distinguish between local and
imported variables.

 To solve this, we make a rule that every imported class,
function, or module is considered as a class name.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

The regex above will match inline imports and grouped imports
in Python. Searching for imported class were done before
conducting any recoloring. The matched words are stored and
treated as a keyword.

Fig. 2 Regex for Programming Language Specific Pattern

(Source: Personal Library)

On Fig. 2, each pattern are preceded and followed by the
same pattern because coloring each line require replacement to
HTML tag (in this case a span tag), thus each regex will need to
ignore the value inside the tag except for the comment regex
because it will be the first regex to be tested and replaced.

D. Integrations

The process of integrating all of the regular expression we
have analyzed to the color for each code categories is the heart
of syntax highlighting.

The colors for each category is determined by analyzing
existing syntax highlighters and coding standards. The objective
is to enhance code readability by improving the visual
distinction between various elements within the code. One thing
that is common in existing syntax highlighters is the dimmed
color for commented out block and shades of green for string or
char. Table V shows the colors for each code categories

TABLE V. COLORS FOR EACH CATEGORY

Category Color

comment #6b7280

string #34d399

regex #7dd3fc

params (default) #c084fc

decorator #f472b6

class name #facc15

function name #818cf8

basic keyword #7dd3fc

important keyword #ec4899

Category Color

types keyword #facc15

specials keyword #f87171

imported keyword #facc15

special pattern #f87171

operator/punctuation #7dd3fc

parentheses #f472b6

number #fb923c

(Source: Personal Library)

Replacing the plain text into colored text utilize regex
method in JavaScript called replace. For each regex, if there is a
match then the matched text will be replace to a span tag with
each has a style according to its designated color. Another
important thing while doing regex matching and replacement is
deciding the order of replacement. This is because the text that
has been replaced cannot be matched by another regex. Based
on trial and errors, the order of replacement is shown in Fig. 3

Fig. 3 Regex Matching and Replacement

(Source: Personal Library)

IV. TESTING AND ANALYSIS

1. Python Source Code

Fig. 4 Syntax Highlighting on Python Source Code

(Source: Personal Library)

2. Java Source Code

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Fig. 5 Syntax Highlighting on Java Source Code

(Source: Personal Library)

3. JSX/TSX Source Code

Fig. 6 Syntax Highlighting on Java Source Code

(Source: Personal Library)

 The test case above is designed to cover all pattern listed in
previous section. Regex pattern testing is demonstrated in the
Fig. 2. During the testing phase, the test case are a plain text with
unknown programming language. The app successfully detect
the programming language for Python, Java, and JSX/TSX if the
plain text contains a lot of context about the language. The app,
however, will set the language to Python (default language) if
there is little to no context such as the body only contains simple
operation.

 The comparison between unhighlighted and highlighted
code can be seen on the fig. above. In most cases, the syntax
highlighter mostly succeed in mapping the code elements to its
designated color. However, there are some cases that resulted in
slightly unsatisfiable result. Those case are usually cases that
require more context, such as the functionNameRegex is
highlighted even though in this context it is a basic variable but
because we considered the pattern of type definition in
TypeScript, it was detected as a type.

V. CONCLUSION AND SUGGESTIONS

. In conclusion, through testing and analysis, we have
demonstrated the reliability of the syntax highlighter in
improving the visual distinction between code elements. The
highlighter supports multiple programming languages,
including Python, Java, and JSX/TSX. By utilizing regular
expressions, we have achieved language detection and efficient
code highlighting.

To further enhance the highlighter, we propose several
suggestions for future improvements. First, expanding the
language support to include other programming language to
reach other developers and codebases. Second, extending the
web-app to be customizable to allow developers define their
own highlighter. Third, optimizing syntax highlighting either by
improving the regular expression or using advanced pattern
matching so the categorization can be more precise and can
include coloring inside a commented blocks.

YOUTUBE LINK

https://youtu.be/HNlhrg1iJBY

REPOSITORY LINK

https://github.com/debbyalmadea/re-light

WEBSITE LINK

https://re-light.vercel.app/

ACKNOWLEDGMENT

First and foremost, I would like to express my heartfelt

gratitude to God for His blessings, guidance, and unwavering

presence throughout this paper. Next, I would like to express my

sincere gratitude to Dr. Ir. Rinaldi Munir, M.T, my esteemed

professor of Strategi Algoritma, for his invaluable guidance and

support throughout the development of this project. His

engaging lectures and commitment to excellence have greatly

enriched my understanding of algorithm.

REFERENCES

[1] Omisola, Idowu. (2022). What is Syntax Highlighting? Accessed from
https://www.makeuseof.com/syntax-highlighting-what/ on 22 May 2023

[2] Dimitar Asenov, Otmar Hilliges, and Peter Müller. (2016). The Effect of
Richer Visualizations on Code Comprehension. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM,
5040–5045. https://doi.org/10.1145/2858036.2858372

[3] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. (2006).
Introduction to Automata Theory, Languages, and Computation, Prentice
Hall

[4] Daniel Jurafsky, James H. Martin. (2023). An Introduction to Natural
Language Processing, Computational Linguistics, and Speech
Recognition, third edition draft.

[5] MDN Web Docs. Regular Expression. Accessed from
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_expre
ssions on 22 May 2023

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Made Debby Almadea Putri - 13521153

https://youtu.be/HNlhrg1iJBY
https://github.com/debbyalmadea/re-light
https://re-light.vercel.app/
https://www.makeuseof.com/syntax-highlighting-what/
https://doi.org/10.1145/2858036.2858372
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/docs/Web/JavaScript/Guide/Regular_expressions

	I. Introduction
	II. Basic Theory
	A. Regular Expression
	B. Regular Expression in JavaScript
	C. Python Syntax
	D. Java Syntax
	E. JSX/TSX Syntax

	III. Implementation
	In building syntax highlighter web-based app involves two crucial steps, each contributing to the overall functionality and effectiveness of the highlighter. The first step focused on developing programming language detection mechanism using regular e...
	A. Programming Language Detection
	class\s+\w+\s*\(?.*\)?\s*\: will match the class block. The regex is similar to the function’s regex except the parantheses is optional because parantheses in a class definition only needed if the class is inheriting another class.
	if\s+.+\:\s*.+ will match the if control-flow block. elif and else keyword is not present in this regex because it can only exists if “if” block exists. (?:for|while)\s+.+\:(?!.*\)) will match the for and while loop control-flow block. The (?!.*\)) pr...
	2. Java Source Code Pattern
	B. Regular Expression for Common Pattern
	C. Regular Expression for Programming Languge-specific Pattern
	D. Integrations

	IV. Testing and Analysis
	V. Conclusion And Suggestions
	Youtube Link
	Repository Link
	Website Link
	Acknowledgment
	References

