
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Application of Dynamic Programming

For Efficient Text-Based Files Comparison

Rachel Gabriela Chen : 13521044

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 13521044@std.stei.itb.ac.id

Abstract— This paper explores the application of dynamic

programming for efficient comparison in text-based files

comparison. Text-based files comparison is an important feature

and can be used in version control system, plagiarism detection

application, data analysis, and data management. Dynamic

programming provides an effective approach to track and

compare changes between different files. The proposed algorithm

utilizes dynamic programming tables, subproblem

decomposition, and optimal substructure to determine the longest

common subsequence. Experimental evaluation demonstrates the

superiority of the dynamic programming solution in terms of

time complexity, making it a valuable approach for efficient text-

based comparison. This paper highlights the practical

implications of dynamic programming for text-based files

comparison.

Keywords—dynamic programming; text-based files; longest

common subsequence

I. INTRODUCTION

Text-based file comparison plays a crucial role in various
domains, including software development, document
management, and data analysis. When dealing with large
volumes of textual data, accurately identifying differences and
similarities between files becomes a complex task. Efficient
and precise file comparison is essential for tasks such as
version control, plagiarism detection, content synchronization,
and data integration. By employing advanced techniques and
algorithms, text-based file comparison enables the automatic
detection of changes, facilitating efficient data processing,
decision-making, and ensuring data integrity. In this article, we
will explore the challenges involved in text-based file
comparison and delve into the various methodologies and
approaches used to achieve accurate and efficient comparisons,
ultimately enabling better management and analysis of textual
data.

Dynamic programming is a powerful algorithmic approach
that breaks down complex problems into smaller, overlapping
subproblems, allowing for efficient computation of optimal
solutions. Its application in version control can significantly
improve the efficiency of file comparisons. By leveraging
dynamic programming, we can determine the longest common
subsequence between two files, which represents the

unchanged or minimally changed portions. This approach
reduces the computational complexity of file comparisons,
enabling faster and more accurate results.

This paper explores the application of dynamic
programming for efficient text-based files. Specifically, the
paper focus on the longest common subsequence problem,
which serves as a fundamental building block for file
comparisons. This paper proposes an algorithm that utilizes
dynamic programming tables, subproblem decomposition, and
optimal substructure to identify the longest common
subsequence between files. The paper’s experimental
evaluation demonstrates the superiority of the dynamic
programming solution in terms of time complexity,
highlighting its effectiveness for efficient text-based files
comparison.

The efficient comparison of files is crucial for effective
collaboration, conflict resolution, and maintaining a
comprehensive revision history. The results of this study have
practical implications for developers, technical writers, and
other professionals who rely on version control systems. They
can benefit from improved efficiency and accuracy in tracking
and analyzing changes in text-based files.

II. THEORETICAL BASIS

A. Text Based Files

Text-based files are computer files that store data in plain
text format, meaning they contain human-readable characters
and can be edited with a simple text editor. These files are
widely used for storing and exchanging information in various
applications and systems.

Here are a few common types of text-based files:

1. Plain Text Files: These files contain unformatted text with
no special styling or formatting. They typically have a
".txt" extension and can be opened and edited by any
basic text editor.

2. Configuration Files: Many software applications use text-
based configuration files to store settings and preferences.
These files often have specific syntax and structure that
the application understands and interprets.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

3. Markup Languages: Markup languages like HTML
(Hypertext Markup Language) and XML (eXtensible
Markup Language) are text-based files that use specific
tags and elements to define the structure and presentation
of data. They are widely used for web development,
document storage, and data interchange.

4. Programming Source Code: Source code files, such as
those written in programming languages like Python,
Java, or C++, are also text-based. They contain the
instructions and commands that make up a computer
program and can be edited with a code editor or an
integrated development environment (IDE).

5. CSV Files: CSV (Comma-Separated Values) files store
tabular data in plain text format, where each value is
separated by a comma. They are commonly used for data
storage, exchange, and analysis in spreadsheet programs
and database systems.

6. Log Files: Applications and systems often generate log
files that record events, activities, and errors. Log files are
typically text-based and provide valuable information for
troubleshooting and analysis.

The advantage of text-based files is their simplicity and
interoperability. They can be easily opened, edited, and read
by humans as well as various software applications across
different platforms. Additionally, text-based files are often
smaller in size compared to binary files, which can be
beneficial for storage and transmission.

B. Dynamic Progamming

Dynamic programming is a problem-solving technique
developed by Richard Bellman in the 1950s. Dynamic
programming requires two important properties in a problem
to be applicable: optimal substructure and overlapping
subproblems. If a problem can be solved by combining
optimal solutions to non-overlapping subproblems, it is
considered a "divide and conquer" strategy, rather than
dynamic programming.

