
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022 

 

Finding Optimal Play of Chopsticks Hand Game 

Using Best First Search Algorithm and Memoization 
 

Raden Rifqi Rahman - 13520166 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

13520166@std.stei.itb.ac.id  

 

 
Abstract—Chopsticks is a turn-based game using both of 

player’s hands to play. It is played by tapping opponent’s player 

hand to increase their hand value or fingers. Players start with 

one finger on both hands. The goal of the game is to make both 

opponent’s hands “dead”. Chopsticks has many variants, one of 

which is rollover in which the dead hand is defined by having 

exactly five fingers after being tapped. There are 225 functionally 

distinct positions in this variation. Using best first search 

algorithm and memoization, we can evaluate every reachable 

position in the game either as drawable, winning, losing, or lost. 

By evaluating all positions in the game, we gain the knowledge 

whether a player can force a win, or it is always a draw by 

perfect play. Additionally, we discover the optimal play of the 

game at any given position. Our evaluation algorithm shows that 

out of 225 functionally distinct positions, only 207 of them are 

reachable. As for these 207 reachable positions, 100 of them are 

drawable, 72 are winning, 21 are losing, and 14 are lost by 

perfect play by both players. 

Keywords—Chopsticks, best first search, memoization. 

I.  INTRODUCTION  

Chopsticks is a turn-based game using both of players’ 
hands to play. According to [1], it is originated from Japan and 
is commonly played by two players. However, it has spread to 
other countries outside Japan and can be played by more than 
two players. Chopsticks is played using players’ fingers 
indicating the value–or chopsticks–they have in each of their 
hands. Therefore, if a hand has three fingers raised, the hand is 
said to have a value of 3. As consequences, a hand cannot have 
a value of more than 5. More strictly, the set of rules enforces 
any hand to not have a value of more than 4. 

There are no commonly agreed official rules to the game. 
However, a various description of chopsticks described by 
children conducted in a study [2] agrees that chopsticks is 
played by tapping one’s hand to another player hands. Upon 
tapping, the tapped player’s hand value is added by the value of 
the tapper’s hand. For example, if player A with a hand value 
of 2 taps player B with a hand value of 1, then player B’s hand 
will have a value of 3 while player A’s remains 1. Another 
common rule is that a player starts with value 1 on both of their 
hands, meaning that both players raised one finger on both 
hands at the start of the game, as defined in [1]–[3]. Fig. 1 
shows the starting hands of all players in the game. 

 

Fig. 1. Chopsticks starting hands. 

Since there are no official rules, several variants exist in 
this game. Despite having many variants, the goal remains the 
same. A player wins if the other players are out of the game. A 
player is out of the game if both of their hands are “dead”. A 
hand is said to be dead if it does not have any fingers raised. 
While the various sources approve the same definition of dead 
hand, reference [2] shows a different scenario of when a hand 
is considered dead as opposed to [1] and [3]. One of the 
children [2] claims that a hand remains in the game if its value 
is more than 5. For instance, if a hand with a value of 4 taps a 
hand with a value of 2, then it should have a value of 6. Since 
no hand can have more than 5 fingers raised, the value of 6 is 
then deducted by 5, leaving only 1 value left on the hand. Thus, 
four fingers hand tapping two fingers hand results in a one 
finger hand. In addition, a hand will be considered dead if it 
has an exact value of 5. In contrast to this claim, [1] and [3] 
explain that having more than five fingers will make the hand 
dead regardless of any leftover fingers. Despite the differences, 
[1] and [3] acknowledge the claim in [2] as a variant called 
leftovers or rollover. Furthermore, both rules confirm that no 
hand can have five fingers raised at any time, meaning that no 
hand will ever have more value than 4. 

Aside of tapping other player’s hand, a turn in chopsticks 
can be played by moving a finger or more to another hand. As 
well as the dead hand rule, the various sources define the 
moving rule differently. According to [1], a player may “tap 
their own hands together” and distribute the total fingers of 
both hands differently as they want. This means that two hands 
with two and four fingers may be rearranged as three and three 
fingers. Nonetheless, as demonstrated in [2], player can “split” 
their fingers to both of their hands if only they have one dead 
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hand in the game, resulting to “bringing back” the dead hand 
alive. 

The set of rules and variants may seem rather complicated 
to new players who never played the game before. Having said 
that, the game is quite simple and straightforward. 
Mathematically, there are 625 possible positions with only 225 
being functionally distinct positions. This begs the question 
that whether we could force a win in the game either by going 
first or second with an optimal play, or not. 

II. METHODS 

A. Best First Search Algorithm 

Best First Search is one of various graph traversal 
algorithm available. This algorithm utilizes a heuristic function 
to find a specific node of state-space graph quickly. Pearl [4] 
described a heuristic evaluation function f(n) to numerically 
estimate the promise of a node, which “may depend on the 
description of n, the description of the goal, the information 
gathered by the search up to that point, and most importantly, 
on any extra knowledge about the problem domain”. 

In our case, a node n represents a specific state of the game, 
whereas the goal of the search is to find the optimal play of the 
game. However, it is not so clear of how we can find an 
optimal play. We may define an optimal play as playing the 
best possible move at any given time. Nonetheless, searching a 
specific node within the state-space graph of the game indicates 
searching for a specific possible state of the game, while what 
we are searching for is the move instead of the state. Hence, we 
shall later see our approach to find the optimal play using best 
first search algorithm. 

