
A* Algorithm for Solving Sokobond Puzzles
Addin Munawwar Yusuf - 13521085

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail (gmail): moonawardev@gmail.com

Abstract—The A* algorithm is a common algorithm that is
used for pathfinding optimization in computer science problems
and game development. The sokobond game is one of the
grid-based puzzle games that can be solved optimally using the
A* algorithm. The paper shows that with A* algorithm with
manhattan distance heuristic, the optimal solution to Sokobond
puzzle level can be achieved. (Abstract)

Keywords—A* algorithm; sokobond; pathfinding; puzzle; game
development; optimization;manhattan distance;

I. INTRODUCTION
Sokobond is a puzzle game that revolves around the

concept of chemical bonding. The game is played in a
grid-based area where atoms are scattered throughout the
environment. The goal is simple: arrange the atoms in such a
way that it satisfies the chemical bonding rules. The Sokobond
game is made and developed by two indie developers: Alan
Hazelden and Harry Lee. It was released in August 2013 in
various platforms, including Windows, macOS, Linux, and
just recently for Nintendo Switch in September 2021. From its
first release, it quickly gained recognition from many puzzle
game communities and even received many good critics, due
to its unique gameplay and simple, yet clever level design. In
metacritics, Sokobond got a rating of 82 with a total of 7
critics reviews.

The development of Sokobond was inspired by the idea of
merging chemistry and puzzles. Alan Hazelden, known for his
work on puzzle games such as "Hexcells" and "Ruckingenur
II," collaborated with Harry Lee, a chemist and game
developer, to create a game that would introduce players to the
concept of chemical bonding through engaging puzzles. The
name "Sokobond" was inspired by a classic puzzle game
"sokoban", where players push crates to certain locations.
Sokobond takes the similar approach of grid-based format
from this game with the twist of chemical bonding mechanics.

Although the game uses the concept of chemical bonding,
players don't really need to have prior knowledge regarding
that, as the developers make it easy for players to intuitively
understand the rules of the game. The gameplay itself is quite
simple. As said before, the game is played in a small
grid-based area with atoms distributed throughout the
environment. The player is initially given control of one atom
or element in that area. Every element has a set number of
bonding electrons that is specific to particular elements.
Carbon has four, nitrogen tree, oxygen two, hydrogen one, etc.
The rule of chemical bonding comes into play when two
compatible atoms in the arena are brought into contact. The

two compatible atoms will then create a bond and form a
molecule. For instance, if two hydrogen atoms and an oxygen
atom are brought into contact, they bond to form a water
molecule.

As the game progresses to later stages, the game will
become more difficult. Some new different mechanics are
introduced and may even cause a lot of players to be stuck at a
level. Although anyone can play this game, a prior knowledge
of basic chemistry will definitely help players to progress
more easily.

Fig. 1. One of the early level in Sokobond game
(Source: https://store.steampowered.com/app/290260/Sokobond/)

A* Algorithm is a popular route finding algorithm that
efficiently could find the shortest path between two nodes and
produce optimal solutions. It considers the cost to reach the
node, and a heuristic/ estimated remaining cost from node to
goal as guidance for the search route. A* explores the graph
by iteratively selecting the node with the lowest total cost,
calculated as the sum of the cost to reach the node and the
estimated cost to the goal. The applications of A* algorithm
are such as route planning, puzzle solving, game AI, etc.

In the context of using A* algorithm in Sokobond, A*
algorithm is used to find the most optimal solution to a
sokobond level. In this paper, the author will explore how A*
algorithm can be implemented to solve some early levels in
the first stage of Sokobond game (before some new mechanics
added in the second stage) and discuss how sokobond level
can be mapped into A* problem. In the later section, there will
also be some tests of the algorithm.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

https://store.steampowered.com/app/290260/Sokobond/

II. BASE THEORY

A. A* Algorithm
A* Algorithm is one of the most popular algorithm used

for pathfinding and graph traversal. It can be considered as the
extension of the earlier algorithm, Dijkstra algorithm. The
difference between the two is, while in Dijkstra algorithm, the
goal node is every other nodes except the starting node, A*
algorithm only has one specific goal node. Besides that, A*
also uses heuristic to fasten up the search toward the goal
node.

