
IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

An Analysis of a Branch and Bound Approach with

Apriori Algorithm in Finding Frequent Item Sets for

an E-Commerce Recommender System

Enrique Alifio Ditya - 13521142

Informatics Engineering Major

Electrical and Informatics Engineering Department

Bandung Institute of Technology, Bandung, West Java

alifioditya@gmail.com

Abstract—This paper aims to analyze the use of the branch and

bound method in the Apriori algorithm to efficiently find frequent

item sets for e-commerce recommender systems. A dataset of user

clickstream in an e-commerce website is analyzed and applied an

unsupervised machine learning technique with Apriori algorithm

to find the relations between items and generate useful frequent

item sets. A recommendations system can then be based upon the

information collected, potentially improving the overall user

experience while searching the website.

Keywords—Branch and Bound; Apriori; E-Commerce;

Recommendations System; Machine Learning.

I. INTRODUCTION

In this modern world, the environment in which transactions
are conducted has been revolutionized by digitalization through
the E-Commerce industry. The rise of online shopping has led
to a significant increase in the number of e-commerce websites,
making it easier for customers to search for their needs and
purchase products or services online. The global E-Commerce
market is estimated to be one of the most profitable, as it is
projected to reach 1,356.88 billion USD in revenue by 2025 in
the US alone [1]. As the data in the e-commerce industry grows
exponentially, demands of reliable personalized
recommendations systems have arisen.

One approach is to build a data driven system by analyzing
frequent patterns in customer transactions. This can be done
through applying machine learning algorithms to predict items
that might be of interest based on user behavioral data. An
effective method for achieving this is market basket analysis,
which involves identifying items that are frequently purchased
together. In order to attain these frequent item sets, a form of
unsupervised machine learning such as Apriori is used.

Apriori is a popular algorithm for Association Rule
Learning to find frequent item sets in large datasets. It is based
upon a branch and bound algorithm in which the algorithm
generates candidate item sets and prunes infrequent ones. The
algorithm first scans the dataset to identify frequent single
items, then it iteratively generates larger item sets and prunes
them based on their frequency. This process continues until no
new frequent item sets can be found.

These data-driven approaches are increasingly popular in e-
commerce and have been shown to improve customer
engagement and sales. A study by McKinsey & Company

found that personalization based on customer data can increase
sales by up to 15% [2]. Additionally, according to a survey by
Accenture, 91% of consumers are more likely to buy from
companies who make personalized offers and suggestions [3].
E-commerce companies are now investing heavily in data
analysis and machine learning to develop recommendation
systems that provide a personalized shopping experience for
customers. In this context, algorithms such as Apriori are
becoming increasingly important for finding frequent item sets
and generating recommendations based on customer behavior.
In this paper, we analyze the effectiveness of a branch and
bound approach with Apriori algorithm for finding frequent
item sets in an e-commerce recommender system.

II. FUNDAMENTAL THEORY

A. Branch and Bound

The branch and bound algorithm is a general optimization
technique that is used to solve combinatorial problems. The
basic idea behind this algorithm is to systematically search
through all possible solutions while keeping track of the best
solution found so far, and to prune branches of the search tree
that are guaranteed to not contain an optimal solution.

The general steps for the branch and bound algorithm are as
follows:

1. Initialization: Set up the initial search space and define
the initial upper bound on the objective function.

2. Branching: Divide the search space into smaller
subproblems and choose one of the subproblems to
explore.

3. Lower bounding: Compute a lower bound on the
objective function for the current subproblem.

4. Pruning: If the lower bound on the current subproblem
is greater than the current upper bound, then prune the
current subproblem and move back up the search tree.
Otherwise, continue to explore the current
subproblem.

