
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Resource Allocation in Online Transportation

Using Dynamic Programming

Vanessa Rebecca Wiyono - 13521151

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13521151@std.stei.itb.ac.id

Abstract— In the era of the 4.0 revolution, the online

transportation industry is witnessing significant growth and

expansion, driven by rapid technological advancements. To

optimize operations, online transportation platforms are

leveraging dynamic programming, a robust algorithmic approach,

to enhance resource allocation. This research paper aims to

analyze the application of dynamic programming in the online

transportation industry, specifically focusing on its impact on

improving resource allocation. By harnessing the potential of

dynamic programming, online transportation services can

efficiently allocate resources, resulting in cost reduction, improved

efficiency, and enhanced user experiences.

Keywords— Dynamic programming, online transportation,

Resource Allocation

I. INTRODUCTION

The transformation of conventional motorcycle taxis into

technology-based online motorcycle taxis has revolutionized the

transportation landscape, offering customers the convenience of

booking rides through mobile applications. This integration of

technology has not only improved accessibility but also

enhanced efficiency and reliability in the online transportation

industry.

Online transportation services have emerged as a

groundbreaking innovation in the world of m-commerce. These

services, commonly referred to as ride-sharing, empower

customers to effortlessly book rides through mobile

applications, while drivers can efficiently respond to these

requests via the same apps. Indonesia, in particular, hosts a

range of online transportation platforms, including Uber (no

longer exist), Grab, and Gojek as the top providers.

This service is perceived as a responsive, flexible, and user-

friendly transportation alternative. As well as offering

attractive travel options, it also has the potential to address

environmental concerns and reduce dependence on private

vehicles. However, it is important to recognize that these

benefits may not be accessible to individuals of all income

levels. Those who do not own a smartphone or face difficulties

in using the service may be left behind, while traditional public

transport may experience a decrease in market share. This

situation raises questions about the role of government in

implementing appropriate regulations and policies. The

emergence of an online city shuttle service was enthusiastically

welcomed by the Indonesian people, who have long been

waiting for an affordable, easy-to-access and high-quality

transportation solution.

According to the latest statements and data released by Grab

and Gojek as of May 2023, the recruitment of drivers has

become increasingly challenging due to the contraction of

revenues in the ojol (motorcycle taxis) and online taxi sectors.

In its financial report, Grab provides insights into the driver

statistics on their platform. Previous research conducted by

Muhammad Yorga Permana, a doctoral student at the London

School of Economics (LSE), has unveiled the inclination

among ojol drivers to transition to more stable employment

positions. A significant factor driving this inclination is the

continuous decline in their income, with a notable decrease

observed in 2019. Additionally, the previously enticing daily

bonuses offered by these platforms are now perceived as less

attractive by the drivers.

The aforementioned challenges in driver recruitment and

declining revenues in the ojol and online taxi sectors have

prompted a critical need for a strategic reassessment of resource

allocation within online transport platforms. Specifically,

attention must be given to optimizing the allocation of drivers

and customer orders in order to enhance driver income. This is

a crucial aspect that necessitates careful consideration and

implementation of effective measures to ensure a fair and

equitable distribution of resources. In the subsequent paragraph,

we will delve into the various strategies and approaches

employed by Grab and Gojek to address this issue and bolster

the income of their drivers.

The challenges mentioned above in driver recruitment and

declining revenues in the ojol and online taxi sectors have

driven the critical need for a strategic reassessment of resource

allocation in online transportation platforms. In particular,

attention should be paid to ensuring a fair and equitable

distribution of resources by optimizing the allocation of drivers

and customer orders so that the flow of driver assignments for

each user is more efficient in terms of time. Therefore, this

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

paper will discuss further about the resource allocation of public

transportation using dynamic programming algorithms.

II. BASIC THEORY

A. Dynamic Programming

Dynamic programming, introduced by Richard Bellman in the
1940s, is a method that combines mathematical optimization and
computer programming. The term "dynamic programming" was
coined to describe the process of identifying the optimal decision
at each stage of a problem. This approach is particularly useful
in addressing problems with evolving characteristics over time.
The utilization of "programming" in dynamic programming
draws parallels with linear programming and mathematical
programming, emphasizing the pursuit of optimal solutions.