A* algorithm is a kind of informed search, meaning that it
has the information about the goal node, and thus, can lead the
algorithm to reach the goal node faster. The goal of this
algorithm is to find the most optimal route to the given goal
node with the cost as minimum as possible. Cost can be in the
form of the amount of steps, time, distance traveled, and
others, depending on the context of the problem. It does so by
maintaining a tree of paths, starting from the beginning node,
and extending each node in some priority order until it reaches
the goal node.

Fig. 2. A* algorithm tree of paths example
(Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Route-Planning-Bagian2-2021.pdf)

When expanding the tree of paths, A* algorithm needs to
choose which path should be prioritized to be extended next. It
does so by choosing the path that generally minimizes (can
also be maximized in maximization cases) the total cost,
calculated as the sum of the cost to reach the node and the
estimated cost to the goal. It generally follows the formula,

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
For. 1. Formula for total cost of a path node

(Source: author documentation)

where is the cost to reach node n, and is the 𝑔(𝑛) ℎ(𝑛)
heuristically estimated remaining cost from node n to goal
node. is the total cost that should be minimized or𝑓(𝑛)
maximized when choosing a path to expand. Optionally, when
generating a new path, we can also prune some paths that are
not leading towards the goal node.

A* is often used and liked among programmers due to its
nature of:

– Completeness : Yes, unless there are infinitely many
nodes with 𝑓 ≤ 𝑓(𝐺).

– Time Complexity : Exponential: O(bm), with b as
branching factor and m as depth of optimal solution.

– Optimal Solution : Yes, as long as is admissibleℎ(𝑛)
(will be discussed in later section).

– Space Complexity : O(bm). Not as efficient because it

has to store every node in the memory.

The big picture step by step of A* algorithm is as follows.

1) Initialize the priority queue.
2) Initialize starting node. Set the starting node as the

current node.
3) If the current node is a goal node, stop search.
4) Generate children of the current node and add it to

the priority queue, with priority value of total cost (
). Optionally, prune every𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

child that doesn't lead to the goal node.
5) Pop element with lowest cost from priority queue and

set it as current node.
6) Continue step 3-6 until the path is found.

The pseudocode of A* algorithm is as follows.

A* Algorithm Pseudocode

Local Dictionary
pQ : priorityQueue {sorted by total cost
ascending}
goal : Node {goal Node}

struct Node {
value : Element
path : char[]
totalCost : int

}

function aStar(node : Node) -> char[]:
{Returns the solution path from start to goal
Node}

if (node is Goal):
-> node.path

else:
for Node n in generateChild(node):

pQ.add(n, n.totalCost)
if (pQ.empty):

-> no solution
else:

-> aStar(pQ.pop())

function generateChild(node : Node) -> Node[]:
{Generate promising path from node}

nodes : Node[]
for direction in possibleDirection:
if (node.promising(direction)):

{pruning}
{fn = gn + hn}
nodes.add(new Node(value, path +

direction, totalCost + fn))
-> nodes

Snapshot. 1.Pseudocode of AStar algorithm with recursive approach
(Source: author documentation)

B. Admissible A* Algorithm Heuristic
As mentioned previously, in order for A* algorithm to

produce the optimal solution, the heuristic function — —ℎ(𝑛)
must be admissible. is admissible if the value producedℎ(𝑛)
by the function never overestimates the actual cost to reach the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

goal node. Having a heuristic function that overestimates the
actual cost can lead to the search going into the wrong
direction, since the heuristic is more powerful than the cost
evaluation by . The illustration of how non-admissible 𝑔(𝑛)
heuristic can be seen here.