Optimal substructure refers to the property where the
solution to a given optimization problem can be obtained by
combining optimal solutions to its subproblems. Typically,
these optimal substructures are described using recursion. For
instance, consider a graph G=(V,E) and the problem of finding
the shortest path p from a vertex u to a vertex v. The shortest
path p exhibits optimal substructure: if we take any
intermediate vertex w on this path, we can split p into sub-
paths p1 from u to w and p2 from w to v. These sub-paths are
also the shortest paths between their respective vertices.

Dynamic programming takes into account overlapping
sub-problems that might be solved repeatedly in a naïve
recursive solution and solves each sub-problem in once. For
example, consider the recursive formula in fibonacci
sequence:

f(n) = f(n-1) + f(n-2)

with base case f(0) = f(1) = 1. Then f(4)= f(3) + f(2) and
f(3) = f(2) . f(1) . It is visible that f(2) will be solved in the
recursive sub-tress of both f(4) and f(3). Unlike the naïve

approach that solves the same problem over and over,
dynamic programming calculates the solution to f(2) only
once.

Figure 1. Fibonacci Recursion Tree (Source:

math.stackexchange.com)

Dynamic programming can be categorized into two different
approaches:

1. Bottom-up (Tabulation) Approach

In the bottom-up approach, also known as
tabulation, we start by solving the smallest
subproblems and progressively build up to the larger
problem. We create a table or array to store the
solutions to these subproblems. The table is usually
initialized with base cases or values that represent the
simplest form of the problem.

We then iteratively fill in the table, solving each
subproblem once and storing its solution in the table.
By using the solutions of previously solved
subproblems, we can compute the solution for larger
subproblems until we reach the final problem.

This approach ensures that each subproblem is
solved only once, and its solution is readily available
when needed. It guarantees optimal time and space
complexity by avoiding redundant computations.

2. Top-down (Memoizaition) Approach

In the top-down approach, also known as
memoization, we start with the original problem and
recursively break it down into smaller subproblems.
However, we optimize the approach by storing the
solutions of already solved subproblems in a
memoization table or cache. Before solving a
subproblem, we first check if its solution exists in the
cache. If so, we retrieve it; otherwise, we solve the
subproblem and store its solution in the cache for
future use.

This approach utilizes the concept of
memoization, where computed results are
remembered and reused to avoid recomputation of
the same subproblems. It helps reduce the overall
time complexity by avoiding redundant calculations
and focusing on unique subproblems.

The top-down approach is often more intuitive
and easier to implement recursively, as it follows the
natural structure of the problem. However, it may
require additional memory to store the cache for
memoization.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Each technique has their own pros and cons:

Table 1. Top-Down and Bottom-Up comparison

Top-down Bottom-up

Pros:

• Interface errors can be
more easily identified
and isolated.

• When errors occur at
the top of the program,
it provides advantages.

• Early detection of
design flaws allows
for timely correction,
as an initial functional
module of the program
is accessible.

Pros:

• Creating test
conditions is
straightforward.

• Observing test results
is convenient.

• It is particularly
suitable when defects
manifest at the lower
sections of the
program.

Cons:

• Observing the test case
output can be
challenging.

• Emphasizing the
importance of writing
stubs, as they
determine the
configuration of
output parameters.

• When stubs are
located distant from
the top-level module,
selecting test cases and
designing stubs
becomes more
complex.

Cons:

• There is no
representation of the
working model once
several modules have
been constructed.

• There is no existence
of the program as an
entity without the
addition of the last
module.

• From a partially
integrated system, test
engineers cannot
observe system-level
functions. It can be
possible only with the
installation of the top-
level test driver.

The main steps of solving a dynamic programming
problem includes:

1. Determine whether the problem falls under the
category of dynamic programming.

2. Choose a concise state expression with the minimum
required parameters.

3. Establish the relationships between states and
transitions.

4. Perform tabulation (or memoization) to compute and
store the solutions.

In general, Dynamic Programming can be employed to
solve a wide range of problems. These include situations
where the goal is to maximize or minimize specific quantities,
counting problems that involve determining the number of

arrangements satisfying certain conditions, or probability
problems. Some examples are:

1. Minimum cost path

2. Subset sum problem

3. Knapsack problem

4. Coin change problem

5. Longest common subsequence

C. Longest Common Subsequence (LCS)

The main description of longest common subsequence

problem is as follows:

Given two strings, S1 and S2 the task is to find

the length of the longest subsequence present in

both of the strings. (A subsequence of a string is a

sequence that is formed by removing certain

characters (potentially none) from the original

string while maintaining the relative order of the

remaining characters.