5. Termination: Stop the search when all subproblems
have been explored or when a satisfactory solution has
been found.

In the context of the Apriori algorithm, the branch and
bound technique is used to prune search space and speed up the
process of identifying frequent item sets. The algorithm

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

identifies all frequent item sets in a dataset by using a candidate
generation process to incrementally build itemset of increasing
size, and then pruning those that do not meet the minimum
support threshold. By using branch and bound, the algorithm
can eliminate many of the candidate item sets early in the
process, making it more efficient.

B. Association Rule Learning

Association Rule Learning is a data mining technique that
is used to discover underlying patterns and relationships
between variables in a set of data by identifying items that
frequently occur together. Association Rule Learning requires
transactional data where transactions consist of sets of items
purchased or viewed by a customer. The main premise of
association rule learning in market basket analysis is to
conclude, "if a customer buys product A, they are likely to also
purchase product B". Commonly used metrics in association
rule learning are:

1. Support: Measures the frequency with which the
itemset appears in the dataset. It is calculated as the
ratio of the number of transactions containing the
itemset to the total number of transactions.

 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) =
(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

 Note: ‘#’ denotes “Number of”

2. Confidence: Measures the likelihood that an itemset Y
will be purchased when itemset X is purchased. It is
calculated as the ratio of the number of transactions
containing both X and Y to the number of transactions
containing X.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌)

(# 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋)

3. Lift: Measures the extent to which the occurrence of
one itemset is dependent on the occurrence of another
itemset. It is calculated as the ratio of the observed
support of both item sets to the expected support if
they were independent of each other.

𝐿𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) × 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑦)

C. Apriori
Apriori is a bottom-up approach that discovers frequent

item sets by identifying the support of each item in the dataset
and then iteratively generating larger and larger candidate item
sets based on a minimum support threshold. The basic idea
behind Apriori is that if an itemset is frequent, then all its
subsets must also be frequent. For example, if {A, B} occurs
frequently, then both {A} and {B} must also occur frequently.
This property is known as the "Apriori principle" and forms the
basis for the algorithm.

The Apriori algorithm works in two main phases:

1. Generation of Frequent Item Sets: In the first phase,
the algorithm scans the dataset to determine the
support of each item in the dataset. It then generates
candidate item sets of length two by combining
frequent 1-item sets. The support of each candidate
itemset is then computed and those that meet the
minimum support threshold are retained as frequent 2-
itemsets. This process is repeated to generate frequent
k-item sets until no more frequent item sets can be
generated. The following are the step by step of the
first phase:

a. Initialize the minimum support threshold.

b. While the number of frequent item sets is
greater than 0:

c. Generate candidate item sets of length k from
the frequent item sets of length k-1.

d. Count the support for each candidate.

e. Prune each candidate that is below the
minimum support threshold.

f. Repeat the process until no more frequent
itemset can be found.

g. Return the frequent item sets.

2. Generation of Association Rules: In the second phase,
association rules are generated from the frequent item
sets by finding all possible non-empty subsets of each
frequent item set and computing the confidence of
each rule. Rules with a confidence greater than or
equal to a minimum confidence threshold are retained
as strong association rules. The following are the step
by step of the second phase:

a. Initialize the confidence threshold.

b. For each frequent item set X generated by
phase one:

c. Generate all possible non-empty subsets of
X.

d. For each potential antecedent A, calculate the
confidence of the rule A → (X-A). The
consequent (X-A) is the set of items in X that
are not in A.

e. Prune each candidate that is below the
minimum confidence threshold.

f. Repeat the process for all frequent item sets.

g. Return the association rules.