Dynamic programming operates by decomposing the original
problem into a set of subproblems and solving each subproblem
only once, storing the solutions in a table. This methodology is
commonly employed in optimization problems that exhibit
overlapping subproblems.

Observing the side of optimization problems, the presence of
overlapping subproblems is observed when a recursive
algorithm repeatedly solves the same subproblem. Dynamic
programming offers a key advantage in such cases by solving
these overlapping subproblems only once and storing their
solutions in a table for future use.

This concept can be illustrated through the example of
computing the Fibonacci sequence, where each Fibonacci
number is computed recursively. When computing the nth
Fibonacci number (Fn), it requires calculating Fn-1 and Fn-2 and
adding them together. However, in computing Fn-1, we
encounter the need to compute Fn-2 again, even though it has
already been computed to find Fn. By computing and storing Fn-
2 for Fn-1, we can avoid the repetition of the computation,
thereby improving efficiency.

In the application, there are certain characteristics that can be
solved by implementing dynamic programming. First of all, it is
important that these problems can be divided into multiple
stages, with each stage requiring a single decision to be made.
Secondly, each stage comprises various states, representing the
possible inputs or conditions specific to that stage. There are two
methods commonly used to solve problems. The first is the top-
down approach with memorization and the second one which is
the bottom up approach.

Top down approach involves breaking down a complex problem
into smaller subproblems and solving them recursively, starting
from the top and working towards the base cases and is often
combined with memoizaiton.

Memoization is a technique employed when a problem can be
solved recursively, leveraging the solutions to its subproblems,
especially when these subproblems overlap. This method
involves storing the computed values in a table, following a top-
down approach. Memoization does not necessitate the filling of
all cells in the table unless it is explicitly needed. Each cell is
filled on-demand, as required by the computation process. In

other words, memoization does not mandate the population of
all table cells to reach the final answer.

Figure 1. Top down approach (source: https://ibpublicimages.s3-us-west-
2.amazonaws.com/tutorial/dp2.png)

On the other hand, the second method is the bottom-up approach
with tabulation. This method differs from the top-down
approach as it involves filling in a multidimensional table. In the
bottom-up approach, a table is utilized to store the computed
values representing the optimal solutions to the subproblems.
Unlike memorization, tabulation requires the filling of all cells
in the table. The solution to a given problem is formulated
recursively by using the solutions to the corresponding
subproblems. The subproblems are solved first, and their
solutions are combined to obtain the solution to the original
problem. This process is typically organized in a tabular format,
where the computed solutions for the subproblems are stored
and utilized from the table.

Figure 2. Bottom up approach (source: https://ibpublicimages.s3-us-west-
2.amazonaws.com/tutorial/dp1.png)

In such cases, dynamic programming offers a more efficient
alternative to naive approaches, requiring less time for
computation. It proves especially beneficial when confronted
with problems that would otherwise necessitate exponential time
using a straightforward approach. Dynamic programming
enables the resolution of these problems within polynomial time
complexity.

B. Resource Allocation

In the context of strategic management, resource allocation
refers to efforts to minimize fluctuations in resource utilization
across projects. This involves the careful management and
distribution of resources to ensure their efficient and effective
use. The goal is to maintain a balance and avoid over or under
use of resources, which can lead to sub-optimal project
performance.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

In project management, resource allocation involves scheduling
activities and determining the resources required for each
activity while considering the availability of resources and the
project timeline. Taking into account the availability of
resources and the time frame of the project, it is expected that
the utilization of resources can be optimized and the timely
completion of tasks is ensured. Effective allocation of resources
in both strategic management and project management plays an
important role in achieving the desired results and project
success.

Figure 3. Process of resource allocation (source:
https://www.researchgate.net/profile/Hamid_Madni/publication/311771195/fig

ure/fig2/AS:779409946578965@1562837220380/Process-of-resource-
allocation.gif)

With the increasing popularity of online transportation
platforms, such as ride-hailing services, it becomes essential to
allocate resources appropriately to ensure smooth operations and
customer satisfaction. In this context, resources primarily refer
to the available pool of drivers and the demand for transportation
services.

Efficient resource allocation involves dynamically matching the
supply of drivers with the fluctuating demand from passengers.
This process requires sophisticated algorithms and real-time
data analysis to optimize driver availability and minimize
passenger waiting times.

By intelligently allocating drivers to areas with high demand and
adjusting their distribution based on real-time traffic conditions
and passenger requests, transportation platforms can enhance
service quality and reduce customer dissatisfaction. Moreover,
proper resource allocation enables a fair distribution of ride
requests among drivers, promoting a balanced workload and
maximizing their income potential.

However, challenges arise in resource allocation due to the
inherent uncertainty and variability in passenger demand and
driver availability. Balancing supply and demand can be a
complex task, especially during peak hours or special events
when demand surges. Transport companies and platforms must
continually monitor and analyze data to make informed
decisions regarding driver recruitment, incentives, and
dispatching strategies. Additionally, factors such as driver
preferences, driver retention, and driver satisfaction should be
considered to maintain a stable and motivated driver pool.

III. DYNAMIC PROGRAMMING IN RESOURCE ALLOCATION

To optimize the allocation of drivers and effectively address

fluctuating passenger demand in online-based transportation

platforms like Uber, Gojek, and Grab, dynamic programming

can be utilized. The allocation of resources, particularly

matching the available pool of drivers with incoming ride

requests in real-time, is a crucial aspect of resource allocation.

By leveraging historical and real-time data, dynamic

programming enables these platforms to analyze demand

patterns, identify peak hours, and allocate drivers efficiently.

Factors such as driver proximity, availability, and efficiency are

considered to optimize the dispatching process, minimizing

passenger wait times and maximizing driver utilization.

Another important application of dynamic programming in

resource allocation is addressing surge pricing during periods

of high demand. By leveraging historical data on price surges

and passenger willingness to pay, these platforms can

dynamically adjust fare rates to balance supply and demand.

This approach incentivizes more drivers to come online during

peak hours, ensuring adequate availability of transportation

services while enhancing the overall passenger experience.

Continuously monitoring and analyzing data allows these

platforms to refine their resource allocation algorithms.

Considerations such as driver ratings, preferences, and

availability patterns are taken into account to ensure a fair

distribution of rides among drivers. This approach not only

contributes to a sustainable and motivated driver workforce but

also maintains high levels of driver satisfaction.

Steps for applying dynamic programming in resource allocation

for online-based transportation platforms:

1. Demand Prediction: By analyzing historical and real-time

data, dynamic programming algorithms can predict demand

patterns and identify peak hours, which will helps in allocating

drivers more efficiently, ensuring sufficient coverage during

periods of high demand.

2. Driver Dispatching: Dynamic programming algorithms

consider factors such as driver proximity, availability, and

efficiency to optimize the dispatching process. By matching

drivers with ride requests in real-time, these algorithms

minimize passenger wait times and maximize driver utilization.

3. Surge Pricing: Leveraging historical data on price surges and

passenger willingness to pay, dynamic programming allows

platforms to dynamically adjust fare rates during high-demand

periods to balance the supply and demand, incentivizing more

drivers to come online and ensuring adequate availability of

transportation services.

4. Continuous Optimization: Continuous monitor and data

analyze refine dynamic programming algorithms' resource

allocation strategies with considered factors such as driver

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

ratings, preferences, and availability patterns to ensure a fair

distribution of rides among drivers

5. Resource Management: Dynamic programming helps

platforms make efficient use of resources like driver time,

vehicle capacity, and operational costs. By optimizing resource

allocation, platforms can achieve better operational efficiency

and cost-effectiveness.

6. Scalability: Dynamic programming algorithms can handle

large-scale resource allocation problems by breaking them

down into smaller subproblems. This enables efficient

computation and scalability as the platform expands and

handles increasing volumes of ride requests.

