
A Case Study in Optimization of Brute-Force
Algorithm : Finding Longest Substring With Unique

Characters
Fatih Nararya Rashadyfa Ilhamsyah - 13521060

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
13521060@std.stei.itb.ac.id

Abstract—This paper examines how a brute-force algorithm
could provide deeper insights to a problem by attempting to solve
the problem of finding the longest substring with unique
characters

Keywords—brute-force; algorithm; language; string; subtstring

 NOMENCLATURE

𝑆 A string of characters

𝑆
𝑢

A string with all unique characters

𝑠 A substring of another string 𝑆

𝑠
𝑢

A substring of another string with unique characters𝑆

I. INTRODUCTION

In the field of algorithmics, there are plenty of algorithm
design strategies. Brute-force algorithm is one of them and
perhaps one of the most overlooked. This is not without reason
as brute-force algorithms are generally not at all smart and
thus, inefficient. Nevertheless, brute-force algorithms are still
an important starting point for one to understand a problem
down to its quirks in order to design a faster algorithm, even if
the resulting algorithm is still a brute-force algorithm at heart.
This paper then attempts to show how one could utilize keen
observation and deeper understanding about a problem to
optimize an initial approach by brute-force algorithm. This
paper also shows that by first making a brute-force algorithm
to solve a particular problem and seeing how the algorithm
runs during the search for a solution of a problem instance,
one may come to the aforementioned understanding that could
be used to design a better algorithm. To demonstrate this, the
paper will take one particular problem of finding what is the
longest unique substring of a given string.

As an important note, the problem used here will only give
the string to be checked without defining what is the character
set that is used by the string. This assures that cheap
optimization of the algorithm by exiting once a unique
substring consist of all characters in a character set is not an

option and thus forces the algorithm to use smarter
optimization.

II. THEORETICAL BASIS

A. Substring of a String With Unique Characters
It’s important to distinguish and make clear the distinction

between the terms used in the nomenclature of this paper by
giving some examples. “kmnlopqrt” is an (a string) and an𝑆

(a string with all unique characters) because it’s a string𝑆
𝑢

that does not repeat any characters. “kkopok” is an but not𝑆
an because it repeats the character ‘k’. “opok” is an (a𝑆

𝑢
𝑠

substring, in this case a substring of “kkopok”) and (a𝑠
𝑢

substring that has unique characters) of “kopok” because it’s a
substring (slicing from index 2 to 5 inclusive). “kopok” is an 𝑠
but not an of “kkopok” because while it’s a substring𝑠

𝑢
(slicing from index 1 to 5 inclusive) it contains a repetition of
the character ‘k’. The and u nomenclature will be used𝑠 𝑠
within the context of a certain just like the example shown𝑆
here as its existence only makes sense within the context of a
“parent” string.

B. Naive Algorithm
Naive algorithms are algorithms that are the most obvious

solution to a given problem. Because of that, naive algorithms
usually have very simple rules – which makes them easy to
implement – but, as the name suggests, they typically aren’t
smart. Naive algorithms usually are not the fastest possible
algorithm to solve a problem (although there are certain
problems that only have naive algorithm solutions). A
common example to delineate between naive algorithms and
non-naive algorithms is the problem of string-matching. The
naive algorithm approach to string-matching would compare
every character in a pattern of text sequentially from the𝑃 𝑇
start. When a mismatch is found, would be shifted by one𝑃
position and checking would be repeated. This is done until
the match is found or the string ends. The naive algorithm has
a complexity of in the worst case where is the𝑂(𝑚𝑛) 𝑚
length of and is the length of . In contrast, smarter𝑃 𝑛 𝑇
algorithms for string-matching such as Knuth-Morris-Pratt
algorithm or Boyer-Moore algorithm could find a match
within a string in .𝑂(𝑛)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

