
Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

Analysis and Implementation of Proportional

Controller Greedy Approach for Wheeled Robot

Motion Planner in A Simulated Environment

Using ROS (Robot Operating System) and Gazebo

Simulator

Farrel Ahmad - 13520110

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13520110@std.stei.itb.ac.id

Abstract—Background : Movement in robotics is important

basic ability to move something to certain setpoint. To reach the

setpoint as quick as possible and as accurate as possible, a control

system algorithm is needed to provide the steps needed.

Methods : The Proportional Controller is a control system

method derived from PID Controller but without I and D

controller. The Proportional Controller algorithm is based on

greedy approach. ROS will the main program and where the

algorithm is implemented. The ROS program will then be

connected to Gazebo Simulator to simulate the ROS program.

Result : The proportional controller is able to make the robot

move from start position to goal position. However, Kp constant

of linear velocity and Kp constant of angular velocity must be

adjusted such that the robot will not overshoot or lost control

during the process of getting towards goal position.

Conclusion : From the result, the proportional controller

algorithm has proven its ability to reach its setpoint from start

position.

Keywords—Motion Planning, Control System, PID

Controller

I. BACKGROUND

Movement is one of the most basic abilities in robotics. The
robot’s movement is used to finish certain task. Such task as
simple as moving forward by using robot’s foot or by using
wheel. There are two main components of robot’s movement,
path planner and motion planner. Path planner generates
positions needed to reach the final goal position while the
motion planner generates what linear and angular speed needed
for the robot to move towards the goal position. For example, if
the robot wants to move from (0,0) to (1,1) and then to (1,2).
The robot must know what speed needed from (0,0) to (1,1)
and then finally to (1,2). The speed of the robot must be
controlled precisely because the robot’s movement must be
quick and accurate without any overshoot and undershoot.

Overshoot is a term when the current state has passed the
setpoint. Undershoot is a term when the current state has not
passed the setpoint. For example, the robot wants to move from
x = 0.0 m to x = 0.15 m. If the robot stopped at x = 0.17 m then
this is overshoot. If the robot stopped at x = 0.13 m then this is
undershoot.

This is what the proportional controller used for. In this
case, the proportional controller implemented in motion
planner will execute the path by generating the speed needed
step by step for the robot towards each position command from
path planner. Proportional controller is based on greedy
approach of minimizing position error by moving towards the
goal.

Programming domain in robotics is divided into two
domains. These are high-level implementation and low-level
implementation. The high-level mostly is non-hardware related
while the low-level mostly is hardware related. Each has its
own purpose has they work in parallel

The high-level implementation usually consists of
localization (the robot’s implementation of the surrounding
environment), perception/vision (real-time image processing
for localization), and navigation. The low-level implementation
usually consists of hardware related such as controlling motor’s
PWM (Pulse Width Modulation) or receiving video/continuous
real-time image from camera.

The term navigation in this paper covers the process of path
planning and motion planning. The path planner gives position
command (generated either using A*, Dijkstra, etc.), and the
motion planning convert the position command to the robot
velocity command.

The velocity command will then receive by the low-level
implementation software. For example, if the robot has two
wheels, the software must convert the velocity command into
wheel velocity. Usually in microcontroller, the wheel velocity
is then converted into PWM needed to move the motor to
certain speed.

Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

Proportional Controller is common for motion planning
because it is derived from PID Controller. Other common
motion planning method are trapezoidal profile motion planner,
S curve profile motion planner. For trapezoidal profile, as the
name suggests, the motion profile is to accelerate constantly to
certain speed and decelerate constantly to stop. S curve is
similar to trapezoidal motion profile but constant jerk (m/s3)
instead of constant acceleration. Proportional controller is a
little bit different, it is not based on constant acceleration or
constant jerk, but based on current error value between setpoint
and goal, in this case is error between goal position and current
position.

II. METHODS

A. Greedy Algorithm Theory

Greedy Algorithm is an algorithm approach to find certain
solution step by step such that it will find the current best local
optimum in hope of global optimum [1]. For every step, find
the best solution in current state.

There are 5 elements of greedy algorithm:

1. Candidate Set : a set of candidates that will be chosen for
every step.

2. Solution Set : a set of candidates that has been chosen.

3. Solution Function : a function that checks whether the
candidate that has been chosen gives a solution.

4. Selection Function : a function that chooses a candidate
based on greedy strategy.

5. Feasibility Function : a function that checks whether the
candidate chosen is feasible to be inserted into solution set.

6. Objective Function : maximizing or minimizing function.

The main algorithm is as follows :

1. While solution set is not found, find solution from
candidate set.

2. Choose a candidate from candidate set using selection
function and objective function

3. Check whether candidate is feasible using feasibility
function

4. If feasible then insert to solution set.

5. if not feasible then find another candidate.

6. Repeat until solution set is found.

7. When solution set is found, use solution function to check
whether solution set is valid.

8. If valid, then solution is found.

9. If not valid, then solution is not found.

B. Proportional Controller Algorithm

Proportional controller is a control system method

derived from PID Controller. PID stands for Proportional

Integral Derivative. The goal of PID Controller is to reach

certain setpoints, such speed, and position. In this paper,

the setpoint is position. Given an input of position
command, the algorithm will process error of current

position and position command and then output the speed

needed for current state.

Fig.1 PID Controller Formula

Source:

https://ctms.engin.umich.edu/CTMS/index.php?example=I
ntroduction§ion=ControlPID#22

PID has three constants, these are Kp, Ki, and Kd.

These three constants are something tunable. The Kp, Ki,

and Kd can be changed to get the best output without any

overshoot and undershoot. The formula can be translated

to the algorithm called Discrete PID algorithm. The

algorithm can be approximated using this pseudocode.

Fig.2 Discrete PID Algorithm using Approximation

Source:

https://shikinzhang.github.io/2016/07/25/PD-Controller/

Fig.2 PID Algorithm shows the approximation of the

formula in Fig.1. The dt is delta time, in this case is the

robot’s compute period. Robot processing time is usually

fixed using compute period. For example, if the compute

period of the robot is 20 milliseconds, each iteration
happens in 20 milliseconds. The algorithm explanation in

Fig.2 is as follows:

1. Compute error = (goal – setpoint)

2. Compute integral using approximation

3. Compute derivative using approximation

4. Output is Kp * error + Ki * integral + Kd * derivative

In Fig.1, if the Ki and Kd is set to 0, the controller still

works fine, and this is where Proportional Controller or P

controller comes from. P Controller is PID without I and

D. However, in theory, Integral Controller is used to

eliminate steady state error and Derivative Controller is
used to minimize overshoot and undershoot. Without I and

D, the controller will have some minor issue with having

steady state error or over/undershoot under certain

conditions.

https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#22
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#22
https://shikinzhang.github.io/2016/07/25/PD-Controller/

Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

The P Controller pseudocode will be as follows:
start:

 error = setpoint – current

 output = Kp * error

For example, the robot must move from x = 0 m to x

= 0.1 m with Kp = 1, compute period 20 ms, output as

speed. Assuming the displacement is calculated

approximately using compute period. For this example, the

pseudocode is as follows:

start:

 current =

current +

(output * compute_period)

 error = setpoint – current

 output = Kp * error

 goto start

The iteration will be as follows:
1. Kp = 1

curr_x = 0.0 m
goal_x = 0.1 m

output = 1 * (0.1 – 0.0) = 0.1 m/s

2. Kp = 1
curr_x = 0.0 + (0.1 * 0.020)= 0.002

m

goal_x = 0.1 m

output = 1 * (0.1 – 0.002) = 0.098

m/s

3. Kp = 1
curr_x = 0.002 + (0.098 * 0.020) =

0.00396 m

goal_x = 0.1 m

output = 1 * (0.1 – 0.00396) =

0.09604 m/s

4. Kp = 1
curr_x = 0.00396 + (0.09604 * 0.020)

= 0.0058808 m

goal_x = 0.1 m

output = 1 * (0.1 – 0.0058808 m) =

0.0941192 m/s

5. The iteration will continue and

eventually stop because the error is

getting smaller resulting the

smaller output. When the error is

zero, the output will also be zero

and the robot will stop and the goal

position.