Fig. 3. Non-admissible heuristic leading search to non-optimal
solution

(Source: https://store.steampowered.com/app/290260/Sokobond/)

Formally, an admissible heuristic function is defined as
, where for every node n , satisfies * , ℎ(𝑛) ℎ(𝑛) ℎ(𝑛) ≤ ℎ (𝑛)

where * is the actual cheapest cost from node n to goalℎ (𝑛)
node. Consequently, an admissible heuristic function is a
heuristic function that never overestimates the cost to reach
the goal node, i.e. it is optimistic.

There are two types of heuristic function:

1) Exact heuristic.
2) Approximation heuristic.

Exact heuristic does compute the exact value of h with
some algorithm, such as Dijkstra's algorithm, but generally is
time consuming. The technique includes pre-compute the
distance between each node before running the a* algorithm.
If there are no obstacles/blocked cells in the area, exact value
of h can just be found without doing pre-computation, by
using distance formulas, such as euclidean distance.

Approximation heuristic is a little bit more clever than the
exact heuristic. It does not do any pre-computation to calculate
the distance of every pair of nodes, but rather uses the
information about the goal node to calculate the remaining
distance between a node n to goal node. There are many
algorithms that are commonly used as approximation heuristic
functions. Those are including manhattan distance, diagonal
distance, and euclidean distance. These algorithms are
admissible in most cases. These are the explanations for each
algorithm.

– Name:
Manhattan Distance

Description:
Distance is calculated as a sum of absolute values of
differences between goal's node x and y, to the
current node's x and y respectively.

Pseudocode

h = abs(current.x – goal.x) +
abs(current.y – goal.y)

Snapshot. 2.Pseudocode of Manhattan distance
(Source:https://www.geeksforgeeks.org/a-search-algorithm/)

Use case
When we are allowed to move in four directions only
(up, down, right, left).

– Name:
Diagonal Distance

Description:
Distance is calculated as a sum of absolute values of
differences between goal's node x and y, to the
current node's x and y respectively.

Pseudocode

dx = abs(current.x – goal.x)
dy = abs(current.y – goal.y)

h = D * (dx + dy) + (D2 - 2 * D) * min(dx,
dy)

// the calculation more complex due to
possibility of diagonal movement

D is the length of each node(usually = 1)
and D2 is the diagonal distance between
each node (usually = sqrt(2)).

Snapshot. 3. Pseudocode of diagonal distance
(Source: https://www.geeksforgeeks.org/a-search-algorithm/)

Use case
When we are allowed to move in eight directions
(similar to king movement in chess).

– Name:
Euclidean Distance

Description:
Distance is calculated as a square root of the sum of
differences between goal's node x and y, to the
current node's x and y, squared. Using the
pythagorean theorem.

Pseudocode

h = sqrt((current.x – goal.x)2 +
(current_cell.y – goal.y)2)

Snapshot. 4. Pseudocode of euclidean distance
(Source: https://www.geeksforgeeks.org/a-search-algorithm/)

Use case
When we are allowed to move in any direction.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

C. Sokobond Game
Sokobond is a puzzle game that revolves around the

concept of chemical bonding. The game is played in a
grid-based area where atoms are scattered throughout the
environment. The goal is simple: arrange the atoms in such a
way that it satisfies the chemical bonding rules. The player is
initially given control of one atom or element in that area.
Every element has a set number of bonding electrons that is
specific to particular elements. Carbon has four, nitrogen tree,
oxygen two, hydrogen one, etc.

Fig. 4. Example level of sokobond. Hydrogen has one
(Source: author documentation)

The rule of chemical bonding comes into play when two
compatible atoms in the arena are brought into contact. The
two compatible atoms will then create a bond and form a
molecule. For instance, if two hydrogen atoms and an oxygen
atom are brought into contact, they bond to form a water
molecule. After the atoms are bonded, they can only be moved
together. If not careful, those bonds can cause the player to get
stuck and make the level unsolvable, at the point where they
have to undo until the previous viable point.

Fig. 5. Demonstration of how atom bonds work
(Source: author documentation)

The level is ended if there are no more free atoms that are
scattered around the grid arena, and the atoms have formed a
valid chemical molecule or compound.