A huge subset of naive algorithms is brute-force
algorithms. Brute-force algorithm is a class of algorithms that
first generates all possible solutions to a problem and then
tests whether that candidate solution satisfies the given
instance of the problem. Brute-force algorithms are guaranteed
to produce a correct solution and are simple in theory, making
them very easy to implement. However, the biggest downsides
to this class of algorithm is its inefficiency. For a problem with

where is the input size of the problem and a𝑔(𝑛) 𝑛
complexity of checking each solution as , the𝑂(𝑓(𝑛))
complexity of a brute-force algorithm for that problem would
be . As such, a problem that has an𝑂(𝑓(𝑛) * 𝑔(𝑛))
enormous amount of possible solutions in proportion to its
input size (which describes a lot of problems) would quickly
render a brute-force algorithm as impractical. A popular
example of combinatorial explosion in the complexity of a
brute-force algorithm is the Traveling Salesman Problem. The
problem asks that for an amount of cities that are all𝑛
connected with each other with a certain distance, what would
be the shortest route that goes through each of the cities only
once? There are possible solutions (owing to permutation)𝑛!
and the complexity to evaluate each solution is . This𝑂(𝑛)
means that the brute-force algorithm would have a time
complexity of , which are already unbearable for𝑂(𝑛 * 𝑛 !)
small .𝑛

A common method to make a faster algorithm out of naive
algorithms is by utilizing heuristics or observation about the
problem to cut unnecessary computation. The aforementioned
example of Boyer-Moore algorithm and Knuth-Morris-Pratt
algorithm are a prime example of this where they managed to
have a better time complexity by not merely shifting by one
position on a mismatch but instead have variable size shifts
based on , , and circumstances of the mismatch. The𝑃 𝑇
optimized algorithm to be presented later on this paper will
optimize the naive algorithm for finding longest of an𝑠

𝑢
𝑆

using this method.

III. ALGORITHMS

A. Naive
The initial solution that most likely came to mind when

presented with the problem of finding the longest substring
with all unique characters from a string would likely be
through the steps below :

1. Start a pointer A and B from the start of the string
and two variables : a counter starting from zero and a
highest substring length also starting from zero.
Pointer A would represent the start of the substring
being examined.

2. Move the pointer B forward.
3. If the letter that is at pointer B already existed before,

reset the information about the letter contained in the
substring and move pointer A forward by one. Reset
pointer B to the position of pointer A. If the substring
that was examined is longer than the previous
substring, update the corresponding variable. Reset
the counter variable. This represents moving on to a
new substring.

4. If the letter that is at pointer B has not existed before,
save the letter and increment the counter.

The pseudocode of this naive algorithm is presented below
:

NaiveSearch Algorithm

Local dictionary :
letterOccurence : A hashmap with character as a
key and boolean as a value
longest : the longest substring with unique
characters yet
s : the analyzed string

def naiveSearch(s)
longest = 0
for i to s.length

j = i
foundRepeating = false
counter = 0

while not foundRepeating
and j < s.length do

if letterOccurence[s[j]] is
true then foundRepeating = true

else letterOccurence[s[j]]
= true

j = j + 1
if j - i + 1 > longest then

longest = j - i + 1
return longest

And below would be a concrete example of the code
written in the Java programming language.

NaiveSearch Algorithm in Java

public int lengthOfLongestSubstring(String s) {
int longest = 0;
for (int i = 0; i < s.length(); i��) {

int j = i;
boolean foundRepeating = false;
StringBuilder sb = new

StringBuilder();
HashMap<Character, Boolean> table =

new HashMap��();
while(!foundRepeating �� j <

s.length()) {
if

(table.containsKey(s.charAt(j))) {
foundRepeating = true;

} else {
table.put(s.charAt(j), true);
sb.append(s.charAt(j));

}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

j��;
}
if (sb.length() > longest) {

longest = sb.length();
}
sb = new StringBuilder();

}
return longest;

}

The algorithm is faster when the given string has many
occurrences of the same character repeated consecutively or
when most substring with the unique characters are very short
in length as there would seldom be repetition of character
comparison. The best case for this algorithm would be a string
that only uses one character repeated throughout the string,
such as ‘kkkkkkkkkk’. In that case, the time complexity of the
algorithm approaches as the algorithm degenerate into a𝑂(𝑛)
simple traversal of the whole string.

