
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

String Matching Algorithm for Auto Complete and

Auto Correct

Nathania Calista Djunaedi - 13521139

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): Nathania.calista01@gmail.com

Abstract— Technology has become unseparatable aspects

from human life. Several features are created by programmer to

help human achieve their tasks as efficiently as possible.

Autocomplete and Autocorrect are two features that have

significant impact on human’s life. These two features can be

seen at many applications in our daily life, for example at

Microsoft Word, Google Docs, or IDE such as Visual Studio.

These features can be implemented by using string matching with

3 different algorithms, such as Bruteforce, KMP, and BM

algorithm. Th

Keywords— KMP, bruteforce, BM, stringmatching,

autocorrect, autocomplete

I. INTRODUCTION

These days, technology is an aspect that cannot be
separated from human daily life. Technology has been used in
various aspects, ranging from education, work, health,
economy, and many more. It also come in various shapes, like
computer, laptop, smartphone, smartwatch, and many more.
Technology is used to accomplish difficult tasks as well as
simple tasks that are frequently performed by humans. By
using technology, humans are expected to accomplish their
tasks efficiently and accurately. Examples of technologies that
is commonly used to enhance efficiency and accuracy are
autocorrect and autocomplete feature.

Autocorrect is a word processing feature that identifies
misspelled words, and use algorithms to identify the words
most likely to have been intended. Several companies, like
Apple, Google, and Microsoft have used this feature in all of
their products. IDE applications usually don’t use autocorrect
feature. When a user enter words that are not in the program’s
database, program will notify the user that their words are
wrong. Not only that, the program will also provide several
recommendations for words that are most similar to the user’s
input. An example of the use of autocorrect can be seen in the
image below

Fig 1 Example of Autocorrect Feature

Source : Author’s personal documentation

Autocomplete is a feature that attempts to predict and
automatically complete the current word or phrase as it is being
entered by the program’s user. Different with autocorrect,
several IDE, such as visual studio, has this feature.
Autocomplete feature in IDE usually works by detecting word
entered by user and compare if any words in database have
similar patterns with that the user input. If there is a match, the
program will show the rest of the code or sentence at the screen
and user can use the suggestion by clicking enter. An example
of the use of autocomplete can be seen in the image below

Fig 2 Example Autocomplete Feature

Source : Author’s personal documentation

In it’s implementation, the autocorrect and autcomplete
features often lack accuracy and experience frequent failures.
Therefore, the author would like to discuss the impleentation of
string matching algorithms in both of these features.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

II. THEORY AND CONCEPTS

A. Autocorrect and Autocomplete

Autocorrect is a word processing feature that identifies
misspelled words, and uses algorithms to identify the words
most likely to have been intended. When autocorrect was first
found, in 1990, program doesn’t compare the user’s input to
any dictionary. Instead, the program compares it to a
preprogrammed table of everyday mistakes and their
replacement. In the years that followed, autocorrect has
become more sophisticated and has the ability to compare
user’s input to a dictionary based on the language used. These
days, people can feel the implementation of autocorrect in
almost all applications

Autocomplete, known as word completion, is a software
feature that suggests finishing what is being typed by
comparing the current text with previously-entered text.
Autocomplete was first introduced by Google and was aimed
to assist users in typing search queries based on previous query.
Later on, this feature is also used at several IDE, like visual
studio.

B. String

A string is one of the data types in programming that is
usually represented as an array of characters capable of storing
letters, numbers, punctuation marks, or other valid characters.
A string can be formed using static allocation or dynamic
allocation methods. One of the factors that determines these
methods is the programming language used. In static
allocation, the length of a string is declared from the beginning,
while in dynamic allocation, the length of a string can vary
depending on its usage. Example on how to declare a string in
python can be seen on the image below

Fig 3 String in Python

Source : Author’s personal documentation

Some important terms related with string matching
algorithms are :

1. Prefix

A prefix refers to one or more letters at the beginning
of a word that alter the original meaning of a word. If
m is a length of a string (S), then, prefix must be
located between S[0…m-1] and must contain the first
letter of the word. For example, at the picture above,
the prefix of title is “Str”, “St”, and many more.
Meanhwile, “ring” is not a prefix of title.