III. IMPLEMENTATION

In this section, implementation of Apriori algorithm
towards E-Commerce clickstream data will be conducted. An
analysis will also be presented to evaluate the usability of the
information collected and the performance of the algorithm.
This section aims to answer the following questions:

1. What does the data look like?

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

2. Which steps are taken to prepare the data for
Association Rule Learning?

3. How does the Apriori algorithm work in
implementation?

A. Tools and Environment Specification

The tools, both hardware and software, used to implement

Association Rule Learning are specified as the following:

1. Hardware

a. Machine: Dell XPS 9320

b. Processor: Intel Evo i7

c. Core: 16

d. Threads: 12

e. RAM: 32GB

2. Programming Language

a. Python

b. Jupyter Notebook

3. Library

a. Pandas

b. Numpy

c. Matplotlib

d. Mlxtend

B. Dataset

In this paper, two E-Commerce clickstream data are used to
analyze user behavioral pattern on viewing and conducting
purchases. The datasets used for this analysis are:

1. Retail Rocket Recommender System Dataset: This
dataset consists of user behavioral data collected from
a real-world e-commerce website. The behavior data
consists of clickstream events classified as views, add
to cart, or transactions that were collected over the
period of 4.5 months. The dataset itself contains
2756101 rows for each clickstream, with 1407580
unique customers and only 11719 (0.83%) conducting
a purchase. This dataset will be mainly used to analyze
user viewing patterns as transactions only occur less
than 1% of the time. Hence, user viewing patterns can
be recognized through Association Rule Learning.
From this point on forwards, this dataset will be
referred to as the first dataset. A sample of this dataset
is as presented on Table I.

TABLE I. USER VIEWING SAMPLE DATA

timestamp visitorid event itemid

1433221332117 257597 view 355908

1433224214164 992329 view 248676

2. UK Retailer E-Commerce Dataset: This dataset
retrieved from UCI Machine Learning Repository
consists of transactional data over the course of a year
(2010-2011) from a UK Retailer. Each row is a single
item transaction consisting of the invoice number,
stock code, date, product description, quantity, unit

price, customer id, and the country of the customer.
This dataset will be used to analyze user purchases and
to find association rules to recommend items of
interest for identified item sets. From this point on
forwards, this dataset will be referred to as the second
dataset. A sample of this dataset is as presented on
Table II.

TABLE II. USER PURCHASES SAMPLE DATA

InvoiceNo StockCode Description InvoiceDate CustomerID

536365 85123A

WHITE
HANGING
HEART T-
LIGHT HOLDER

12/1/2010
8:26

17850

536365 71053
WHITE METAL
LANTERN

12/1/2010
8:26

17850

C. Data Preparation

 Prior to training the Apriori algorithm on both transactional
data, proper steps of preprocessing need to be conducted to
prepare the data in the correct format. A reduction of the search
space is also done to simplify the analysis.

 The first dataset has the “timestamp” feature containing the
time a viewing event occurred in a UNIX time format. This is
then converted into a more human readable form in the form of
standard datetime format (YYYY-MM-DD). After the
conversion, an aggregation is done to group the viewings data
by visitor ID and further grouped by viewings within a one-
week time window. This is done to collect all the viewings data
for each unique user in the given period. A user may have more
than one row of data if the viewings are separated for more than
one week apart. The time window of one week is chosen as a
user may have different interests after one week of scouring the
website, which is purely assumptive.

 After processing the first dataset, the second dataset is also
aggregated. Each row is grouped by InvoiceNo representing a
single purchase. This is done to collect each item purchased at
a time.

 After properly grouping the viewings and purchases data,
one of its columns should already be in a transactional format
(“itemid” for the first dataset, “description” for the second
dataset). This can then be extracted and converted to a list of
lists containing different transactions that occurred in each
dataset.

 At this point, the first dataset contains around 1.5 million
transactions while the second contains roughly 22.000
transactions. To simplify the analysis, the first dataset is
truncated to only contain the same number of rows as the
second dataset. This is also done to avoid over allocation of
memory caused by combinatorial explosion in both phases of
the Apriori algorithm. A divide and conquer technique could be
applied to solve this problem by training the first dataset in
batches, but for the sake of time and simplicity, this paper will
only focus on generating association rules based on the first
22.000 rows of viewing data.

 Before feeding the Apriori algorithm with both the
transactional data, it needs to be encoded with Transaction

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

Encoding, which works similarly to One-Hot Encoding by
creating binary columns for each singular items and marking it
as true if a transaction contains it, false if it does not. With the
datasets encoded, it is now in a form ready to be processed for
frequent item set mining.