Input Output

S1 = “AGGTAB”

S2 = “GXTAYB”

LCS = “GTAB”

S1 = “ABCDGH”

S2 = “AEDFHR”

LCS = “ADH”

LCS can be solved with recursive approach utilizing the

following observation:

1. Let the input string be array of characters. S1[0…m-1]
and S2[0…n-1] of lengths m and n respectively.

2. Let L(S1[0…[m-1], S2[0…n-1]) the length of the LCS
of the two strings.

3. The recursive definition of L(S1[0…[m-1], S2[0…n-
1]):

4. If the last characters of both strings match then
L(S1[0…[m-1], S2[0…n-1]) = 1 + L(S1[0…[m-2],
S2[0…n-2])

5. Else, L(S1[0…[m-1], S2[0…n-1]) = MAX (
L(S1[0…[m-2], S2[0…n-1]), L(S1[0…[m-1],
S2[0…n-2]))

The above expression in pseudocode:

function lcs(S1, S2, m, n):

 if m equals 0 or n equals 0:

 return 0

 else if S1[m-1] equals S2[n-1]:

 return 1 + lcs(X, Y, m-1, n-1)

 else

 return maximum of lcs(X, Y, m, n-1) and

lcs(X, Y, m-1, n)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

The recursive solution hold these properties:

1. Optimal Substructure

L (S1[0…[m-1], S2[0…n-1]) is solved with the help
of L (S1[0…[m-2], S2[0…n-2]) substructure.

2. Overlapping Subproblems

Consider the strings S1 = “BGHT” and S2 =
“BHUG”. Using the recursive approach defined
above, the recursion tree gained is as follows. It is
visible that L(“BGH”, “BHU”) is being calculated
twice which shows a case of overlapping
subproblems.

Figure 2. LCS Recursion Tree for "BGHT" and "BHUG"

The properties above are indicators that the longest
common substring can be solved more efficiently with
dynamic programming rather than recursive approach.

Longest Common Sequence (LCS) can become the basis to
track changes and compare two distinct text-based files.

III. APPLICATION OF DYNAMIC PROGRAMMING FOR EFFICIENT

TEXT-BASED FILES COMPARISON

A. Dynamic Programming Approach to Longest Common

Subsequence Problem

The steps to solving Longest Common Subsequence with
dynamic programming are as follows:

1. Let S1 and S2 be the strings to compare, each with
length m and n.

2. Create a 2D array dp[][] with m rows and n columns.
The rows represent the indices of S1, meanwhile the
columns represent the indices of S2.

3. The first row and column are initialized to 0.

4. Iterate the row starting with the first row with i = 1, for
each row, iterate all the columns from j = 1 to n. If
S1[i-1] equals S2[j-1], set the current element to the
value of dp[i-1][j-1] +1. Elsem set the current element
to the maximum between dp[i-1][j] and dp[i][j-1].

5. The last element in the dp array is the length of the
LCS.

B. Comparing Between Dynamic Programming and

Recursive Approach for Longest Common Subsequence in

Python

The implementation of the pseudocode in chapter 2 for the
recursive approach to solve LCS:

Figure 3. Recursive LCS Python Implementation

This implementation has complexity O(2n)

The implementation of the dynamic programming steps to
solve LCS described in part A of this chapter in python:

Figure 4. dp_lcs Python Implementation (Source: Personal

Documentation)

This implementation has O(m.n) complexity due to the
looping of m and n. O(mn) is polynomial, meanwhile O(2n) is
exponential.

Both functions are tested with different string length:

Case 1: “BUGGY” – “BUGGER”

Figure 5. Case 1 common subsequence (Source: Personal

Documentation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Case 2: “I like fruit” – “I think I like eating fruit”

Figure 6. Case 2 common subsequence (Source: Personal

Documentation)

Case 3: “DYNAMICPROGRAMMING” –
“DYAMICAAPROG”

Figure 7. Case 3 common subsequence (Source: Personal

Documentation)

Case 4: “I think dynamic programming is better than
recusion” – “Dynamic programming might be better than
recursion”

Figure 8. Case 8 common subsequence (Source: Personal

Documentation)

From the test cases above, it is evident that the hypotheses

that the dynamic programming approach is a lot more efficient
than the recursive approach. In case 1, where the string
compared are short, recursive approach still performs well.
However, as the strings get longer, the recursive approach
performs badly giving a long execution time. With string
length > 20, the recursive approach can’t finish its calculation
in expected time. Meanwhile, the dynamic programming
approach still performs well.