IV. IMPLEMENTATION

dynamic programming is used to find the most efficient driver

for each passenger based on the time efficiency between their

locations, with the breakdowns:

Basic calculation for distamce between a passenger and a driver

using euclidean distance and fare calculation with surge

multiplier that will be activated during rushour

def calculate_distance(x1, y1, x2, y2):

 return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

def calculate_fare(base_fare, distance, surge_multiplier):

 return base_fare + (distance * surge_multiplier)

Dynamic Proogramming Approach:

def allocate_resources(passenger_location, driver_locations,

rush_hour):

 n = len(passenger_location) # Number of passengers

 m = len(driver_locations) # Number of available drivers

 base_fare = 5.0 # Base fare for the trip

 time_efficiency_table = [[0] * m for _ in range(n)]

 # Calculate the time efficiency

 for i in range(n):

 for j in range(m):

 x1, y1 = passenger_location[i]

 x2, y2 = driver_locations[j]

 distance = calculate_distance(x1, y1, x2, y2)

 time_efficiency_table[i][j] = distance * 1000 # in ms

 # Dynamic programming

 chosen_drivers = []

 total_fares = []

hour

 if rush_hour:

 surge_multipliers = [1.5, 2.0, 1.8] # Surge multipliers for rush

hour

 fare_type = "Rush Hour"

 else:

 surge_multipliers = [1.0, 1.0, 1.0] # Surge multipliers for non-

rush hour

 fare_type = "Non-Rush Hour"

 for i in range(n):

 min_time_efficiency = float('inf')

 chosen_driver = None

 for j in range(m):

 time_efficiency = time_efficiency_table[i][j]

 if time_efficiency < min_time_efficiency:

 min_time_efficiency = time_efficiency

 chosen_driver = j

 chosen_drivers.append(chosen_driver)

 distance = calculate_distance(

 passenger_location[i][0], passenger_location[i][1],

 driver_locations[chosen_driver][0],

driver_locations[chosen_driver][1]

)

 surge_multiplier = surge_multipliers[chosen_driver]

 fare = calculate_fare(base_fare, distance, surge_multiplier)

 total_fares.append(fare)

 print(f"Passenger {i+1}: Chosen Driver {chosen_driver+1} |

Total Fare: ${fare:.2f}")

 # Print the time efficiency table in milliseconds

 print("\n")

 print("Efficiency Table (ms):")

 for row in time_efficiency_table:

 print([f"{time:.2f}" for time in row])

 print()

The calculation begins by initializing some variables such as

the number of passengers (n), the number of available drivers

(m), and the base fare for the trip (base_fare). It also creates an

empty table called time_efficiency_table to store the time

efficiency values in milliseconds between each passenger and

driver.

It continues to calculate the time efficiency between each

passenger and driver by iterating over the passengers and

drivers. For each combination, it retrieves the coordinates of the

passenger and driver, calculates the Euclidean distance using

the calculate_distance function, and stores the result in the

time_efficiency_table after converting it to milliseconds.

Empty lists are initialized to store the chosen drivers

(chosen_drivers) and the total fares for each passenger

(total_fares).

The surge multipliers are determined based on whether it is rush

hour or non-rush hour, and the corresponding fare type

(fare_type) is set accordingly.

Minimum time efficiency will be searched for each passenger

respectively. First, it initializes variables for the minimum time

efficiency (min_time_efficiency) and the chosen driver

(chosen_driver) followed by iterating over the drivers and

compares the time efficiency from the time_efficiency_table for

each combination. If a lower time efficiency is found, the

minimum time efficiency and chosen driver are updated.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

Once the most efficient driver is determined for a passenger, the

code calculates the distance between the passenger and the

chosen driver using the calculate_distance function. It retrieves

the surge multiplier corresponding to the chosen driver and

calculates the fare using the calculate_fare function with the

base fare, distance, and surge multiplier. The fare is then added

to the total_fares list.

For each passenger, the passenger number, chosen driver

number, and the total fare will be print. At the end, time

efficiency table, displaying time efficiency values between each

passenger and driver in milliseconds will be printed.

Test examples:

Input:

passenger_location = [(0, 0), (2, 3), (5, 1)] # Passenger locations (x, y

coordinates)

driver_locations = [(1, 1), (3, 2), (4, 0)] # Driver locations (x, y

coordinates)

print("Rush Hour")

allocate_resources(passenger_location, driver_locations,

rush_hour=True)

print("\nNon-Rush Hour")

allocate_resources(passenger_location, driver_locations,

rush_hour=False)

This test aims to show the difference between case during rush

hour and non-rush hour

Output example:
Rush Hour

Passenger 1: Chosen Driver 1 | Total Fare: $7.12

Passenger 2: Chosen Driver 2 | Total Fare: $7.83

Passenger 3: Chosen Driver 3 | Total Fare: $7.55

Efficiency Table (ms):

['1414.21', '3605.55', '4000.00']

['2236.07', '1414.21', '3605.55']

['4000.00', '2236.07', '1414.21'

Non-Rush Hour

Passenger 1: Chosen Driver 1 | Total Fare: $6.41

Passenger 2: Chosen Driver 2 | Total Fare: $6.41

Passenger 3: Chosen Driver 3 | Total Fare: $6.41

Efficiency Table (ms):

['1414.21', '3605.55', '4000.00']

['2236.07', '1414.21', '3605.55']

Non-Rush Hour

Passenger 1: Chosen Driver 1 | Total Fare: $6.41

Passenger 2: Chosen Driver 2 | Total Fare: $6.41

Passenger 3: Chosen Driver 3 | Total Fare: $6.41

Efficiency Table (ms):

['1414.21', '3605.55', '4000.00']

['2236.07', '1414.21', '3605.55']

['4000.00', '2236.07', '1414.21']

During the rush hour, the algorithm determines the most

efficient driver for each passenger based on the calculated time

efficiency values. The efficiency table shows the distances

between passengers and drivers in milliseconds. The algorithm

considers the surge multipliers specific to rush hour conditions

(1.5, 2.0, and 1.8).

For the rush hour scenario, the algorithm assigns the passengers

to the drivers with the lowest time efficiency values, resulting

in the following allocations: Passenger 1 is assigned to Driver

1, Passenger 2 is assigned to Driver 2, and Passenger 3 is

assigned to Driver 3. The calculated total fares for each

passenger are $7.12, $7.83, and $7.55, respectively.

On the other hand, during non-rush hour, the algorithm

performs the same calculations, but with surge multipliers set

to 1.0 for all drivers. The efficiency table remains the same,

representing the distances between passengers and drivers.

In the non-rush hour scenario, the algorithm assigns the

passengers to the drivers with the lowest time efficiency values,

resulting in the same driver allocations for all passengers:

Driver 1 for Passenger 1, Driver 2 for Passenger 2, and Driver

3 for Passenger 3. The calculated total fares for all passengers

are $6.41.

The efficiency table is computed based on the distances

between each passenger and drive that are calculated using the

calculate_distance function, employing the Euclidean distance

formula. Since the efficiency table is derived solely from the

distances, it remains unchanged regardless of whether it is a

rush hour or non-rush hour.

From a dynamic programming perspective, the algorithm uses

the concept of "optimal substructure" to solve the problem

efficiently. It breaks down the problem of allocating passengers

to drivers into smaller subproblems of finding the most efficient

driver for each passenger individually. By iteratively

calculating the time efficiency between passengers and drivers

and updating the minimum time efficiency and chosen driver,

the algorithm ensures that the chosen drivers collectively result

in the most efficient allocation for all passengers.

application of dynamic programming efficiently allocate

passengers to drivers based on time efficiency, considering

different surge multipliers for rush hour and non-rush hour

scenarios. Therefore, fare efficiency can be maximized while

ensuring fair distribution of passengers among available

drivers.