D. Training the Apriori Algorithm

 Referring to the explanation of the Apriori algorithm in
section IIC, the model works in two phases. Phase one to
identify the frequent item sets, and phase two to identify the
association rules. In phase one, the algorithm traverses the
search space similar to a breadth-first search, with the cost
function being the support of the current item set, and the
bounding function is determined by the minimum threshold.
The searching stops once there are no item sets left that meet
the minimum support threshold. The solution node in the tree
search space is the leaf node that represents the itemset which
satisfies the minimum support threshold. There can be multiple
solution nodes in the tree search space. Each solution node
corresponds to a frequent itemset that meets the minimum
support threshold. The following provides the Apriori phase
one implementation in pseudocode:

input

D: a list of transactions where each
transaction is a list of items

minSup: a minimum support threshold for an
item to be considered frequent

output

L1: Dictionary that holds the frequent 1-
itemsets

function

frequent_1_itemsets(D, minSup):

 L1 = {}

 for transaction in D:

 for item in transaction:

 if item not in L1:

 L1[item] = 0

 L1[item] += 1

 // Filter out items with support count
less than minSup

 L1 = {k:v for k,v in L1.items() if v >=
minSup}

 return L1

input

L: a list of frequent itemsets from the
previous level represented as a list of
items.

output

Ck: candidate itemsets

function

apriori_gen(L):

 Ck = {}

 for i in range(len(L)):

 for j in range(i+1, len(L)):

 // If the first k-1 items in

 // itemset i are equal to the first

 // k-1 items in itemset j

 if L[i][:-1] == L[j][:-1]:

 // Create a candidate itemset

 // by combining itemsets i and j

 Ck_item = L[i] + [L[j][-1]]

 // If any subset of Ck_item is

 // not in L, skip to next

 // iteration

 if
has_infrequent_subset(Ck_item, L):

 continue

 Ck.add(Ck_item)

 return Ck

input

L: a list of frequent itemsets represented
as a list of items.

Ck: candidate itemsets

output

flag: True if subset Ck it not in L, false
otherwise

function

has_infrequent_subset(Ck_item, L):

 for item in Ck_item:

 subset = Ck_item - [item]

 if subset not in L:

 return True

 return False

input

D: a list of transactions where each
transaction is a list of items

minSup: a minimum support threshold for an
item to be considered frequent

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

output

frequentItemsets: all frequent itemsets
found in the search space

function

PhaseOneApriori(D, minSup):

 L1 = frequent_1_itemsets(D, minSup)

 L = L1

 k = 2

 while L is not empty:

 // Generate candidates

 Ck = apriori_gen(L)

 for transaction in D:

 for candidate in Ck:

 if candidate is subset of
transaction:

 candidate.support += 1

 Lk = {}

 for candidate in Ck:

 // Pruning step

 if candidate.support >= minSup:

 Lk.add(candidate)

 L = Lk

 k += 1

 return all frequent itemsets found

 Phase one of the Apriori algorithm successfully generated
over 1622 frequent item sets for the first dataset using a
minimum support of 0.00025 and 856 for the second dataset
using a minimum support of 0.01. It should be noted that the
minimum supports were first selected arbitrarily and then
further refined to generate a sufficient amount of frequent item
sets.