And the opposite is also true. The algorithm will become
slower when the given string has a lot of substring with unique
characters that are long in length. The worst case would be
when the whole string itself does not repeat any characters. In
that case, the time complexity of the algorithm would seem to
be , as the length of the string and as the number𝑂(𝑛𝑚2) 𝑛 𝑚
of characters in the character set used by the string, as for
every -th characters of the string, there would be at most𝑖 𝑚
comparison to be done. The reason behind the square for the

will be explained in the next section.𝑚

B. Optimization
Some simple optimization arising from simple observation

about the problem would now be presented to the previous
algorithm. The optimization made are the following :

1. Once pointer B already reaches the end of the string
as a whole, searching can be stopped as no remaining
substring would be longer than the current substring

2. Once a letter X at pointer B is found to already occur
in the currently examined substring, instead of
shifting the pointer A by just one, it could be shifted
to the position after the occurrence of the letter X in
the currently examined substring.

The reasoning behind the first optimization is
self-explanatory and does not require any explanation. The
reasoning behind the second optimization is better explained
through an example. Fig. 1 is a snapshot of the algorithm
running on an instantiation of the problem using the string
“popoapck”. The position of pointer A is highlighted in bold
and pointer B is highlighted with an underline.

p o p o a p c k

Fig. 1. Pointer B meeting ‘p’, a character that had occurred before in the
substring

Under the naive algorithm, the pointer A would be shifted
by one and the pointer B would be reset into the position of

pointer A as seen in Fig. 2. The substring “opoa” would have
its length become the longest length of the substring with
unique characters found so far.

p o p o a p c k

Fig. 2. Pointer A and B being reset after meeting character ‘p’ that had
occurred before.

Once the algorithm resumes, it will be in the position at
Fig. 3 after a few steps.

p o p o a p c k

Fig. 3. Pointer B meeting the character ‘p’ at the same position as
previously

As can be seen the algorithm meets the same ‘p’ that
stopped it before. But notice that because the algorithm only
shifted pointer A by one, the substring that was just examined,
“poa” is actually just a substring of the previously examined
substring of “opoa”. Thus, it can be seen that the examination
of the substring “poa” is of no purpose as it’s not a substring
that is longer than the previously examined substring “opoa”.

Another example of this occurrence is better exemplified
with the string “wopkkelp”. The first time the pointer B would
have to be reset, the two pointers would be in the position of
Fig. 4.

w o p k k e l p

Fig. 4. Pointer B meeting ‘k’, a character that had occurred before in the
substring

On the second time it’s reset, it will be in the position of
Fig. 5.

w o p k k e l p

Fig. 5. Pointer B meeting ‘k’ at the same position as previous examination

On the third time, it will be in the position of Fig. 6.

w o p k k e l p

Fig. 6. Pointer B meeting ‘k’ at the same position as previous examination

The previous example had established the existence of
wasteful examination without giving much clue on what
exactly causes it. This example now illustrates perfectly the
condition that leads to a wasteful examination. As seen above,
it’s obvious that examining ‘opk’ and ‘pk’ is wasteful because
it’s just a substring of the first examined substring and thus
guaranteed to not be longer than the original.

The observation can then be formulated as the following.
Suppose that at some point, the algorithm is stopped at
position , which causes it to shift the pointer A by one and𝑝
move pointer B back to A, let’s call the substring that were
found by the examination . All of the substring examined𝑠

𝑢1
subsequently whose examination are stopped at the position 𝑝

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

are guaranteed to be shorter than , examining them is a𝑠
𝑢1

wasteful endeavor.