Fig. 6. Level finished in sokobond level
(Source: author documentation)

In each step of the level, there are only four valid input
directions that can be performed: MOVE UP, MOVE DOWN,
MOVE RIGHT, MOVE LEFT. The solution to the level is just
a set of direction inputs that leads to atoms configured in the
correct way.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

III. IMPLEMENTATION

A. Mapping Sokobond to A* Algorithm Domain
1) Solution Space

Solution space of sokobond puzzle can be
represented in a vector with n-tuple sized:

𝑋 = (𝑥
1
, 𝑥

2
, ．．, 𝑥

𝑛
)

with {UP, DOWN, RIGHT, LEFT}𝑥
1
, 𝑥

2
, ．．, 𝑥

𝑛
 ∈

or for abbreviation
{U, D, R, L}𝑥

1
, 𝑥

2
, ．．, 𝑥

𝑛
 ∈

For. 2. Solution Space for Sokobond in A* Algorithm Domain
(Source: author documentation)

with n is the depth of optimal solution in A* search. In the
next parts, tuple might be referred to as a path or𝑋
solution.

2) Bounding Function
The bounding function in sokobond puzzle is used to

prune some of the nodes that are not promising — does
not lead to the goal direction. In the Sokobond game, the
node is pruned if the movement of the molecule/
compound is illegal, such as stuck into the wall or getting
out of the arena bounds.

Another variable that causes a node to be pruned is
visited tile. If the tile has been visited and there is not any
interaction yet with any free elements in the area, then the
path to that visited tile won't be considered. After any
interaction is done with a free element, all tiles will be set
to unvisited, so the new bonded compound can revisit
those tiles.

The pseudocode of the bounding function is as
follows.

Sokobond Solver Bounding Function

Local Dictionary
compound: Compound {set of bonded atoms}
tiles: array of (array of Tile)

class Compound {
mainEl : Element
bondedEl : Element[]

}

class Tile {
type: TileType {Wall, Element, Empty}

}

class Vector2 {
x : int
y : int

}

function canMoveCompoundTo(Vector2 direction) ->
boolean
{Return true if compound can be moved in the

direction}
for Element el in compound:

targetTile = getTile
(el.location + direction)

if (targetTile.type = Empty) then
-> false

else if (targetTile.type = Element) then
if (targetTile can't be pushed to

direction) then
-> false

-> true

Snapshot. 5. Bounding function of sokobond solver
(Source: author documentation)

3) Node or State Representation
In sokobond solver, nodes are represented with class as
follows.

class Node {
arena : Grid
path : Character[] {char U, D, R, L}∈
totalCost : int

}

Snapshot. 6. Node or state representation of sokobond solver
(Source: author documentation)

Grid is a class that represents the arena, containing
information about a configuration of atoms in the grid,
including their position and bonding status. It captures
states of the level in that point after a set of instructions
stored in the path.

4) Generating Function
Generating function of the sokobond puzzle is a function
that generates new tree path nodes with the BFS
approach, then adding the new node to the priority queue.
The pseudocode of this function is:

Sokobond Solver Generating Function

Local Dictionary
pQ : priorityQueue {sorted by total cost
ascending, with comparator}

procedure generateChild(node : Node):
{Generate promising path from node}

{possibleDirection : U, D, R, L}
for direction in possibleDirection:
{pruning}
if (canMoveCompoundTo(direction)):

{fn = gn + hn}
pQ.add(new Node(value, path +

direction, totalCost + fn))
-> nodes

Snapshot. 7. Generating function of sokobond solver
(Source: author documentation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

5) Total cost ()𝑓(𝑛)
In A* algorithm, the total cost () is calculated as sum𝑓(𝑛)
of and (as mentioned in the previous section).𝑔(𝑛) ℎ(𝑛)

In this case, or total cost to reach node n is the𝑔(𝑛)
amount of steps taken from the beginning. This can also
just be calculated by the length of path in the node.