 Phase two Apriori is focused on generating association rules
from the frequent item sets obtained in phase one. The process
involves iterating over the frequent item sets generated in phase
one and generating all possible non-empty subsets of each
frequent itemset. These subsets are referred to as the antecedent
of the association rule. The remaining items in the frequent
itemset that are not part of the antecedent form the consequent
of the association rule. Similar to phase one, the searching is
done in a breadth-first manner, with the algorithm exploring
different combinations of antecedents and consequents to
generate potential association rules. For each frequent itemset,
the algorithm calculates various metrics such as support,
confidence, and lift to evaluate the strength of the association
rule. During the search process, the algorithm prunes
association rules that do not meet user-defined minimum

support and confidence thresholds. The following is the
pseudocode implementation for phase two Apriori:

input

itemset: a set of items

size: size of the subset to be extracted

output

subsets: subset of the itemset

function

generate_subsets(itemset, size):

if size == 1:

 for item in itemset:

 subsets.append([item])

else:

 for i in range(len(itemset) - size + 1):

 current_item = itemset[i]

 remaining_items = itemset[i+1:]

 subsubsets =
generate_subsets(remaining_items, size - 1)

 for subsubset in subsubsets:

 subsets.append([current_item] +
subsubset)

return subsets

input

frequentItemsets: a list of frequent
itemsets generated from phase one

minSup: a minimum support threshold for an
item to be considered frequent

minCon: a minimum confidence threshold for
an association rule to be considered
significant

output

associationRules: a list of association
rules

function

PhaseTwoApriori(frequentItemsets, minSup,
minCon):

 associationRules = {}

 for itemset in frequentItemsets:

 for i in range(1, len(itemset)):

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

 antecedents =
generate_subsets(itemset, i)

 consequents =
generate_subsets(itemset, len(itemset) - i)

 for antecedent in antecedents:

 for consequent in
consequents:

 rule = antecedent +
consequent

 support =
calculate_support(rule)

 confidence =
calculate_confidence(rule)

 lift =
calculate_lift(rule)

 if support >= minSup and
confidence >= minCon:
associationRules.add((antecedent,
consequent, support, confidence, lift))

return associationRules

 After training the Apriori algorithm on the given dataset, the
frequent item sets and association rules generated will have
been collected and may infer commonalities in viewing or
purchase patterns of customers.

IV. ANALYSIS

This section aims to answer business-oriented questions
from the application of Apriori algorithm to both transactional
data such as the following:

1. What are the frequent items viewed together?
2. What are the frequent items bought together?
3. What can be recommended to a customer that views

an item with the highest support?
4. What can be recommended to a customer that bought

an item with the highest support?
5. How well does the Apriori algorithm perform in

finding frequent item sets with the given minimum
support threshold?

 The Apriori algorithm implemented in this paper is
supported by the mlxtend library. However, this disables the
ability to do white box testing and see the internal workings of
the Apriori algorithm, therefore a case from one of the datasets
will be taken to demonstrate how the Apriori algorithm
traverses the search space and prunes each subtree that does not
meet the minimum support threshold.

A. Frequent Item Sets

The Apriori algorithm successfully generated over 1622.

frequent item sets on the first dataset with a minimum support

of 0.00025 and 856 on the second dataset with a minimum

support of 0.01. Among them, the most frequent item has the

support of 0.001742 on the first dataset and 0.090594 on the

second dataset. The following can be concluded from frequent

item sets analysis:

1. Item with ID of 187946 has the most support of

viewings in the first dataset.

2. Item “WHITE HANGING HEART T-LIGHT

HOLDER” has the highest support among purchase

data in the second dataset.

3. Apriori took 25 seconds to process the first dataset,

iterating over 60.000 combinations.

4. Apriori took 1 minute and 4 seconds to process the

second dataset, iterating over 200.000 combinations.

5. All frequent item sets found in the first dataset are of

length one, meaning the item categories are either too

sparse or not correlated with each other.

6. Over 700 frequent item sets are found in the second

dataset, with 220 having length of more than one. This

means that some recommendations can be made for

purchases of select items.

B. Generated Association Rules

After frequent item sets are found, association rules can be
generated to collect behavioral pattern of customers. The
following are the information inferred from the generated
association rules:

1. The first dataset does not contain any significant
association rules with a minimum threshold of 0.01.

2. Over 560 association rules are found for the second
dataset, with four having lengths two or more in the
consequent side of the rule.