This is the reasoning behind the square for the in the𝑚
time complexity of the naive algorithm. In the worst case, the
algorithm find the longest substring with unique characters (at
most characters long) and then incrementally cuts the𝑚
substring by one until it’s one character long repeating the
same computation. This then yields .𝑚2

The aforementioned observation results in the second
optimization. The second optimization skips the wasteful
examination by moving pointer A forward to the first position
where the algorithm would not be stopped at the same position
that had stopped it before. This is better illustrated through
examples. The previous examples will be used to present
contrast between the naive algorithm and the optimization.

Using the first example of string “popoapck”, after Fig.1
occurred, the algorithm would move instead to the position of
Fig. 7.

p o p o a p c k

Fig. 7. Pointer A and B being reset under the optimized algorithm

As illustrated in Fig. 7, the algorithm skipped the wasteful
examination of the substring ‘poa’, instead moving forward
the pointer A to the first position where it would not be
stopped by the character ‘p’ at the same position as previously.

Using the second example of string “wopkkelp”, after
Fig.2 occurred, the algorithm would move instead to the
position of Fig. 8.

w o p k k e l p

Fig. 8. Pointer A and B being reset under the optimized algorithm

The algorithm here skips examination of ‘opk’, ‘pk’ and
‘k’ by moving pointer A forward to the first position where it
would not be stopped by the character ‘k’ at the same position
as previously. Where such a position is located is after the
occurrence of the character that stopped the algorithm in the
examined substring. Because the character that stopped the
examination is ‘k’, the algorithm checks where in the currently
examined substring the character ‘k’ appears, which is at
index 3. Thus, the pointer A then gets shifted to index 4. To
better illustrate this, suppose that the string examined instead
is “wopkpelp”. When the algorithm first gets its pointer reset
after being at position as shown by Fig. 9,

w o p k p e l p

Fig. 9. Pointer A and B being reset under the optimized algorithm

it would be reset to Fig. 10. Because the character ‘p’ first
appears at index 2.

w o p k p e l p

Fig. 10. Pointer A and B being reset under the optimized algorithm

For the sake of brevity, the optimized algorithm would
only be presented in Java.

OptimizedNaiveSearch Algorithm in Java

public int lengthOfLongestSubstring(String s) {

if (s.length() �� 1) {

return s.length();

}

int longest = 0;

boolean reachedTheEnd = false;

int i = 0;

int j = i;

int currentLength = 1;

HashMap<Character, Integer> table = new

HashMap��();

table.put(s.charAt(i), 0);

while (!reachedTheEnd) {

j��;

reachedTheEnd = j �� s.length() - 1;

boolean sameCharacterFound = false;

Character observed = s.charAt(j);

Integer charValue =

table.get(observed);

if (charValue �� null �� charValue ��

-1) {

table.put(observed, j);

currentLength��;

} else if (!reachedTheEnd) {

int newI = table.get(observed) +

1;

for (Character c : table.keySet())

{

if (table.get(c) < newI ��

!c.equals(observed)) {

table.put(c, -1);

}

}

i = newI;

table.put(observed, j);

sameCharacterFound = true;

}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

if (currentLength > longest) {

longest = currentLength;

}

if (sameCharacterFound) {

currentLength = j - i + 1;

}

reachedTheEnd = j �� s.length() - 1;

}

return longest;

}

In the optimized algorithm, the hashmap is not just used to
memoize what characters have occurred in the examined
substring but also on what index does the character occur.

One of the qualities of this optimization is that pointer A
never moves backward, only forward. This makes the
optimization suitable for continuous stream of data. It is also
reminiscent of how the KMP algorithm optimized the naive
algorithm of string matching.