2. Suffix

A suffix refers to one or more letters at the end of a
word that alter the original meaning of a word. If m is a
length of a string (S), then, suffix must be located

between S[0..m-1] and must contain the last letter of
the word. For example, at the picture above, the suffix
of title is “ching”, “ng”, “matching”, and many more.
Meanwhile, “Str” is not a suffix of title.

C. String Matching

String matching algorithm is an algorithm used to find

occurrences of a short string within a long string. In string

matching algorithms, the longer string is commonly referred

as the “text”, while the shorter string is referred to as the

“pattern”.

One example of an implementation of string matching is in

a chatbot, where the program has a database that contains pre-

entered information and receive an input from user. In a

chatbot, informations in database is considered as the “text”,

and the user’s input is considered as the “pattern”. When

receiving input from the user, the program will perform string

matching algorithm with the entire data in the database until it

finds a match.

Generally, there are 3 main algorithms for performing

string matching :

1. Brute Force Algorithm

String matching can be done using the brute force

algorithm, however, this algorithm has a very high

time complexity. The process of string matching with

the brute force algorithm involves the following steps:

a. Compare the first character of the text with the

first character of the pattern

b. If the first character of the text matches the first

character of the pattern, continue the comparison

to the next indices of both the text and the pattern

c. If the character in the text is not the same as the

character in the pattern, compare the next index of

the text with the first index of the pattern (start

checking from the beginning of the pattern)

d. Repeat this process until iteratively until either

the entire text has been traversed or the pattern

has been found within the text

Example of how brute force algorithm work to do

string matching can be seen at Figure 4

Figure 4 Brute Force Algorithm

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

The average time complexity for this algorithm is

O(mn), where m is the length of the text and n is the

length of the pattern.

2. Knuth-Morris-Pratt Algorithm (KMP)

KMP algorithm is one of the most efficient algorithm

for string matching. It has lower time complexity

compared to brute force algorithm because the shifting

of the pattern is done in more efficient way. The

process of string matching with KMP algorithm

involves the following steps :

A. Compare the first character of the text with the

first character of the pattern

B. If the first character of the text matches the first

character of the pattern, continue the comparison

to the next indices of both the text and the pattern

C. If the character in the text is not the same as the

character in the pattern(P) at P[j], then, find the

largest prefix of P[0..j-1] that is a suffix of P[1..j-

1]

D. Repeat this process until iteratively until either

the entire text has been traversed or the pattern

has been found within the text

Example of KMP algorithm can be seen in the figure

below

Figure 5 KMP algorithm

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

To determine how far a pattern should be shifted,

KMP algorithm has a border function. Border function

b(k) is defined as the size of the large prefix of P[0..k]

that is also a suffix of P[1..k]. Where k is the position

before the mismatch occurred. Examle of how KMP

algorithm works with border function can be seen at

figure 5

Figure 6 KMP Algorithm with Border Function

Source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/

2020-2021/Pencocokan-string-2021.pdf .Accessed

By representing the length of the pattern as m and the

length of the text as n, the complexity of the brute

force algorithm is as follows :

- Border function: O(m)

- String search: O(n)

- Total complexity: O(m+n)

3. Boyer-Moore Algorithm (BM)

BM algorithm is also one of the most efficient

algorithm for string matching. It has lower time

complexity compared to brute force algorithm because

the shifting of the pattern is done in more efficient

way than brute force. By representing the pattern as P

and the text as T, BM algorithm is based on 2 main

techniques:

A. The Looking Glass Technique

Find P in T by moving backwards through P,

starting at it’s end.

B. The Character Jump Technique

When a mismatch occurs at T[i], for example, the

character at T[i] is x, there are 3 possible cases,

tried in order :

- P contains x somewhere

When this case occurs, try to shift P right to

align the last occurrence of x in P with T[i]

- P contains x somewhere, but a shift right to the

last occurrence is not possible

When this case occurs, shift P right by 1

character to T[i+1].

- P doesn’t contain x

Shift P to align P[0] with T[i+1]
 To search for last occurrence of a character, BM has a
function called last occurrence function also called as L
function. This function maps all the letters in P into an integers.
By representing x as a letter in P, L(x) is defined as the largest
index i such that P[i] equals to x or P[i] equals to -1 if it doesn’t
exist. Example for last occurrence function can be seen as
figure 6 below

Figure 7 Last Occurrence Function

Source :
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf .Accessed

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Example for Boyer Moore algorithm in string matching can be
seen at figure 7

Figure 8 BM Algorithm

Source :
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf .Accessed

The worst case time complexity for BM algorithm is O(m+n),
where m is the length of a pattern and n is the length of a text.

III. STRING MATCHING IMPLEMENTATION

In order to create a simple and efficient auto-correct and
auto-complete program, author utilized the brute force, KMP
and BM algorithms. The author used these three algorithms to
compare their efficiency in implementing the auto-complete
and auto-correct features. However, it is important to mention
that in real life, auto complete and auto correct features can’t
be created only by string matching algorithms. Most likely,
these features will also require a machine learning and more
algorithms.

A. Testing mechanism for Auto Correct Feature

In order to test the effectiveness of brute force algorithm,
KMP algorithm, and BM algorithm, author creates a program
and use database that contains English dictionary. This
program is implemented using Python, the algorithm
specifications are as follows :

1. Program can access database that has already prepared
and contains English words .

2. Program can receive user input .

3. If the user’s inputs are not stored in database, the
program will consider it as a mismatch. Moreover, the
user will be given the most similar word that is stored
inside database.

4. If the user’s inputs are stored in database, the program
will consider it as a match and display a success
message.

In this program, author use Kaggle’s datasets that contain
approximately 334000 English words.

(source : https://www.kaggle.com/datasets/rtatman/english-
word-frequency)

B. Testing Mechanism for Auto Complete Feature

In order to test the effectiveness of brute force algorithm,
KMP algorithm, and BM algorithm, author creates a program
and use database that contains Starbucks location around the
world. This program is implemented using Python, the
algorithm specifications are as follows:

1. Program can access database that has already prepared
and contains several information related with
Starbucks’s locations around the world.

2. Program can receive user input that is not fully
completed.

3. Program do string matching algorithms between the
user input and the database by using three algorithms
(brute force, KMP, and BM algorithms)

4. If programs find a match between string and database,
program will display the output. By doing this, the
program can detect and predict what is the next letters
that will be typed by the user.

5. If the program doesn’t find any match, program won’t
display anything

In this program, author use Kaggle’s datasets that contain
approximately 25.700 locations.

(source : https://www.kaggle.com/datasets/starbucks/store-
locations)

C. String Mathcing Algorithm’s Implementation

Since there are 3 main algorithms for string matching, the
author implements 3 algorithms by using Python.
Implementation of each algorithm can be seen below :

- Brute Force Algorithm

'''Brute Force File'''

def brute_force(text, pattern):

 '''Brute Force Algorithm'''

 len_pattern = len(pattern)

 len_text = len(text)

 if len_pattern > len_text:

 return 0

 elif len_pattern == len_text:

 if text == pattern:

 return 1

 else:

 return 0

 for i in range(0, len_text -

len_pattern + 1):

 j = 0

 while (j < len_pattern and

text[i+j] == pattern[j]):

 j += 1

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://www.kaggle.com/datasets/rtatman/english-word-frequency
https://www.kaggle.com/datasets/rtatman/english-word-frequency
https://www.kaggle.com/datasets/starbucks/store-locations
https://www.kaggle.com/datasets/starbucks/store-locations

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

 # If pattern is found inside a

text

 if j == len_pattern:

 return 1

 return 0

- KMP Algorithm

def KMP(str,substr,table):

'''KMP function'''

len_sub = len(substr)

len_str = len(str)

if len_sub>len_str :

return 0

 elif len_sub == len_str:

if(str == substr):

 return 1

 else:

 return 0

i,j = 0,0

while(i < len_str):

if str[i] == substr[j]:

i += 1

j += 1

 elif j == 0:

 i += 1

else :

j = table[j-1]

if len_sub == j:

return 1

return 0

def border_function(substr):