A graphical user interface (GUI) was implemented using

Tkinter to visualize and simulate different scenarios for the

resource allocation problem. The GUI displayed passenger and

driver locations on a graphical map and calculated the most

efficient driver for each passenger based on distance and surge

multipliers. The results were shown in the GUI, providing a

clear representation of the assigned drivers and total fares. This

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

visualization enhanced understanding and evaluation of the

algorithm's performance.

Rush hour

Non Rush hour

Comparison with brute force:
def allocate_resources_brute_force(passenger_location, driver_locations):

 n = len(passenger_location)

 m = len(driver_locations)

 min_total_time_efficiency = float('inf')

 best_allocation = None

 # all possible permutations of drivers

 driver_permutations = permutations(range(m))

 # Iterate through each permutation

 for permutation in driver_permutations:

 total_time_efficiency = 0
 for i in range(n):

 passenger_index = i

 driver_index = permutation[i]

 x1, y1 = passenger_location[passenger_index]

 x2, y2 = driver_locations[driver_index]
 distance = calculate_distance(x1, y1, x2, y2)

 time_efficiency = distance * 1000

 total_time_efficiency += time_efficiency

 if total_time_efficiency < min_total_time_efficiency:

 min_total_time_efficiency = total_time_efficiency
 best_allocation = list(permutation)

 return best_allocation

In contrast to the dynamic programming, brute force solution

exhaustively generates all possible permutations of the drivers

 and iterates through each permutation to calculate the total time

efficiency for resource allocation. By considering all

combinations, it ensures finding the allocation with the

minimum total time efficiency. However, this approach has a

time complexity of O(n!), where n is the number of passengers

or drivers.

On the other hand, the solution that utilizes dynamic

programming efficiently select the best allocation based on the

minimum time efficiency. This approach exhibits a more

efficient time complexity of O(n * m), where n is the number of

passengers and m is the number of drivers.

The significant difference in time complexity between the brute

force solution and the original code highlights the advantage of

dynamic programming in tackling resource allocation

problems. By avoiding redundant calculations and reusing

solutions to subproblems, the original code achieves a more

efficient allocation process, particularly when dealing with

larger datasets.

V. ANALYSIS

Problem Description:

This problem revolves around efficiently allocating passengers

to drivers to maximize fare efficiency. The allocation depends

on factors such as distance, surge multipliers, and time

efficiency between passenger and driver locations.

Solution Approach:

The implemented solution follows a dynamic programming

approach to find the most efficient driver for each passenger.

The algorithm iterates through the passenger and driver

locations, calculating time efficiency values and selecting the

driver with the minimum time efficiency for each passenger.

Rush Hour Scenario:

In the rush hour scenario, the surge multipliers are set to specific

values (1.5, 2.0, and 1.8) to reflect increased demand and fares

during peak hours. The algorithm correctly assigns passengers

to drivers based on the calculated time efficiency values. The

resulting fare efficiency is demonstrated by the total fares of

$7.12, $7.83, and $7.55 for each passenger.

Non-Rush Hour Scenario:

In the non-rush hour scenario, surge multipliers are set to 1.0

for all drivers, representing normal fare conditions. The

algorithm assigns passengers to drivers based on time

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

efficiency, resulting in the same driver allocations for all

passengers. The total fares for all passengers are $6.41,

indicating fair distribution and similar fare efficiency.

Efficiency and Optimization:

The algorithm optimizes the allocation process by using

dynamic programming principles. It breaks down the problem

into smaller subproblems of finding the most efficient driver for

each passenger individually. By iteratively updating the

minimum time efficiency and chosen driver, the algorithm

ensures an efficient allocation that maximizes fare efficiency.

Performance and Scalability:

Based on the provided test cases, the algorithm performs well

and produces the expected results. However, it's important to

consider the scalability of the solution. The algorithm has a time

complexity of O(n * m), where n is the number of passengers

and m is the number of available drivers. For larger input sizes,

the performance may be impacted, and further optimizations

may be required.