On the other hand, heuristic function that authorℎ(𝑛)
chose for this sokobond solver is manhattan distance,
since it fits so well for search that can move in four
directions as mentioned before in the previous section.
This is admissible, since manhattan distanceℎ(𝑛)
calculates the least step taken possible from node n to
reach goal node, thus, it never overestimates the cost.
Manhattan distance calculated is the distance between the
compound and the closest free element.

Here is the pseudocode.

class Node {
arena : Grid
path : Character[] {char U, D, R, L}∈
totalCost : int

totalCost {f(n)} <-
{h(n)} arena.getClosestElmtDist() +
{g(n)} path.length

}

function getClosestElmtDist() -> int
int closestDist = int.MAX_VALUE;
for (Element elmt in freeElements) {

int dist <- compoundLocation.
manhattanDistance(elmt.Location);

if (dist < closestDist) then
closestDist <- dist;

-> closestDist;

Snapshot. 8. f(n) total cost of sokobond solver
(Source: author documentation)

6) Goal Node
Goal node is reached whenever there is no more free
element that hasn't been bonded yet in the arena. The
implementation is quite simple. Just check whether the
amount of free elements is zero.

function isCompoundOnGoal(node : Node) ->
boolean

-> node.freeElements.size() == 0;

Snapshot. 9. goal node checking
(Source: author documentation)

B. A* Main Algorithm
Now that all of sokobond element has been mapped to A*

problem space, we can now create the main A* algorithm that
utilizes all elements that have been mapped previously. Just

like the pseudocode that has been discussed about in section
II, the A* algorithm for sokobond solver would look like this.

A* Algorithm Pseudocode

Local Dictionary
pQ : priorityQueue {sorted by total cost
ascending}

class Node {
arena : Grid
path : Character[] {char U, D, R, L}∈
totalCost : int

totalCost {f(n)} <-
{h(n)} arena.getClosestElmtDist() +
{g(n)} path.length

}

function solveSokobond(start : Node) -> char[]:
{Returns the solution path from start to goal
Node, uses to initialize AStar}

generateChild(start)
-> aStar(start)

function aStar(node : Node) -> char[]:
{Returns the solution path from start to goal
Node}

if (node.isCompoundOnGoal(node)):
-> node.path

else:
if (pq.isEmpty()) then

{try generate current}
generateChild(node)
if (pq.isEmpty()) then {still empty}

-> no solution
else

generateChild(node)
-> aStar(pQ.pop())

Snapshot. 10. A* algorithm of sokobond solver
(Source: author documentation)

With this algorithm, we can solve the sokobond level now.

C. Further Reference
For further reference about the algorithm, you can

checkout the author repository of Sokobond Solver program
written in Java language here:

https://github.com/moonawar/SokobondSolver.git

IV. TESTINGS

For testing, the author will use the three levels of
Sokobond in the first stage. You can also try it yourself with
different levels by using the program provided earlier in
section III.C. This program is only able to solve the sokobond
levels in the first stage. The reason for this is because in the
second stage, there is a new different mechanic introduced that
changes how the puzzle is played.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

https://github.com/moonawar/SokobondSolver.git

For the source config level file of this program, use this
example below. You can also see some predefined level
configuration in the program repository provided earlier.

<numOfRows> <numOfColumns> <N (num of elements)>
<Element1Char> <bondLimit>
<Element2Char> <bondLimit>
...
<ElementNChar> <bondLimit>
<Grid config; '#' for wall, ' ' for empty space,
'<elChar>' for element>
<row [0, numOfRows)> <col [0, numOfColumns)>
--- starting position of element controlled

Example:
8 9 2
H 1
O 2

######
#

#
#H
O#
H
####
######
5 2

Snapshot. 11. Example config file
(Source: author documentation)

1) `Let's Go` Level
Level layout :

Fig. 7. Level `Let's Go` of the sokobond
(Source: author documentation)

Config File:

1.txt

8 9 2
H 1
O 2

######
#

#

#H
O#
H
####
######
5 2

Snapshot. 12. Level 1 config file
(Source: author documentation)

Result :

Fig. 8. Level 1 of the sokobond solver output
(Source: author documentation)