C. Application of Dynamic Programming for Efficient Text-

Based Files Comparison

To show the difference between two text-based files, the
python code implemented in the previous part is extended so
that it returns the dp matrix using in the processing.

Figure 9. Modified dp lcs in Python (Source: Personal

Documentation)

Figure 10. lcs_string Python Implementation (Source: Personal

Documentation)

A new function lcs_string(S1, S2) is added, where the

function first retrieves the dp matrix from the processing of S1
and S2 by lcs(S1, S2). Next, it searches the right most bottom
most corner and store the characters one by one in the
common_sequence string.

Figure 11. show_diff implementation (Source: Personal

Documentation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

show_diff is also implemented to show the difference
between to strings.

All of the functions above are used together in a main
program that accepts two text-based files, and show the
difference between the two by processing each line.

Figure 12. Main Program Impelementation (Source: Personal

Documentation)

The main program is used to compare two files to illustrate
its implementation in version control.

First test case (simple txt file):

file1-v1.txt

File2-v2.txt

Output

Second test case (python script):

lcs.py

((accessible in https://github.com/chaerla/Text-Based-File-
Comparator))

lcs2.py

((accessible in https://github.com/chaerla/Text-Based-File-
Comparator))

Output

IV. CONCLUSION

Text-based file comparison is a critical task that can be
effectively addressed using dynamic programming techniques.
By formulating the comparison problem as the longest
common substring (LCS) problem, we can leverage dynamic
programming algorithms to achieve efficient and accurate
results. Compared to the recursive approach, which has a
complexity of O(n2), the dynamic programming approach
offers a significant improvement with a complexity of O(mn),
making it suitable for comparing large texts.

The implementation of a file comparator using dynamic
programming showcases its practicality and usefulness. It
enables the detection of differences between files, paving the
way for the development of various valuable tools. For
instance, the comparator can be extended to create a plagiarism
detector, helping to identify similarities between texts and
detect instances of content reuse. Additionally, it can serve as a
foundation for building a version control system, empowering
developers to track changes, manage revisions, and collaborate
effectively.

The efficiency and accuracy provided by dynamic
programming in text-based file comparison open up
possibilities for enhanced data analysis, content management,
and decision-making. As technology advances, further
advancements in file comparison algorithms and tools can be
expected, ultimately leading to improved productivity and
effectiveness across multiple domains.

VIDEO LINK AT YOUTUBE

https://youtu.be/YW8qu0iSze8

https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://github.com/chaerla/Text-Based-File-Comparator
https://youtu.be/YW8qu0iSze8

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

ACKNOWLEDGMENT

The author extends heartfelt gratitude to the following

individuals:

1. The Almighty God, whose blessings and guidance

have been instrumental in the successful completion

of this paper. The author acknowledges the divine

support that has been pivotal throughout the writing

process.

2. The author's parents, whose unwavering support,

encouragement, and belief in the author's abilities

have been invaluable. Their constant presence and

motivation have served as a driving force in the

completion of this work.

3. Dr. Ir. Rinaldi Munir, M.T., Dr.Ir. Rila Mandala, and

Dr. Nur Ulfa Maulidevi, esteemed professors of the

IF2211 Algorithm Strategies course. The author

expresses deep appreciation for their exceptional

mentorship, insightful guidance, and the wealth of

knowledge they shared throughout the academic

journey. Their dedication and expertise have

significantly enriched the author's understanding of

the subject matter.

The author acknowledges and is grateful for the

immeasurable contributions of these individuals, whose

support and guidance have played a pivotal role in the

successful completion of this paper.

REFERENCES

[1] Munir, Rinaldi. 2021. Program Dinamis.). [online] Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Program-Dinamis-2020-Bagian1.pdf

[2] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. (2001),
Introduction to Algorithms (2nd ed.), MIT Press & McGraw–Hill, ISBN
0-262-03293-7 . pp. 344.K. Elissa, “Title of paper if known,”
unpublished.

[3] David Maier (1978). "The Complexity of Some Problems on
Subsequences and Supersequences". J. ACM. ACM Press.

[4] Hirschberg, D. S. (1975). "A linear space algorithm for computing
maximal common subsequences". Communications of the ACM.

DECLARATION

I hereby declare that this paper, which I have written, is my

own original work and is not a summary, translation, or

plagiarized version of someone else's paper.

Yogyakarta, 20 Mei 2023

Rachel Gabriela Chen

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf

