
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

A Comparative Study of Backtracking and Bruteforce

Algorithms for Kakuro Puzzle Solving

Tabitha Permalla - 13521111

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13521111@std.stei.itb.ac.id

Abstract—Kakuro puzzles are crossword-like puzzles. But,

instead of letters, the board is filled with numbers ranging from 1

to 9. Solving these puzzles efficiently has been a challenge for

puzzle enthusiasts as well as computer-based puzzle solvers. This

paper presents a comparative study of two commonly used

algorithms, namely Backtracking and Brute Force, for solving

Kakuro puzzles. The Backtracking algorithm is a systematic

search algorithm that explores the solution space by making

decisions and backtracking when necessary. On the other hand,

the Brute Force algorithm exhaustively searches through all

possible combinations of cell assignments until a valid solution is

found. The objective of this study is to evaluate and compare the

performance of these two algorithms in terms of solution quality

and computational efficiency. A set of Kakuro puzzles with

varying complexities is used as the benchmark for the evaluation.

Keywords—Kakuro puzzles; Backtracking algorithm;

Bruteforce algorithm; Computational efficiency

I. INTRODUCTION

Kakuro puzzles are crossword-like puzzles where the
objective is to fill the cells of the puzzle with numbers
according to specific rules. Similar to Sudoku, the cells in
Kakuro puzzles can be filled with numbers ranging from 1 to 9.
The rules of the puzzle require that numbers in the same row or
column section must be distinct, and the sum of numbers in
each section must match the given clues.

Solving Kakuro puzzles efficiently poses a challenge for
both puzzle enthusiasts and computer-based solvers. While the
focus of this study is on the comparative analysis of the
Backtracking and Brute Force algorithms, it is important to
acknowledge that there are other methods available for solving
Kakuro puzzles.

One alternative approach is the Divide and Conquer
strategy. In this method, the Kakuro puzzle is divided into
smaller sub-puzzles, which are then solved independently. The
solutions to the sub-puzzles are combined to obtain the solution
for the entire puzzle. This approach can exploit the structure of
the puzzle and reduce the search space by decomposing the
problem into more manageable parts.

Additionally, techniques from Artificial Intelligence, such
as heuristic search algorithms, can be applied to solve Kakuro
puzzles. Heuristic search algorithms, like A* (A-star), use

heuristic functions to guide the search towards more promising
paths and avoid exploring less likely solutions. These
algorithms can help improve the efficiency and speed of
finding solutions by intelligently selecting which cell
assignments to explore.

Moreover, evolutionary algorithms, such as genetic
algorithms or particle swarm optimization, can also be
employed for solving Kakuro puzzles. These algorithms mimic
biological evolution or swarm behavior to iteratively generate
and evaluate potential solutions. By using principles of
selection, crossover, and mutation, they explore the solution
space and gradually improve the quality of solutions over
successive generations.

It is worth mentioning that different methods may have
varying performance characteristics depending on the specific
puzzle instance and its complexity. Therefore, evaluating and
comparing the effectiveness and efficiency of various methods
can provide valuable insights for solving Kakuro puzzles.

In this study, the focus is primarily on the comparative
analysis of the Backtracking and Brute Force algorithms.
Nevertheless, acknowledging the existence of alternative
methods highlights the diverse range of approaches that can be
used to solve Kakuro puzzles. Each method offers unique
advantages and trade-offs in terms of computational efficiency,
solution quality, and complexity.

II. THEORETICAL BASIS

A. Brute Force Algorithm

The Brute Force Algorithm is a straightforward and
exhaustive problem-solving technique that explores all possible
solutions or approaches for a given problem. It does not rely on
complex optimizations or advanced methods to improve
efficiency. Instead, Brute Force Algorithms rely on sheer
computational power and consider every potential solution to
find the desired outcome.

Using the Brute Force algorithm offers several advantages.
Firstly, it provides a guaranteed way to find the correct solution
by systematically listing all possible candidate solutions for the
problem. This comprehensive exploration ensures that no
potential solution is overlooked. Additionally, the Brute Force
approach is not limited to any specific problem domain. It can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

be applied to a wide range of problems in computing, making it
a versatile method. Moreover, the simplicity of the Brute Force
algorithm makes it particularly suitable for solving small and
simpler problems. Its straightforward nature simplifies
implementation and facilitates understanding. Lastly, the Brute
Force algorithm is often used as a benchmark for comparison
purposes, allowing for the evaluation of other design
techniques against its straightforward approach.

However, there are several drawbacks to consider when
using the Brute Force approach. Firstly, while it may be
effective, it is not an efficient method. For real-time problems,
the time complexity of the Brute Force algorithm can grow
exponentially, often reaching orders such as O(n!). As a result,
programs implementing the Brute Force algorithm can become
slow and impractical for large-scale or time-sensitive problems.
Furthermore, the Brute Force method relies more on the
computational power of the system rather than on the design of
an optimized algorithm to solve a problem. This can lead to
suboptimal solutions and a heavy reliance on computational
resources. Lastly, Brute Force algorithms are not inherently
constructive or creative compared to other problem-solving
techniques. They lack the ability to exploit problem-specific
insights or employ specialized optimizations.

In conclusion, the Brute Force algorithm is a
straightforward and exhaustive method that guarantees
solutions by considering all possible options. It is versatile,
simple to implement, and serves as a benchmark for
comparison. However, it suffers from efficiency issues, a
reliance on computational power, and a lack of creativity
compared to other techniques. Careful consideration should be
given to the specific problem and its requirements when
deciding whether to use the Brute Force approach. As of the
use of the Brute Force algorithm in this study is specifically
intended to provide a comparison with the Backtracking
algorithm.

B. Backtracking Algorithm

Backtracking is a highly effective method for problem-
solving that builds upon the concept of exhaustive search, in
other words the brute force algorithm. While exhaustive search
explores and evaluates all possible solutions, backtracking
takes a more focused approach. It selectively explores choices
that lead to potential solutions while disregarding options that
do not contribute to the desired outcome. This is achieved
through the process of pruning, which eliminates nodes that do
not lead to a solution. The concept of backtracking was first
introduced by D.H. Lehmer in 1950, and subsequent
contributions from R.J. Walker, Golomb, and Baumert
provided a comprehensive understanding of this algorithmic
approach.

There are several basic terminologies used in the
Backtracking approach.

• Solution vector: The intended solution X for a
given problem instance P with an input size of n is
defined as a vector consisting of candidate
solutions chosen from a finite set of possible
solutions S. Consequently, a solution can be

represented as an n-tuple (X1, X2, ..., Xn), and a
partial solution is denoted by (X1, X2, ..., Xi),
where i<n.

• Solution space: The solution space S of a problem
instance P consists of all candidate solutions xi
that satisfy the explicit constraints. Within a state
space tree, the solution space is described by all
paths from the root node to a leaf node.

• Generator function: The function for generating
the value xk is expressed as the predicate T().
T(x[1], x[2], ..., x[k - 1]) generates the value for
xk, which is a component of the solution vector.

• Constraints: Constraints are the guidelines that
restrict the solution vector (X1, X2, ..., Xa). They
define the allowable values for candidate solutions
and specify the relationships between them.

• Bounding function: The function is alternatively
referred to as a "validity function," "criterion
function," or "promising function." For a given
problem instance P, it involves optimizing the
function B(x1, x2, ..., Xa), which is intended to be
either maximized or minimized. By optimizing the
search within the solution space S of problem
instance P, it aids in finding a solution vector (X1,
X2, ..., Xn). This function is helpful in eliminating
candidate solutions that do not lead to the desired
solution for the problem. It effectively prunes live
nodes by not exploring their children if the
constraints are not satisfied.

III. PROBLEM MAPPING

When solving a Kakuro puzzle using backtracking, several
key elements come into play. These elements help us navigate
the puzzle-solving process effectively and efficiently. By
understanding and utilizing these elements, we can devise a
systematic approach to explore the solution space, generate
candidate solutions, enforce constraints, and update the
solution vector. This strategic mapping of elements forms the
foundation for successfully solving Kakuro puzzles using the
backtracking algorithm. In the context of solving a Kakuro
puzzle using backtracking, we can map the following elements:

A. Solution Vector

The solution vector represents the current state of the
puzzle grid, including the numbers assigned to the cells. It is a
representation of the partial solution being constructed during
the backtracking process.

B. Solution Space

The solution space represents all possible combinations of
numbers that can fill the empty cells in the Kakuro puzzle grid.
Where each cell can be assigned a number from 1 to 9, subject
to the constraints of the puzzle.

Identify applicable sponsor/s here. If no sponsors, delete this text box

(sponsors).

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

C. Generator Function

The generator function in the context of backtracking
generates the next candidate solution for a particular position in
the puzzle grid. It determines the possible numbers that can be
placed in an empty cell based on the current state of the grid
and the existing numbers in the row and column.

D. Constraints

The constraints of the Kakuro puzzle are as follows:

• Each number of the same row section must be
unique.

• Each number of the same column section must be
unique.

• Each number of a certain row section must be less
than the clue provided.

• Each number of a certain column section must be
less than the clue provided.

• The sum of the numbers in a certain row or
column should be less than the clue provided.

E. Bounding Function

The bounding function in backtracking helps in pruning the
search space by identifying early on if a particular partial
solution cannot lead to a valid solution. In the context of
Kakuro puzzles, the bounding function can check if the sum of
numbers in a row or column exceeds the given clue or if a
number violates the uniqueness constraint.

IV. IMPLEMENTATION

To evaluate the effectiveness of Brute Force and
Backtracking algorithms in solving Kakuro puzzles, a Python
program was developed. The program was designed to handle
relatively straightforward Kakuro puzzles, ensuring ease of
implementation and analysis. By implementing both algorithms
in the program, their performance and efficiency can be
compared and evaluated. This approach allows for a
comprehensive assessment of the strengths and limitations of
each algorithm when applied to simpler Kakuro puzzles. The
details of the program are as follows:

A. Kakuro Puzzle Representation

In this program, the Kakuro puzzle is represented in a class
containing the following attributes:

• count : the number of steps taken to solve the
puzzle

• row_clues, col_clues : list of row and column
clues which define constraints of the puzzle. Each
row clue is of the format [row index, start column
index, end column index, sum]. While each
column clue is of the format [column index, start
row index, end row index, sum].

• rows, cols : the number of rows and columns in
the puzzle; the dimension of the puzzle

• board : a 2-dimensional list representing the state
of the puzzle

• clue_grids : a list of coordinates of the board that
contains clues

• empty_grids : a list of coordinates of the board
that are not to be filled, or in other words are not
part of the puzzle

• question : a 2-dimensional list representing the
starting state of the puzzle

The implementation of the Kakuro Puzzle in python are as
follows:

class KakuroPuzzle:

 def __init__(self, row_clues, col_clues):

 self.count = 0

 self.row_clues = row_clues

 self.col_clues = col_clues

 self.rows = max(row[0] for row in row_clues) + 1

 self.cols = max(col[0] for col in col_clues) + 1

 self.board = [[0 for _ in range(self.cols)] for _ in

range(self.rows)]

 self.clue_grids = []

 self.empty_grids = [(i, j) for i in range(self.rows) for j in

range(self.cols)]

 for row in row_clues:

 self.board[row[0]][row[1]-1] = row[3]

 self.clue_grids.append((row[0],row[1]-1))

 for j in range(row[1]-1,row[2]+1):

 if self.empty_grids.count((row[0],j)) > 0:

 self.empty_grids.remove((row[0],j))

 for col in col_clues:

 self.board[col[1]-1][col[0]] = col[3]

 self.clue_grids.append((col[1]-1,col[0]))

 for i in range(col[1]-1,col[2]+1):

 if self.empty_grids.count((i,col[0])) > 0:

 self.empty_grids.remove((i,col[0]))

 self.question = [[self.board[i][j] for j in range(self.cols)] for i

in range(self.rows)]