Result In Game:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Fig. 9. Level `Let's Go` of the sokobond solver gameplay
(Source: author documentation)

2) `Push` Level
Level layout :

Fig. 10. Level `Push` of the sokobond
(Source: author documentation)

Config File:

2.txt

5 8 2
H 1
O 2
#####

##
#O H H #
##
#####

2 1

Snapshot. 13. Level 1 config file
(Source: author documentation)

Result :

Fig. 11. Level 1 of the sokobond solver output
(Source: author documentation)

Result In Game:

Fig. 12. Level `Push` of the sokobond solver gameplay
(Source: author documentation)

3) `Lotus` Level
Level layout :

Fig. 13. Level `Lotus` of the sokobond
(Source: author documentation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Config File:

3.txt

9 9 2
H 1
C 4

###
##C##
##
H H
#
H H
##
##
###

1 4

Snapshot. 14. Level 1 config file
(Source: author documentation)

Result :

Fig. 14. Level 1 of the sokobond solver output
(Source: author documentation)

Result In Game:

Fig. 15. Level `Lotus` of the sokobond solver gameplay
(Source: author documentation)

V. CLOSING

A. Conclusion
A* Algorithm is a popular route finding algorithm that

efficiently could find the shortest path between two nodes and
produce optimal solutions. It is applied in many fields such as
route planning, puzzle solving, game AI, etc.

In the context of puzzle solving, A* algorithm can, for
instance, be used to solve the Sokobond Puzzle Game with the
heuristic of manhattan distance. The result shows, that A*
algorithm does solve the sokobond puzzle both effectively and
efficiently. It succeeds in producing the optimal path and
solving the puzzle in reasonable time (0.1-1 seconds
depending on complexity).

B. Suggestion
The current state of the solver is not yet perfect. Currently,

it is only able to be solved. For further development, the
current Sokobond Solver might be extended to solve more
complex problems with new mechanics that are available in
the later stages of Sokobond Game.

There might also be a better heuristic that can be used on
this A* algorithm for sokobond solver. Experiments with
different heuristics to see which works the best for the game
can be considered for future development.

ACKNOWLEDGMENT

First and foremost, I would like to give a big appreciation
to my teacher on algorithm design subject, Mr. Rinaldi Munir
for giving this task on writing a paper about algorithm design.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

I feel very grateful because this task has helped me a lot in
understanding a* algorithm and even implement it in such a
fun way, which is solving a puzzle game. I also want to thank
my family who supported me academically and also my
colleagues who helped me through a lot of hard times this
semester, so I can finish this paper. Overall, I'm so grateful to
be able to study in ITB that provides the necessary resources
and facilities that facilitated the smooth progress of this paper.

REFERENCES

[1] Artificial intelligence: a modern approach. Norvig, Peter (4th ed.).
Russell, Stuart J. (2018). Boston: Pearson.

[2] "Engineering Route Planning Algorithms". Algorithmics of Large and
Complex Networks: Design, Analysis, and Simulation. Lecture Notes in
Computer Science. Delling, D.; Sanders, P.; Schultes, D.; Wagner, D.
(2009).

[3] Penentuan Rute (Route/Path Planning) Bagian 2 : Algoritma A*
[Online].https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-202
1/Route-Planning-Bagian2-2021.pdf. Diakses pada 21 Mei 2023.

[4] Sokobond [Online]. https://www.sokobond.com/. Diakses pada 21 Mei
2023.

[5] Sokobond Official Press Kit [Online]. https://www.sokobond.com
/presskit/. Diakses pada 21 Mei 2023.

[6] A* Search Algorithm [Online]. https://www.geeksforgeeks.org/
a-search-algorithm/. Diakses pada 21 Mei 2023.

[7] Sokobond: Review[Online]. https://www.destructoid.com/reviews/
review-sokobond/

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Addin Munawwar Yusuf - 13521085

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-Planning-Bagian2-2021.pdf
https://www.sokobond.com
https://www.sokobond.com
https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/
https://www.destructoid.com/reviews/
https://www.destructoid.com/reviews/