3. The rule “GREEN REGENCY TEACUP AND
SAUCER” → “ROSES REGENCY TEACUP AND
SAUCER” is the most prominent, having a confidence
metric of 0.76 with 20.22 lift.

4. Association rules generation only took 0.1 seconds,
which is quicker than frequent item sets searching in a
factor of 640.

C. Example

Suppose an item “ALARM CLOCK BAKELIKE GREEN”

from the second dataset. In the purchase data, it is found that

the item is involved in 806 out of 22187 transactions. This

yields a support score of 0.03632. Given a minimum support

threshold of 0.01, the Apriori algorithm would have saved this

item as a frequent-1-item set and continued the searching for its

child node. Suppose another item “ALARM CLOCK

BAKELIKE RED” which is contained in 904 transactions. This

gives a support score of 0.04074, which is also above the

minimum threshold. Out of 806 transactions containing

“ALARM CLOCK BAKELIKE GREEN” and 904 transactions

containing “ALARM CLOCK BAKELIKE RED”, 533 of

which contain both items at the same time, yielding a joint

support score of 0.02. Therefore, this will still be considered as

a frequent itemset and is a candidate for an association rule.

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

Say the Apriori tree searches for an itemset that contains

“ALARM CLOCK BAKELIKE GREEN”, “ALARM CLOCK

BAKELIKE RED”, and “JUMBO BAG RED RETROSPOT”.

There are only 63 transactions that contain all three items at the

same time, giving a support score of 0.00284. Considering that

the support is lower than the given threshold of 0.01, the itemset

is pruned from the search tree and will not be considered as a

frequent itemset.

In phase two, the itemset “ALARM CLOCK BAKELIKE

GREEN” and “ALARM CLOCK BAKELIKE RED” is

checked and calculated for the confidence metric. Given the

minimum confidence of 0.1, the rule “ALARM CLOCK

BAKELIKE GREEN” → “ALARM CLOCK BAKELIKE

RED” is considered as a strong enough association rule with

0.66129 confidence. The reverse “ALARM CLOCK

BAKELIKE RED” → “ALARM CLOCK BAKELIKE

GREEN” is also considered a valid association rule, with

calculated confidence metric of 0.5896. With this in mind, a

customer that purchased “ALARM CLOCK BAKELIKE

GREEN” may be recommended an “ALARM CLOCK

BAKELIKE RED” product and vice versa, with an argument

that both products are analyzed to be frequently purchased

together.

V. CONCLUSION

The Apriori algorithm is a powerful branch and bound

approach used to discover frequent item sets from transactional

data. By analyzing patterns of item occurrences in relation to

each other, the algorithm enables the extraction of valuable

information regarding customer behavior and preferences.

In its process, the Apriori algorithm goes through two

phases. One to search for item sets that occur frequently

together and another to generate association rules with a given

minimum confidence. These two phases implement a form of

branch and bound method in order to prune the leaf nodes that

do not meet the minimum required threshold.

Through a case study using purchase data, several important

findings were revealed. In the first dataset, item 187946

exhibited the highest support of viewings, indicating its

popularity among customers. However, no significant

association rules were discovered, suggesting a lack of strong

relationships between items in this dataset.

In the second dataset, the item "WHITE HANGING HEART

T-LIGHT HOLDER" emerged as the most supported item

among purchase data. The Apriori algorithm performed well in

processing both datasets, taking 25 seconds and 1 minute and 4

seconds, respectively. Over 700 frequent item sets were found

in the second dataset, with 220 of them having a length greater

than one, indicating potential recommendations for purchasing

specific items.

Overall, this analysis demonstrates the effectiveness of the

Branch and Bound approach with the Apriori algorithm in

uncovering frequent item sets and association rules for an E-

Commerce Recommender System. The findings provide

valuable insights into customer preferences and potential

recommendations for enhancing the user experience and

driving sales in e-commerce. Future research can further

explore these findings and leverage them to optimize

recommendation systems and marketing strategies in the e-

commerce industry.

