
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Creation of CPU for Hearthstone Chess Minigame

Using Breadth First Search

Jaya Mangalo Soegeng Rahardjo - 13520015

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): 1320015@std.stei.itb.ac.id

Abstract—Hearthstone is a PvP and PvE card game where

player summon minions and use spells to try and defeat the

opponent. Hearthstone has a chess mini game where both players

have the same streamlined cards and therefore need careful

moves and luck to defeat the opponent. Using a Breadth First

Search Algorithm, we can create a CPU that will find the optimal

moves and combination of cards to play each turn.

Keywords—breadth first search; hearthstone chess; cpu

I. INTRODUCTION

Hearthstone is a digital collectible card game developed by
Blizzard Entertainment. The player engages in a card battle
against other players in a few game modes or a CPU in some
specific PvE game modes or mini games.

Hearthstone gameplay consists of alternating turns between
two Players (Heroes). Each turn, the players draw cards from
their deck onto their hand and gain an increasing amount of
mana, of which the players can use to play said cards from their
hand.

The cards mainly consists of Minions and Spells, alongside
a small amount of Weapon and Hero cards. Minions are units
which can be summoned onto the board, after which they can
attack enemy minions or the enemy hero itself. Spells are cards
which have various effects: draw cards, deal damage, summon
minions, buff or de-buff minions, and so much more. Hero and
weapon cards are “equippable” cards which can be used to
strengthen the player itself.

Another mechanic is the Hero Power, each hero has a
special ability which typically cost mana and can be used once
each turn. Each “Basic” hero power tend to be weak while
some special “Boss” hero power can be very powerful.

One of said mini games is “Chess”. Originally released as a
pure PvE game mode during the One Night in Karazhan
Adventure in 2016, the player plays with a chess-themed deck
against a CPU opponent with the same deck.

Fig. 1.1 A Hearthstone Chess mini game board state

(Source: https://hearthstone.fandom.com/wiki/Chess)

The gimmick of the game mode is that the player and the
CPU only has Minion-type cards, and almost of all the minions
will attack the enemy directly in front of it. Due to this, the
player placements of cards are quite important.

Another important mechanic is the hero powers each hero
has, the player has 2 different hero powers based on the
difficulty. On normal difficulty, the player has the ability to
choose and create a card. While on heroic difficulty, the
player’s hero power is quite weak and is only able to move
around the position of the minions on the board. This is in stark
contrast towards the Boss’s hero power. The boss’s hero power
will destroy your left most minion every turn from the start of
turn 6.

In normal difficulty, your power to create a card is stronger
than the boss’s power to destroy your minions, therefore
normal difficulty is quite easy and manageable. However, in
heroic difficulty, your power is much weaker than the boss’
power. As of such, Heroic difficulty is notorious for being
unfair and extremely difficult. You need a combination of both
luck and skill to squeeze the narrowest of victory.

II. THEORETICAL FRAMEWORK

A. Graph Theory

Graphs are a type of visualizations often used to represent
discrete objects and their relations together. Graphs are

https://hearthstone.fandom.com/wiki/Chess

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

structures made of vertices and edges, where a vertices are
nodes/objects and edges are the relations that connect these
vertices together.

Fig. 2.1 A representation of a graph with 4 vertices and 5
edges

(Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Graf-2020-Bagian1.pdf)

A formal definition of a graph would be defined as G = (V,
E), with V representing the sets of all vertices in G and E
representing the sets of all the edges in G.

B. Breadth First Search

Breadth First Search is an algorithm used to search through

a graph using a traversal method. The algorithm alongside
Depth First Search (DFS) is used to search when no additional
information is known about the graph prior to the search.

BFS searches through a graph by visiting the nodes on the
highest level first before moving to the lower levels. Each node
of the graph will only be visited once during the search.

Fig. 2.2 Illustration of the order of searched nodes during a
BFS algorithm.

(Source:
https://static.javatpoint.com/tutorial/ai/images/breadth-first-

search.png)

To implement this, BFS typically uses a queue data
structure, where every time a node is expanded or searched, the
nodes connected to said node will be added onto the queue. To
make sure a node is only visited once, a boolean table is often
used to represent that status if a node has been expanded or not.

Here are the steps the BFS algorithm takes during a search
for a static graph:

1. Create an empty queue

2. Add the root node into the queue

3. Repeat:

3.1 Expand the first node in the queue.

3.2 Check the connected nodes if it has been expanded
before.

3.3 If not, add the nodes into the queue.

4. Repeat until end goal is reached or queue is empty

Fig. 2.3 A typical BFS Algorithm written in Indonesian
using the Algorithmic Notation.

(Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/BFS-DFS-2021-Bag1.pdf)

BFS can also be used for dynamic graphs. Unlike static
graphs where the graph has already been created and all the
algorithm does is traverse through it, dynamic graphs are
graphs which the program create and search through during
run-time.

The dynamic algorithm works the same as the static
version, the only difference is that during expansion process,
the program will create and then enqueue it into the queue.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-%202021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-%202021/Graf-2020-Bagian1.pdf
https://static.javatpoint.com/tutorial/ai/images/breadth-first-search.png
https://static.javatpoint.com/tutorial/ai/images/breadth-first-search.png
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Fig. 2.4 An example of a dynamic BFS algorithm steps.

(Source:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/BFS-DFS-2021-Bag2.pdf)

C. Hearthstone Chess

A. Player
A Hearthstone Chess game starts with the player and the

CPU draws 3 and 4 cards from their deck respectively. The
game alternates between the player’s and the CPU’s turns with
the player going first. Each turn, each player will draw 1 card
from their deck and they will gain mana each turn to play the
cards in their hand. Each player has 20 HP and the game will
end when one player’s HP reaches 0 or lower.

B. Mana

Mana is a resource used to play cards, each card will have a
mana cost with weaker cards costing less mana. Each player
starts with 1 mana and at the start of every turn, the player will
gain an increasing amount of mana until a maximum of 10
mana per turn.

C. Cards

In this game mode, only minion cards exist so other type of
cards don’t have to be considered. Cards have mana cost which
are shown by the number in the blue crystal at the top left of
the card. All cards except the knight have 6 maximum HP,
depicted by the number in the red blood symbol at the bottom
right of the card. Each minion also has an attack value which
depicts the amount of damage it will deal to the enemy, the
value is shown by the number in the yellow sword symbol at
the bottom left of the card.

Fig. 3.1 White Pawn minion with 1 mana cost, 1 damage,
and 6 HP.

(Source: https://hearthstone.fandom.com/wiki/Chess)

Three of those cards are standard attack cards. These cards
will attack enemies at end of the player’s turn. The Pawn, The
Rook, and The Queen will attack enemies for 1, 2, 4 amounts
of damage respectively.

Fig. 3.2 White Pawn, White Rook, and White Queen

(Source: https://hearthstone.fandom.com/wiki/Chess)

Another type of card is The Bishop. Instead of dealing
damage to enemies, the bishop will heal adjacent friendly
minions for an amount of 2 HP at the end of each turn.

Fig. 3.3 White Bishop

(Source: https://hearthstone.fandom.com/wiki/Chess)

The last type of card is The Knight, the knight is a special
and extremely powerful card as it is able to attack any card
directly akin to normal hearthstone minions. However, the
complexity of choosing and attacking an enemy is quite tricky
and therefore will be ignored for this case study.

D. Hero Power

Hero powers are abilities that each player have. On heroic
difficulty, the player has the “Castle” Hero Power, the player
can spend 1 mana to move a position of a minion in his board
to the left. This hero power can be used multiple times each
turn.

The CPU has the “Cheat” Hero Power, starting from turn 6
and onwards, the CPU will always spend 2 mana to destroy the
left-most minion the player owns.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://hearthstone.fandom.com/wiki/Chess
https://hearthstone.fandom.com/wiki/Chess
https://hearthstone.fandom.com/wiki/Chess

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Fig. 3.4 Castle and Cheat Hero Power

(Source: https://hearthstone.fandom.com/wiki/Chess)

E. Board Mechanics

A player can summon up to a maximum of 7 minions unto
the board. When attempting to summon a minion, a player can
place them anywhere in the board and then the card alongside
the rest of the board will shift to the center.

Figure 3.5 Example Board State A

Figure 3.6 Player attempting to summon a bishop.

Figure 3.7 After the summon, the board shifts with the
center/median being the bishop and a pawn.

F. Battle Mechanics

 When minions are placed on the board, minions will attack
the enemy minions directly in front of them, reducing the
enemies’ HP or killing it entirely. If there is no enemy minion,
they will attack the enemy hero instead.

Fig. 3.8 An example board state with the same parity

(Source: https://hearthstone.fandom.com/wiki/Chess)

In this example, the queen and the rook will attack the enemy
hero because there are no enemy minions in front of them. The
bishop will attempt to heal the queen and the pawn adjacent to
it. While the pawn will attack and kill the enemy black pawn.