The complexity of this algorithm will be in the𝑂(𝑛)
best-case and in the worst-case. This is because in the𝑂(𝑛𝑚)
event that there are many long substrings, the algorithm would
not repeat redundant comparisons for the substring, but instead
move on to a position that allows it to find a new substring.
However, the algorithm does have to reset the content of the
hashmap in the event of a pointer reset (see the for loop in the
while loop of the code snippets given above) which explains
the existence of the term.𝑚

IV. EMPIRICAL ANALYSIS

A. Random Alphabetical Texts
The two algorithms will be tested alongside a simple

traversal of each character as control to see how effective the
optimization that was done. The string used here consists of
only alphabetical characters both lowercase and uppercase.
Each of the times here is an average of 10 runs. The test is
done on a Ryzen 7 2700X at 4.00GHz with 16GB of RAM.

TABLE I
TIME FOR SIMPLE TRAVERSAL

String
Length

()𝑛

Time for
Simple

Traversal ()𝑛𝑠

Time for Naive
Algorithm ()𝑛𝑠

Time for
Optimized

Algorithm ()𝑛𝑠

10 27, 154 50, 341 11, 789

102 265, 557 307, 531 246, 113

103 1, 803, 948 2, 140, 813 1, 741, 685

104 4, 893, 742 4, 334, 419 4, 277, 883

105 13, 100, 485 22, 170, 625 12, 050, 632

106 121, 531, 095 152, 093, 631 120, 825, 727

How fast both of the algorithms against the simple traversal
(as control) is as follows.

TABLE II
TIME OF NAIVE AND OPTIMIZED ALGORITHM AS

PROPORTION TO SIMPLE TRAVERSAL

String
Length ()𝑛

Time for Naive
Algorithm as a
Percentage of
Control ()%

Time for Optimized
Algorithm as a

Percentage of Control
()%

10 185. 39 43. 42

102 115. 81 93. 68

103 118. 67 96. 55

104 88. 57 87. 41

105 169. 24 91. 99

106 125. 15 99. 42

As seen above, the empirical result is an interesting insight
into the problem itself. The algorithm that has been optimized
is able to run consistently faster than simple traversal (which
should have a time complexity of , faster than the𝑂(𝑛)
worst-case time complexity of the optimized algorithm of

). In addition, the naive algorithm is not that much𝑂(𝑛𝑚)
slower than the simple traversal in the test that was done.

Both of these “anomalies” suggests that the cases that slow
down both of those algorithms do not happen as much or do
not happen in such severity to make them multiple times
slower than simple traversal as the worst-case time complexity
analysis suggests. An average-case analysis is thus needed to
properly assess these algorithms and determine how fast both
of them are exactly but that would be beyond the scope of this
paper. For now, it can be concluded that the worst-case time

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

complexity is quite far from the average-case complexity as
shown by the empirical analysis above.

V. CONCLUSION

Brute-force algorithms have a bad reputation for being
inefficient. Although they still are, it is still a valuable tool to
analyze the particulars and quirks of the problem at hand by
observing the algorithm in action. The particulars and quirks
could then be exploited into making a better, more efficient
algorithm as have been shown in this paper. Although the
optimized algorithm still falls under the algorithm design
strategy of brute-force, it does not mean that optimization
created from observation can only be incorporated into a
brute-force algorithm. Observation(s) could be a basis for an
entire redesign of the approach by switching the strategies to a
more sophisticated one, like backtracking, divide-and-conquer,
etc..

The empirical analysis of this problem also re-emphasize
the importance of average-case time complexity analysis in
the analysis of algorithms as it is clear that the worst-case for
this problem does not reflect how a typical string looks like.

GITHUB REPOSITORY

https://github.com/Fatih20/LongestSubstring

ACKNOWLEDGMENT

The author thanks LeetCode for their third problem,
“Longest Substring With Unique Characters” for sparking
inspiration for the naive algorithm and its optimization that are
presented in this paper.

REFERENCES

[1] R. Munir, Brute-Force Algorithm (Bagian 1). Bandung, West Java, 2022.
[2] R. Munir, Brute-Force Algorithm (Bagian 2). Bandung, West Java, 2022.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Mei 2022

Fatih Nararya Rashadyfa Ilhamsyah, 13521060

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

https://github.com/Fatih20/LongestSubstring