B. Brute Force Algorithm

The implementation of the Brute Force algorithm to solve
the Kakuro Puzzle are as follows:

def solve_brute_force(self):

 self.count = 0

 return self._solve_brute_force_helper(0, 0)

def _solve_brute_force_helper(self, row, col):

 self.count += 1

 self.draw_solution("./case"+str(self.case)+"/brute

force/"+str(self.count))

 if row > self.rows - 1:

 if self.is_solution() and self.is_unique():

 return True

 return False

 next_row = row + 1 if col == self.cols - 1 else row

 next_col = 1 if col == self.cols - 1 else col + 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

 if (row,col) not in self.empty_grids:

 if self.board[row][col] != 0:

 return self._solve_brute_force_helper(next_row, next_col)

 for num in range(9,0,-1):

 self.board[row][col] = num

 if self._solve_brute_force_helper(next_row, next_col):

 return True

 self.board[row][col] = 0

 if (row,col) in self.empty_grids and

self._solve_brute_force_helper(next_row, next_col):

 return True

 return False

The program above iterates through every possible
combination until a solution is found. It fills the grids of the
puzzle with numbers 1 through 9 (for several reasons, the
program is written to fill the grids with larger numbers first,
starting from 9 through 1).

C. Backtracking Algorithm

The implementation of the Backtracking algorithm to solve
the Kakuro Puzzle are as follows:

def solve_backtrack(self):

 self.count = 0

 return self._solve_bactrack_helper(0, 0)

def _solve_bactrack_helper(self, row, col):

 self.count += 1

self.draw_solution("./case"+str(self.case)+"/backtrack/"+str(self.count))

 if row > self.rows - 1:

 return self.is_solution()

 next_row = row + 1 if col == self.cols - 1 else row

 next_col = 1 if col == self.cols - 1 else col + 1

 if self.board[row][col] != 0:

 return self._solve_bactrack_helper(next_row, next_col)

 if (row,col) not in self.empty_grids:

 for num in range(9,0,-1):

 if self.is_valid(row, col, num):

 self.board[row][col] = num

 if self._solve_bactrack_helper(next_row, next_col):

 return True

 self.board[row][col] = 0

 if (row,col) in self.empty_grids and

self._solve_bactrack_helper(next_row, next_col):

 return True

 return False

It is very much similar to the Brute Force algorithm.
However, on every step, constraint checks are taken. If any
constraint is violated, the program backtracks. The constraint
checks are done by calling the bounding function is_valid as
follows:

def is_valid(self, row, col, num):

 # Check if the number is already present in the row

 i = 0

 while self.row_clues[i][0] != row:

 i += 1

 if num in self.board[row][self.row_clues[i][1]:self.row_clues[i][2]+1]:

 return False

 # Check if the number is greater than the row clue

 if num > self.row_clues[i][3]:

 return False

 # Check if the number is already present in the column

 j = 0

 while self.col_clues[j][0] != col:

 j += 1

 for i in range(self.col_clues[j][1], self.col_clues[j][2]+1):

 if num == self.board[i][col]:

 return False

 # Check if the number is greater than the column clue

 if num > self.col_clues[j][3]:

 return False

 # Check the row clues

 for clue in self.row_clues:

 if row == clue[0] and col >= clue[1] and col <= clue[2]:

 total = sum(self.board[row][clue[1] : clue[2] + 1])

 if total > clue[3]:

 return False

 if total == clue[3] and self.board[row][col] != 0:

 return False

 # Check the column clues

 for clue in self.col_clues:

 if col == clue[0] and row >= clue[1] and row <= clue[2]:

 total = sum(self.board[i][col] for i in range(clue[1], clue[2] +

1))

 if total > clue[3]:

 return False

 if total == clue[3] and self.board[row][col] != 0:

 return False

 return True

V. TESTING AND ANALYSIS

In order to provide data for this study, 4 test cases are
made. Meanwhile, the parameters that are going to be used for
analysis are the solution, the number of steps taken until the
solution is found, and the time taken until the solution is found.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

A. Test Cases

 The test cases used are as follows:

Fig 5.1.1 Test Case 1

Fig 5.1.2 Test Case 2

Fig 5.1.3 Test Case 3

Fig 5.1.4 Test Case 4

B. Solutions

For all test cases, the solutions found through Backtracking
and Brute Force are the same. Both algorithms result in the
following solutions:

Fig 5.2.1 Result 1

Fig 5.2.2 Result 2

Fig 5.2.3 Result 3

Fig 5.2.4 Result 4

C. Number of Steps

The number of steps taken for each test case until the
solution is found using the Backtracking and Brute Force
algorithm differs. The number of steps for each test case are as
follows:

Table I: Number of steps taken until solution is found

Test Case Backtracking Brute Force

1 101 steps 1613 steps

2 8559 steps 47208669 steps

3 5476 steps 3083374 steps

4 1598824 steps 53709915 steps

D. Time

The amount of time taken for each test case until the
solution is found using the Backtracking and Brute Force
algorithm differs. The amount of time for each test case are as
follows:

Table II: Amount of time taken until solution is found

Test Case Backtracking Brute Force

1 0.00265 seconds 0.00313 seconds

2 0.06795 seconds 48.72821 seconds

3 0.02860 seconds 4.09411 seconds

4 7.52062 seconds 62.45073 seconds

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

E. Analysis and Conclusion

From the provided data in Table I, it can be observed that
the number of steps taken to find the solution using the
Backtracking algorithm is generally lower compared to the
Brute Force algorithm for all test cases. This indicates that the
Backtracking algorithm is more efficient in terms of exploring
the solution space and reaching the desired solution. Test Case
1 demonstrates a significant difference in the number of steps,
with Backtracking requiring only 101 steps compared to Brute
Force's 1613 steps. This trend continues in Test Cases 2, 3, and
4, further highlighting the advantage of Backtracking in terms
of reducing the number of steps taken.

The time taken to find the solution using the Backtracking
and Brute Force algorithms can be analysed based on the
provided data in Table II. It can be observed that the
Backtracking algorithm generally outperforms the Brute Force
algorithm in terms of time efficiency. In Test Case 1,
Backtracking took 0.00265 seconds, which is considerably
shorter than the 0.00313 seconds taken by Brute Force. This
trend continues in Test Cases 2, 3, and 4, with Backtracking
consistently requiring less time compared to Brute Force.
Notably, Test Case 2 demonstrates a substantial difference in
time, with Backtracking taking 0.06795 seconds while Brute
Force took 48.72821 seconds.

Overall, the analysis of the number of steps and time taken
suggests that the Backtracking algorithm is more efficient and
faster in finding the solution for the given Kakuro puzzles
compared to the Brute Force algorithm. It demonstrates
superior performance in terms of reducing the number of steps
and completing the puzzles in a shorter amount of time. These
findings highlight the benefits of employing the Backtracking
algorithm for solving Kakuro puzzles, especially when dealing
with relatively simple cases.

REPOSITORY LINK AT GITHUB

https://github.com/Bitha17/simple-kakuro-solver

VIDEO LINK AT YOUTUBE

https://youtu.be/8sRUsxmhbuY

ACKNOWLEDGMENT

First and foremost, the author would like to express
gratitude and thankfulness towards God. For only by His grace
and kindness the author is able to complete this study. He has

provided sufficient guidance, blessings, and strength
throughout the completion of this project.

The author would also like to express gratitude and sincere
appreciation towards Dr. Ir. Rinaldi, M.T. as the lecturer of
IF2211 Strategi Algoritma. His invaluable knowledge,
expertise, and dedication in teaching have greatly contributed
to the author’s understanding of algorithmic strategies and their
applications. His continuous support and guidance have been
instrumental in shaping the author’s academic journey and
enhancing the author’s problem-solving skills.

REFERENCES

[1] Munir, Rinaldi. (2023) “Algoritma Brute Force (Bagian 1)” accessed
from https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag1.pdf on May 19, 2023

[2] Munir, Rinaldi. (2023) “Algoritma Runut-balik (Backtracking) (Bagian
1)” accessed from
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian1.pdf on May 21, 2023

[3] Geeks For Geeks. “Brute Force Approach and its pros and cons”
accessed from https://www.geeksforgeeks.org/brute-force-approach-
and-its-pros-and-cons/ on May 20, 2023

[4] Geeks For Geeks. “Introduction to Backtracking – Data Structure and
Algorithm Tutorials” accessed from
https://www.geeksforgeeks.org/introduction-to-backtracking-data-
structure-and-algorithm-tutorials/ on May 21, 2023

[5] “Tips on solving (3): The mathematics of Kakuro” accessed from
https://theory.tifr.res.in/~sgupta/kakuro/algo.html on May 18, 2023

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 22 Mei 2023

Tabitha Permalla 13521111