 If the player’s and the enemy’s board has different parities
(e.g. the player is even and the enemy is odd), the player’s
minion will attack both of the minions in front of it.

Fig. 3.9 An example board state with different parities

(Source: https://hearthstone.fandom.com/wiki/Chess)

 In this example, both players’ boards have different
parities.

 The pawn on the left and the rook on the right will attack
the enemy hero directly the same way. The Bishop will still
heal adjacent allies the same way.

https://hearthstone.fandom.com/wiki/Chess
https://hearthstone.fandom.com/wiki/Chess
https://hearthstone.fandom.com/wiki/Chess

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

 However, the second pawn from the left and the queen on
the right will only attack the enemy in front of them. While the
third pawn in the middle will attack both enemies in front of it.

 Board states with different parities can deal up to twice the
amount of damage as boards with the same parities. Due to
this, different parities boards are often much more desirable.

III. IMPLEMENTATION OF BREADTH FIRST SEARCH TO CREATE A

CPU

A. BFS Structure and Concept

In order to create a CPU using breadth first search, we need
to define how the BFS algorithm will find the “solution” of the
problem. In this case, we create a BFS algorithm to
dynamically create and search nodes. The algorithm then will
try to find the node with the highest weight (priority). Said
node will contain the steps which will result in the best move
for the CPU.

After identifying the design of the BFS program we will
use, we must then define how to calculate the weight of each
node. A way to do this is to “simulate” the battle of each board
state and then calculate the result of each simulation. For
example, dealing 1 damage to a pawn will result in a score of 1
while dealing 1 damage to a queen will result in a score of 4.
These scores are then summed and becomes the weight of each
node.

There are other scenarios that are relevant as well, such is
bonus points for a killing blow towards an enemy minion,
damage to the enemy hero, or a bonus for summoning a
minion.

Fig. 3.1 Configuration of relevant scenarios and their
respective points.

These numbers can also be tweaked around to give the
CPU a characteristic. Such as an aggressive CPU would have

high point configuration for dealing damage to the player. A
defensive CPU would have high points for healing its own
minions.

B. BFS Specification: Node Calculations

When expanding a node for a certain card (e.g. Pawn), the
program will find the best placement for that Pawn in the
board. Depending on the board state, the pawn could be placed
into 1 to 7 different positions where each position might have a
different weight than the others. Our program then will find the
position for that pawn with the biggest weight and it will be
recorded into the node alongside with the weight after the pawn
placement.

Say for example, say the current board state was this:

Fig. 3.2 Example board state B.

Currently (Black King/CPU’s turn), the black pawn will
attack the white pawn in front of it. Now, our program is tasked
to find the best placement for a Black Rook. There are two
options: the program can place the rook on either the left or
right side of the pawn.

Fig. 3.3 Example board state B after a black rook is placed on
the right side of the black pawn.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

If placed on the right side of the pawn, the board will shift
and the black pawn is in front of a white queen and a white
pawn, while the black rook is in front of 2 white pawns.

In our simulation, the black pawn will deal 1 damage to the
white queen (4 points) and the middle white pawn (1 points),
while the black pawn will deal 2 damage to the middle and
right white pawn (2 and 2 damage respectively). Our placement
of the black rook on the left resulted in a total weight/points of
9 points.

Fig. 3.4 Example board state B after a black rook is placed on
the left side of the black pawn.

If placed on the left side of the pawn, the board will shift
and the black rook is in front of a white queen and a white
pawn, while the black pawn is in front of 2 white pawns.

In our simulation, the Black Rook will deal 2 damage to the
white queen (8 points) and the middle white pawn (2 points),
while the black pawn will deal 1 damage to the middle and
right white pawn (1 and 1 damage respectively). Our placement
of the black rook on the left resulted in a total weight/points of
12 points.

After calculating all possible positions, the program will
find the position with the highest weight. After which the
position of the Rook, the weight of the board state will be noted
down.

C. BFS Specification: Node Creation and Enqueueing

After calculating and saving the weight of a node, we need
to create and enqueue any connected nodes from said node. For
each node, the program will try to enqueue 4 nodes that will
each attempt to play a Pawn, Bishop, Rook, and Queen card.

For Example, a node with the steps [Pawn, Pawn] (meaning
that to reach that node, the CPU must play 2 pawn minions),
when the node is expanded, it will try to enqueue 4 nodes with
the steps [Pawn, Pawn, Pawn], [Pawn, Pawn, Bishop], [Pawn,
Pawn, Rook], [Pawn, Pawn, Queen].

To make sure the program doesn’t infinitely loop and to
slightly increase the efficiency of the BFS, some heuristic
approaches can be implemented.