If Kp is set bigger, the output in the first iteration will

be bigger and eventually will reach setpoint more quickly.

However, in real application, this will result in high

overshoot over the setpoint.

The greedy approach of the algorithm is shown by the

logic of “increase the speed when error is getting larger

because the setpoint is still far away” and “decrease the
speed when error is getting smaller because the setpoint is

getting close and it needs to slow down.” The optimization

task of the algorithm is to minimize error between goal

position and current position. In details, the greedy

elements analysis is as follows:

1. Candidate set : list of any speed command to the

robot.

2. Solution set : list of speed command that has been

chosen.

3. Solution function : valid if the solution set will make

final error <= desired minimum error to stop the robot
(for example current error <= 0.01 m).

4. Selection function : Kp * error.

5. Feasibility function : candidate is valid if the

command will not make the robot

overshoot/undershoot.

6. Objective function : minimizing error of position.

However, in simulator, the error of the robot will be

computed using actual position of the robot instead of

using approximate displacement with compute period as

position’s reading.

C. ROS (Robot Operating System)

The ROS (Robot Operating System) is a set of libraries

and tools that can help users build robot program mainly in

C++ or python or both [2]. Although the name has “Operating

System” in it. It is not an operating, but a framework that is

commonly used in robotics world.

The program works by having packages and each packages

has nodes. These nodes can communicate to each other by

publish-subscribe method and server-client (service-request)

method. The term node in this paper will be the main program

of the robot where the algorithm is implemented.

Whether publish-subscribe or service-client method, both
has the address of where the message is sent called rostopic.

Rostopic can be imagine as the mailbox for the message where

every other node can read the content of the message.

In publish-subscribe method. A node can contain either

publisher or subscriber or both. A node that has publisher will

send or publish the message to certain rostopics. For example,

a velocity controller using P-Controller publishes velocity

message to the robot to rostopic /robot1/cmd_vel. The

publisher constantly publishes the message every compute

period time. For example, if the node rate is 50 Hz, then every

1/50 s = 20 ms the message is published to rostopic

/robot1/cmd_vel. The microcontroller can also have a ROS
program with node containing subscriber to /robot1/cmd_vel.

Every 20 ms the microcontroller will receive new cmd_vel

message and then the message will be converted to motor

Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

command that will move the motor and reach the intended

velocity.

In service-client method. The workflow is similar to

publish-subscribe method. However, service-client method is

not constantly publishing the message to rostopics. The client
calls once the server with a request then the server will process

the request using the callback that has been created and return

the result back to the client. The simple example of service-

client method in ROS is calling the server in Gazebo

Simulator to reset the world to the initial state when the

program is first launched.

The program must be compiled using Catkin before use.

Catkin is an official build system of ROS that is a CMake with

added python script to provide extra functionality for the

CMake normal workflow.

D. Gazebo Simulator

Gazebo Simulator is an open-source libraries containing

set of development libraries including simulation for robotics
development [3]. It has the capability of simulating physics,

sensors, and 3D rendering. It can simulate accurate robot

movements and simulate as in controlling real robot. During

robot development, it is important to use simulator to simulate

the performance of the robot first before testing it directly to

the robot. Testing it directly in the robot is riskier because if

there is a bug, the robot can be in a state of unwanted behavior

such as going out of control or anything dangerous. The ROS

program that has been made can be connected to Gazebo

Simulator to test the code.

Gazebo Simulator is a platform to simulate low-level
implementation of the robot. Usually, hardware related

commands are sent to robot via microcontroller. The simulator

can simulate the microcontroller and simulate the received

command from ROS into hardware execution. Gazebo also

has a built-in physics engine that the motion or robot

movements follow the physics of real life.

E. Robot Specification

The robot that will be used in a simulator is based on real

world robot called ROBOTIS TurtleBot3 Burger. This is a

small kit robot that is usually used for educational purpose.