VIDEO LINK AT YOUTUBE

The following video contains explanation of the
implementation in code for this paper:
https://www.youtube.com/watch?v=qUBqc54OIw4

ACKNOWLEDGMENT

I would like to begin by acknowledging God for His
blessings and guidance throughout this research endeavor. I am
also immensely grateful to Dr. Nur Ulfa Maulidevi, S.T, M.Sc.
for her invaluable mentorship, and expertise in the field of
algorithm strategies and machine learning.

Furthermore, I would also like to extend my appreciation to
all the researchers and professionals in the field of machine
learning whose contributions have paved the way for
advancements in this domain. Their work provided valuable
insights and inspiration for this study and helped to lay the
groundwork for the approach and methods used in this work.

REFERENCES

[1] Statista Research Department. (2023). US Retail E-Commerce Sales
Forecast. Retrieved from https://www.statista.com/statistics/272391/us-
retail-e-commerce-sales-forecast/

[2] McKinsey and Company. (2021). The value of getting personalization
right—or wrong—is multiplying. Retrieved from

https://www.mckinsey.com/capabilities/growth-marketing-and-

sales/our-insights/the-value-of-getting-personalization-right-or-wrong-
is-multiplying

[3] Accenture. (2018). Personalization Pulse Check. Retrieved from
https://www.accenture.com/_acnmedia/pdf-77/accenture-pulse-
survey.pdf

[4] de Ponteves, H., & Eremenko, K. (2023). Machine Learning A-Z™: AI,

Python & R [Online course]. Udemy.
https://www.udemy.com/share/101Wci/

[5] Roman Zykov, Noskov Artem, & Anokhin Alexander. (2022).

Retailrocket recommender system dataset [Data set]. Kaggle.
https://doi.org/10.34740/KAGGLE/DSV/4471234

[6] Chen, D., Sain, S. L., & Guo, K. (2012). Data mining for the online

retail industry: A case study of RFM model-based customer
segmentation using data mining [Data set]. Journal of Database

Marketing and Customer Strategy Management, 19(3), 197-208.
https://doi.org/10.1057/dbm.2012.17

[7] Agrawal, R., Imielinski, T., Swami, A., Road, H., & Jose, S. (1993).

Mining association rules between sets of items in large databases. In

Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data (pp. 207-261). Washington, DC, USA.

[8] Hikmawati, E., Maulidevi, N. U., & Surendro, K. (2020). Adaptive rule:
A novel framework for recommender system. ICT Express, 6(3), 214-
219. https://doi.org/10.1016/j.icte.2020.06.001

APPENDIX

The code implementation used in this paper can be seen and

retrieved on my Kaggle notebook:

https://www.kaggle.com/code/alifioditya/pattern-analysis-for-

recommender-system/notebook?scriptVersionId=130439480

DECLARATION OF ORIGINALITY

https://www.youtube.com/watch?v=qUBqc54OIw4
https://www.accenture.com/_acnmedia/pdf-77/accenture-pulse-survey.pdf
https://www.accenture.com/_acnmedia/pdf-77/accenture-pulse-survey.pdf
https://www.udemy.com/share/101Wci/
https://doi.org/10.34740/KAGGLE/DSV/4471234
https://doi.org/10.1057/dbm.2012.17
https://doi.org/10.1016/j.icte.2020.06.001
https://www.kaggle.com/code/alifioditya/pattern-analysis-for-recommender-system/notebook?scriptVersionId=130439480
https://www.kaggle.com/code/alifioditya/pattern-analysis-for-recommender-system/notebook?scriptVersionId=130439480

IF2211 Algorithm Strategies, Semester II Academic Year 2022/2023

 I, the undersigned below, the Author of this paper, hereby

declare that this paper is my own writing, not an adaptation or

translation of someone else's paper, and not plagiarized.

Bandung, 22 May 2023

Enrique Alifio Ditya 13521142