 '''Border function for KMP (used

when a mismatch occurs)'''

 table = [0 for i in range (len

(substr)+1)]

 table[0] = 0

 j = 0

 i = 1

 while(i < len(substr)):

 if substr[i] == substr[j]:

 table[i] = j + 1

 i += 1

 j += 1

 elif j == 0:

 table[i]= 0

 i += 1

 else :

 j = table[j-1]

 return table

- BM Algorithm

def last_occurence(substr):

table = [0 for i in range(257)]

for i in range(0, 257):

table[i] = -1

for i in range(0,len(substr)):

if(ord(substr[i]) < 257):

table[ord(substr[i])] = i

return table

def BM(string,substr,table):

 len_sub = len(substr)

 len_str = len(string)

 i = 0

 if len_sub > len_str:

 return 0

 elif len_sub == len_str:

 if(string == substr):

 return 1

 else:

 return 0

 for i in range(-1,len_str-len_sub):

 j = len_sub-1

 while(j >= 0 and string[i+1] ==

substr[j]):

 j -= 1

 if j < 0:

 return 1

 if(ord(string[i+j]) < 257):

 slide = j -

table[ord(string[i+j])]

 if slide < 1:

 slide = 1

 i += slide

 else:

 return 0

 return 0

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

D. Main Program for Auto Correct

'''

 AutoCorrect.py

'''

def main():

 '''Main program untuk run dan read

file'''

 english_words = []

 with open("unigram_freq.csv","r") as

file :

 csv_file = csv.reader(file)

 for lines in csv_file :

english_words.append(lines[0])

 n = input("Enter your pattern : ")

 pattern = n.split()

 not_found = []

suggestions = []

 is_found = False

 start_time = time.time()

 # Brute force algorithm

 for item in pattern :

 temp = ""

 minimum_distance =

distance(item,english_words[0])

 for word in english_words:

 if(brute_force(word,item) ==

1):

 is_found = True

 break

 else :

 is_found = False

 if(distance(item,word) <

minimum_distance):

 minimum_distance =

distance(item,word)

 temp = word

 if(not is_found):

 not_found.append(item)

 suggestions.append(temp)

 kmp_found = False

 kmp_missmatch = []

 kmp_suggestions = []

 start_time = time.time()

 for item in pattern :

 table = border_function(item)

 temp = ""

 minimum_distance = distance(item,

english_words[0])

 for word in english_words:

 if(KMP(word,item,table) ==

1):

 kmp_found = True

 break

 else :

 kmp_found = False

 if(distance(item,word) <

minimum_distance):

 minimum_distance =

distance(item,word)

 temp = word

 if(not kmp_found):

 kmp_missmatch.append(item)

 kmp_suggestions.append(temp)

bm_found = False

 bm_missmatch = []

 bm_suggestions = []

 start_time = time.time()

 for item in pattern :

 table = last_occurence(item)

 temp = ""

 minimum_distance =

distance(item,english_words[0])

 for word in english_words:

 if(BM(word,item,table) == 1):

 bm_found = True

 break

 else :

 bm_found = False

 if(distance(item,word) <

minimum_distance):

 minimum_distance =

distance(item,word)

 temp = word

 if(not bm_found):

 bm_missmatch.append(item)

 bm_suggestions.append(temp)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

E. Main Program for Auto Complete

"""File for auto complete feature"""

def auto_complete():

 """Main function for auto complete

feature"""

 starbucks_location = []

 with

open("directory.csv","r",encoding="utf-

8") as file :

 csv_file = csv.reader(file)

 for lines in csv_file:

 starbucks_location.append

(lines[4])

user_input = input("Enter a location : ")

 pattern = user_input.split()

 is_found = False

 bf_result = ""

 start_time = time.time()

 for word in pattern :

 bf_result = ""

 for text in starbucks_location :

 temp = text.split()

 for str in temp :

 if(brute_force(str,word)