The robot has a dimension of 13.8 cm x 17.8 cm x 19.2 cm (L

x W x H).

III. RESULT

Fig.3 Gazebo World

 The program is implemented using empty world of gazebo.
The empty world contains grid tiles with the size of 1m x 1m.
These tiles can be an approximate measurement of position
with visible eye. However, Gazebo provide real-time current
robot position and this real-time position is used in the
computation. The program’s compute period is set to 50 Hz.
Thus, each iteration happens for 20 ms.

 There are two types of proportional controller used in the
program. The linear velocity proportional controller and
angular velocity proportional controller. Each has its own Kp
constant. The velocity proportional controller will control the
forward motion of the robot while the angular proportional
controller will control the angular motion of the robot.

 The command given/published to the robot is in Twist
message. Twist is a common format used in ROS for velocity
data type. Twist contains two Vector3 message, linear and
angular. All linear and angular velocity is in the same Twist
message. The linear and angular proportional controller control
the value of these linear and angular velocity message. Once
the message has been created, it will be published to the robot
as a command velocity.

 Gazebo simulator will simulate the robot receiving the
message. Thus, the message published by the program to the
robot’s command velocity will be read by Gazebo and Gazebo
will simulate the message for example simulate robot’s
movement from the velocity command.

 Linear and angular proportional controller are both tunable.
The value of each Kp can be tuned such that it will not make
the robot uncontrollable or overshoot/undershoot. For example,
if the Kp is too large, the robot will likely suffer overshoot. If
the Kp is too small, the robot will likely suffer undershoot or
takes a long time to reach setpoint.

Fig.4 Error Computation in Source Code

Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

Fig.5 Proportional Controller Output in Source Code

Fig. 6 Terminal Information

 When the program is running. The program will print the
current state of the robot to the terminal. GX is goal of X
position, GY is goal of Y position, X is current x position, and
Y is y position. All the values are in meters.

 The program was made using Ubuntu 20.04 LTS, ROS
Noetic, and Gazebo 11. To run the program, make sure to use
these versions. After compiling the program. The program can
be run using this command.

$ roslaunch navrobot_gazebo

PConRobot.launch

$ rosrun navrobot_gazebo robot_3

_x_goal:=1.0 _y_goal:=1.0 _Kp_lin:=0.35

_Kp_rot:=0.45

 The _x_goal, _y_goal, _Kp_lin, and _Kp_rot values can be
changed. _Kp_lin is the Kp constant for linear velocity (linear
velocity proportional controller) and _Kp_rot is the Kp
constant for angular velocity (angular velocity proportional
controller).

 In this example, the Kp value is actually from trial and error
tuning the robot. For the goal position of (1,1) the optimal
_Kp_lin and _Kp_rot is 0.35 and 0.45 respectively. For other
goal position the Kp value must be tuned accordingly.
However, one should note that the Kp constant must not make
the robot lost control or overshoot the setpoint.

Fig.7 The Robot Moving Towards Setpoint of (1,1)

 Once the robot reached the destination, the error will
become zero and the output will also be zero. Tuning the
correct Kp value is the common way of tuning the robot
control system for finding the best performance of the robot. In
this case, the performance metrics are minimum error position
and maximum velocity

The test also was conducted on other setpoints, Kp_lin, Kp_rot,
and its result whether able to reach is destination or not. If the
robot is able to reach the setpoint without any overshoot then it
is categorized as safe, otherwise unsafe. The start is always
from x = 0 and y = 0

X goal Y goal Kp linear Kp rotation Result

0.5 0.5 0.2 0.3 Safe

0.5 0.5 0.5 0.5 Unsafe

1.0 1.0 0.5 0.6 Unsafe

1.0 1.0 0.35 0.45 Safe

1.5 1.5 0.35 0.45 Safe

1.5 1.5 0.4 0.5 Unsafe

2.0 2.0 0.4 0.5 Unsafe

2.0 2.0 0.3 0.4 Safe

2.5 2.5 0.3 0.4 Unsafe

2.5 2.5 0.1 0.2 Safe

3.0 3.0 0.1 0.2 Safe

3.0 3.0 0.3 0.4 Unsafe

Table 1 Kp Test on Different Setpoints

 The safe Kp for each setpoints is getting smaller as the
setpoint is getting larger. This is because when the setpoint is
getting larger, the first error will be bigger giving the velocity
command higher in the first place. The high velocity command
during the start of movement will likely make the robot
overshoot and will not be able to recover the intended path.
Reducing the Kp value will reduce the first velocity command
and also giving more chance for the rotational velocity to
maneuver while also having a linear velocity giving the smooth
movement of the robot.