The first is to make sure that the program will not create or
process any invalid nodes. For example the program will not
queue a Queen Node if the black king does not have enough
mana to play it or if the black king does not have the Queen
card in his hand.

The second approach is to give rules of which nodes can be
created from each node. For example, a Pawn node can create
Pawn, Bishop, Rook, and Queen Nodes. But a Bishop node
cannot create Pawn nodes and instead can only create Bishop,
Rook, and Queen Nodes.

This approach will prevent any [Pawn, Bishop] and
[Bishop, Pawn] duplications from happening.

The same goes for Rook Nodes being able to create Rook
and Queen Nodes. And while a Queen Node can theoretically
create another queen node, it will be rejected due to the cost of
2 queens (14 mana) being higher than the maximum possible
mana (10 mana).

Fig. 3.5 Illustration of Possible Node Expansion during
BFS not including the queen

D. BFS Search Results

Using the Node Calculations and Node Expansion, the BFS
will loop until the queue is empty. During the BFS search
finished, the highest weight node will be recorded. After which
the solution of said node will be played by the CPU and the
CPU will then attack and end their turn.

IV. VISUALIZER AND TESTING

Using the Python Django framework, a bare-boned
visualizer of the mini game can be constructed. The player can
summon minions and use the castle hero power using a form or
move to the next phase with a button.

A few random test cases can be taken from our program:

1. Basic Move

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

Fig. 4.1 Visualizer of Basic Test Case before CPU Move

In this scenario, the CPU chooses to play only one
pawn instead of two to achieve the double attacks onto
the player units.

Fig. 4.2 Visualizer of Basic Move Test Case after CPU
Move

2. Multiple Moves

Fig. 4.3 Visualizer of Multiple Move Test Case before CPU
Move

In this scenario, the CPU chooses to play two cards: a
rook and a pawn, still to achieve double attacks

Fig. 4.4 Visualizer of Multiple Move Test Case after CPU
Move

3. Positioning Move

Fig. 4.5 Visualizer of Positioning Move Test Case before
CPU Move

In this scenario, the CPU chooses to play a rook positioned
in front of the white bishop, the following attack would lead to

the death of the bishop.

Fig. 4.6 Visualizer of Positioning Move Test Case after
CPU Move

 Overall, the CPU works very well. In fact, in tests done
spanning an entire match, the CPU is almost impossible to
defeat. This is partly due to the brutally difficult nature of the
game and a very important card in the game, the Knight, is
removed to make the programming process easier.

V. CONCLUSION

 In conclusion, Breadth First Search is a powerful tool that

is able to search through multiple combinations of a certain

problem. Though Breadth First Search might not be the most

efficient algorithm, it proves to still be useful and certainly

easier to design then it’s more powerful counterparts.
BFS is more widely used not as a CPU, but as a search tool

which can be used in mapping, File system searching,
graphing, and many more.

Despite this, the BFS, even though it is not the most
obvious choice to make a CPU, is able to function as a one by
looking at all possible moves and combination and then
choosing the best possible move.

Completion wise, the current program still has room for
improvements. For example, the Knight card is extremely
powerful and mandatory to defeat the CPU in a fair match. It is
certainly difficult to implement as its behavior is very different
from the other cards.

VIDEO LINK AT YOUTUBE

https://youtu.be/AmsfGEAynFw

VISUALIZER AND GAME REPOSITORY

https://github.com/JayaMangalo/HearthstoneChessCPU

ACKNOWLEDGMENT

The Author would like to appreciate and thank all the
lecturers and lab assistants for the course IF221 Algorithm
Strategy who has given the necessary knowledge in computer
science in general and in Breadth First Search algorithm used
in this research.

https://youtu.be/AmsfGEAynFw
https://github.com/JayaMangalo/HearthstoneChessCPU

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022

REFERENCES

[1] Munir, Rinald informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-
2021/Graf-2020-Bagian1.pdf, accessed on May 22, 2021

[2] Munir, Rinaldi, informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/BFS-DFS-2021-Bag1.pdf, accessed on May 22, 2021

[3] Munir, Rinaldi, informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/BFS-DFS-2021-Bag2.pdf, accessed on May 22, 2021

[4] https://hearthstone.fandom.com/wiki/Chess accessed on May 22, 2021

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 21 Mei 2022

Jaya Mangalo Soegeng Rahardjo 13520015

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Graf-2020-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/BFS-DFS-2021-Bag2.pdf
https://hearthstone.fandom.com/wiki/Chess