General:

Dynamic programming approach allows for efficient

computation of the most efficient driver for each passenger

individually. By breaking down the problem into smaller

subproblems and iteratively updating the minimum time

efficiency and chosen driver, the algorithm achieves an optimal

allocation strategy.

This algorithm demonstrates good performance and accuracy

based on the provided test cases. However, it's essential to

consider the scalability of the solution for larger input sizes. As

the algorithm has a time complexity of O(n * m), where n is the

number of passengers and m is the number of available drivers,

further optimizations may be necessary to handle significant

increases in passenger and driver counts efficiently.

The implemented solution provides a solid foundation for

solving the online transportation resource allocation problem. It

showcases the benefits of dynamic programming in achieving

optimal results and balancing fare efficiency and fairness

among drivers. With proper performance optimizations, the

solution can be scaled to handle larger scenarios effectively.

VI. CONCLUSION

In conclusion, the use of dynamic programming is proved

effective in breaking down the resource allocation problem into

smaller subproblems and finding optimal solutions. By

considering all possible combinations of drivers and

passengers, we achieved fair fares and improved overall system

efficiency. It is important to note that our algorithm assumes a

simplified scenario and does not consider additional factors

such as traffic conditions or real-time updates. Future research

could focus on incorporating these elements to enhance real-

world applicability.

By optimizing assignments and fare calculations, the system

efficiently allocates resources, providing a satisfactory

experience for passengers and drivers. As the algorithm has a

time complexity of O(n * m), where n is the number of

passengers and m is the number of available drivers, further

optimizations may be necessary to handle significant increases

in passenger and driver counts efficiently.

VIDEO LINK YOUTUBE

https://youtu.be/sb3xtnzhMvE

PROJECT LINK: GITHUB

https://github.com/vanessrw/DynamicProg_ResourceAllocatio

n

ACKNOWLEDGMENT

The author expresses heartfelt gratitude to God Almighty for

providing guidance and support throughout the completion of

this paper. Special appreciation is extended to Dr. Ir. Rinaldi

Munir, MT., the author's lecturer in the IF2211 Algorithm

Strategies course K-01, fellow friends and colleagues, and

author’s family who have supported the journey of writing this

paper.

REFERENCES

[1] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Program-Dinamis-2020-Bagian1.pdf, accesed on May 20th 2023

[2] Program Dinamis (Dynamic Programming) Bagian 1 (itb.ac.id) , accesed
on May 20th 2023

[3] https://iopscience.iop.org/article/10.1088/1755-1315/286/1/012034/pdf,
accesed on May 21th 2023

[4] https://www.cnbcindonesia.com/tech/20230519132705-37-438752/isu-
krisis-ojol-hantam-aplikasi-grab-buka-bukaan-data-driver, accesed on
May 21th 2023

[5] https://www.researchgate.net/publication/329390711_Dynamic_progra
mming, accesed on May 21th 2023

[6] https://myrobin.id/untuk-bisnis/resource-allocation/, accesed on May 21th
2023

[7] https://www.sciencedirect.com/science/article/abs/pii/S01912615230002
43, accesed on May 21th 2023

STATEMENT

I hereby declare that the paper I wrote is my writing, not an

adaptation, or a translation of someone else's paper, and not

plagiarism

Bandung, May 20th 2023

Vanessa Rebecca Wiyono

13521151

https://github.com/vanessrw/DynamicProg_ResourceAllocation
https://github.com/vanessrw/DynamicProg_ResourceAllocation
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Program-Dinamis-2020-Bagian2.pdf
https://iopscience.iop.org/article/10.1088/1755-1315/286/1/012034/pdf
https://www.cnbcindonesia.com/tech/20230519132705-37-438752/isu-krisis-ojol-hantam-aplikasi-grab-buka-bukaan-data-driver
https://www.cnbcindonesia.com/tech/20230519132705-37-438752/isu-krisis-ojol-hantam-aplikasi-grab-buka-bukaan-data-driver
https://www.researchgate.net/publication/329390711_Dynamic_programming
https://www.researchgate.net/publication/329390711_Dynamic_programming

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2022/2023