Paper IF2211 Algorithm Strategies, Semester II Year 2021/2022

 The Kp rotation is also set to higher than Kp linear. This is
because if Kp linear is higher then the forward motion of the
robot is higher making the robot harder to rotate because of the
smaller rotational velocity output.

 There is also a problem with forward velocity of the robot.
The wheel motion is simulated with differential drive plugin
such that when the forward velocity command is relatively
high the robot will move forward but suddenly rotate out of
control. However, this seems to be the bug on the plugin
because if another test was done with the same x goal, y goal,
Kp linear, and Kp rotational the robot will move fine and
smooth.

IV. CONCLUSION

The Proportional Controller has proven the ability to make
a simple ability of moving the robot anywhere in the simulator.
However, the lack of Integral and Derivative controller makes
the robot easily overshoot its setpoint when the Kp value is not
set correctly. Also, for different setpoint the Kp must also be
tuned because the output in the beginning of iteration will be
different since the starting error is also different.

The relatively high forward velocity makes the robot
movements suddenly rotate out of control. This is caused by
unknown bug from the built-in differential controller plugin of
the robot. Thus, setting the Kp even lower is ideal to minimize
the sudden rotation of the robot when the robot is moving
forward.

VIDEO LINK AT YOUTUBE

Part 1 : https://youtu.be/Sfeo-x5UsP0

Part 2 : https://youtu.be/MttLGwroSjo

GITHUB REPOSITORY

Link : https://github.com/farrel-a/robot-nav-simulator

REFERENCES

[1] Munir, Rinaldi. “Algoritma Greedy”,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Algoritma-Greedy-(2021)-Bag1.pdf. Accessed on 21 May 2022.

[2] ROS. “ROS Documentation”. http://wiki.ros.org/Documentation.

Accessed on 21 May 2022.

[3] Open Robotics. “Gazebo Homepage”. https://gazebosim.org/home.

Acessed on 21 May 2022.

[4] Ahmad, Farrel. “Application of Dijkstra Algorithm for Robot’s Obstacle
Avoidance System in A Simulated Environtment Using ROS (Robot

Operating System) and Gazebo Simulator.”
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-

2022/Makalah2021/Makalah-Matdis-2021%20(113).pdf. Accessed on

20 May 2022.

[5] Michigan University. “Introduction : PID Controller Design”.

https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&

section=ControlPID#22. Accessed on 20 May 2022.

[6] Zhang, Shikin . “PID Pseudocode”.
https://shikinzhang.github.io/2016/07/25/PD-Controller/. Accessed on

20 May 2022.

[7] ROS.org.“catkin/conecptual_overview”.

http://wiki.ros.org/catkin/conceptual_overview. Accessed on 21 May

2022.

STATEMENT

I hereby declare that my paper is my own writing, not a
summary, nor a translation from other’s writing, and not a
plagiarism.

Bandung, 21 May 2022

Farrel Ahmad - 13520110

https://youtu.be/Sfeo-x5UsP0
https://youtu.be/MttLGwroSjo
https://github.com/farrel-a/robot-nav-simulator
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Greedy-(2021)-Bag1.pdf
http://wiki.ros.org/Documentation
https://gazebosim.org/home
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Makalah2021/Makalah-Matdis-2021%20(113).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2021-2022/Makalah2021/Makalah-Matdis-2021%20(113).pdf
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#22
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID#22
https://shikinzhang.github.io/2016/07/25/PD-Controller/
http://wiki.ros.org/catkin/conceptual_overview