== 1):

 bf_result = text

 is_found = True

 break

 if(is_found):

 break

 if(is_found):

 break

kmp_found = False

 kmp_result = ""

 start_time = time.time()

 for word in pattern :

 table = border_function(word)

 kmp_result = ""

 for text in starbucks_location :

 temp = text.split()

 for str in temp :

 if(KMP(str,word,table) ==

1):

 kmp_result = text

 kmp_found = True

 break

 if(kmp_found):

 break

 if(kmp_found):

 break

bm_found = False

 bm_result = ""

 start_time = time.time()

 for word in pattern :

 table = last_occurence(word)

 bm_result = ""

 for text in starbucks_location :

 temp = text.split()

 for str in temp :

 if(BM(str,word,table) ==

1):

 bm_result = text

 bm_found = True

 break

 if(bm_found):

 break

 if(bm_found):

 break

IV. EXPREMIENT

A. Experiment for Auto Correct Feature

1. Test Case 1

Program receive an incorrect input from user

Fig 9 Test Case 1

2. Test Case 2

Program receive multiple incorrect input from user

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Fig 10 Test Case 2

3. Test Case 3

Program receive correct input from user

Fig 11 Test Case 3

B. Experiment fot Auto Complete Feature

1. Test Case 1

Program receives a location that has been stored in

database

Fig 12 Test Case 1

2. Test Case 2

Program receives a location that has not been stored

in database

Fig 13 Test Case 2

V. ANALYSIS

Based on all the tests conducted in the previous section, the
string-matching algorithm can be applied and used for simple
autocorrect and autocomplete programs. From the three
algorithms used in the experiments, it can be seen that the BM
algorithm has a longer execution time compared to the other

algorithms. This is due to the initialization of the table in the
BM algorithm, which increases the required time.

Furthermore, it can be seen that the autocomplete algorithm
is faster compared to the autocorrect algorithm. The main
reason for result is the dataset for autocorrect is more
comprehensive or larger compared to the dataset for
autocomplete. Additionally, in autocomplete, the text in the
database is no longer an array of strings with only one word. In
autocomplete, the text in the database is an array of strings that
can have multiple letters or words, for example, “Starbucks
Chicago”. Therefore, during the matching process, if it is found
that the first sentence of the pattern is the same as the first
sentence of the text at a certain index, the search will be
immediately stopped and continued to the next index.

VI. CONCLUSION

Based on all the theories and experiments conducted, it can be

concluded that string matching can be used to create a simple

autocorrect and autocomplete feature. The most efficient

algorithm for string matching depends on the given case

(pattern) and the database (text). String matching algorithms

are highly suitable for beginner programmers who want to

learn basic auto correct and auto complete.

The autocorrect and autocomplete programs that have already

been developed by author can still be further optimized by

using machine learning and additional algorithms. High-

accuracy autocorrect and autocomplete programs that are also

equipped with fast execution time can greatly help the lives of

the community, especially programmers or students.
a.

VIDEO LINK AT YOUTUBE

To educate more people, especially students, about string
matching algorithms, author has published a video. Video can
be seen at https://www.youtube.com/watch?v=USG3X0GGJ5g

ACKNOWLEDGMENT

First and foremost, I would like to express my gratitude to
God who has given me strength to finish this paper.
Furthermore, I would also like to express my gratitude to the
professors of Algorithm Strategy class, Mr. Rinaldi Munir, Mr.
Rila Mandala, and Mrs. Nur Ulfa, for their guidance
throughout the fourth semester and for providing materials
related to algorithm strategy.

REFERENCES

[1] Boyer, Robert S.; Moore, J Strother (October 1977). "A Fast String
Searching Algorithm". Comm. ACM. New York: Association for
Computing Machinery. 20 (10): 762–772

[2] I Knuth, Donald; Morris, James H.; Pratt, Vaughan (1977). "Fast pattern
matching in strings". SIAM Journal on Computing. 6 (2): 323–350.

[3] http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-
Automata. Accessed on 21 May 2023

[4] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf .Accessed on 21 May 2023

https://www.youtube.com/watch?v=USG3X0GGJ5g
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
http://blog.notdot.net/2010/07/Damn-Cool-Algorithms-Levenshtein-Automata
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf%20.Accessed

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

[5] https://press.rebus.community/programmingfundamentals/chapter/string
-data-type/. Accessed on 21 May 2023

STATEMENT

I hereby declare that the paper I have written is my own work

and is not a summary or translation or someone else’s paper,

and it is not plagiarized.

Bandung, 22 May 2023

Nathania Calista Djunaedi

13521139

https://press.rebus.community/programmingfundamentals/chapter/string-data-type/
https://press.rebus.community/programmingfundamentals/chapter/string-data-type/