B. Memoization 

Memoization is the concept where a function is made so 
that it remembers the result of its previous computation [5]. 
Norvig [5] states that the basic idea of memoization is to store 
the previously computed input and result pairs into a table. 
With a table storing all previously computed input and result, 
referred to as a memo, we can easily retrieve the result of a 
function with previously computed input. 

C. Optimal Play Approach 

A state-space graph is defined as all the reachable states 
from the starting position after a sequence of moves played in 
the game. We refer to a state as such reachable position. For 
simplicity, we will notate a state in the format of AB-XY with 
A and B being the number of fingers in the left hand and right 
hand of the player to move, respectively, and X and Y being 
the number of fingers the other player has. As an example, the 
position shown in Fig. 1 is notated as 11-11. In addition, we 
also refer a state or position as a hand or hands. Since the first 
two numbers denote the hands of the player to move, both pairs 
AB and XY are always swapped after a move. 

Each reachable state in the game must be connected with at 
least one other state in one way or another. While a state may 
not lead to any other state, there still must be another state 
which leads to such state. In other words, a state may not have 

a child state, but always have a parent state. We refer to state A 
as a child of state B if there is any legal move can be played 
from state B that results in state A. Consequently, we refer to 
state B as the parent of state A in the same scenario. 

All states within the state-space graph of chopsticks are 
connected with one another. As mentioned earlier, a state 
results in another state if we play a move. We refer to a move 
as any playable action according to the rules. This includes 
tapping other player’s hand or moving a finger or more to 
another hand. To avoid confusion, we refer to the fingers 
moving action as a transfer. We may also call the tapping 
action as an attack. Recall that in [2], a player is said to “split” 
their fingers to bring dead hand back alive. Hence, we will also 
call a transfer to a dead hand as a split move to be more 
specific. In consequence, we may also call a transfer resulting 
in a dead hand as a merge move. 

We need to find the state-space graph of the game to use 
best first search algorithm to find the optimal play. Therefore, 
we will first have to expand all reachable states from 11-11. 
However, due to all the variations and differences in rules, 
there may be different state-space graphs for different variants 
and rules. While the usage of the algorithm should be similar, 
we will specifically choose the rollover variation with all kinds 
of transfer allowed—including split and merge—for only two 
playing players. Thus, there are 8 different moves available in 
this variation, four of which are attack moves whereas the other 
four are transfer moves. 

For convenience, we will refer to those attack moves as 
left-to-left (LTL), left-to-right (LTR), right-to-left (RTL), and 
right-to-right (RTR) depending on which attacker hand attacks 
which attacked hand. Moreover, we refer to the transfer moves 
as 1-finger-leftside (L), 1-finger-rightside (R), 2-fingers-
leftside (L2), and 2-fingers-rightside (R2) depending on how 
many fingers are transferred and to which side those fingers are 
transferred. It is important to note that there is no 3-fingers 
transfer since it is only possible to do so with a 04 hand. 
However, transferring 3 fingers in a 04 hand will result in 13 
hand which is equivalent to transferring only 1 finger as shown 
in Fig. 2(a) and 2(b). Similarly, there is no 4-fingers transfer 
since doing so with 04 hand will result in 40 hand which is the 
mirror of the initial hand. Because the rules state that player 
can only distribute their fingers differently, the 4-fingers 
transfer will always be an illegal move. We refer to these 
mirrored hands as functionally indistinct hands whereas two 
different hands which are not a mirror of each other are 
functionally distinct. 

 

Fig. 2. Identical transfer moves. (a) Transfer 1 finger leftside on 04 hands. 

(b) Transfer 3 fingers leftside on 04 hands 
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As a result, we need to set a constraint of when each of the 
moves can be played. As for attack moves, they can only be 
played if both the attacker and attacked hands do not have a 
value of 0. Nonetheless, we add an extra constraint that RTL 
and RTR moves are not possible if both attacker player hands 
have an equal value because they result in the same state as 
LTL and LTR moves, respectively. Similarly, LTR and RTR 
moves are not possible if both attacked player hands have an 
equal value for similar reason. Consider the first state of the 
game. All attack moves result in the same state if they are 
played on the first state of the game. Regardless of which hand 
attack which hand, any attack move played at 11-11 state will 
result in 12-11 state. Therefore, we only allow LTL and 
disallow LTR, RTL, and RTR to keep every state functionally 
distinct in the state-space graph. As for transfer moves, it is 
obvious that R2 is only legal for 22 hand and L2 is only legal 
for 04 hand. Additionally, we set R and L as legal for as long 
as the transferring hand has more value than 0 and the 
transferred hand has less value than 4 and the resulting hand is 
functionally distinct with the initial hand.  

With the state-space graph being expanded to completion, 
we still have to define the heuristic evaluation function f(n) to 
choose one of the nodes or states n to prioritize the expansion. 
To define the function, we introduce a new variable called the 
evaluation of each state. In contrast with Pearl’s [4] description 
of f, the evaluation is not necessarily numeric, but instead an 
enumerated value. We classify the evaluation of a state as 
either one of the following. 

• Winning 

• Losing 

• Lost 

• Drawn 

• Unknown 

A state is evaluated as winning if the player to move in such 
state can force a win regardless of what the opponent plays 
afterwards. Accordingly, a state is evaluated as losing if the 
opponent at such state can force a win with an optimal play 
regardless of what move played by the current player to move. 
A state is evaluated as lost if the player to move has both hands 
dead, meaning the game has ended. In contrast with previous 
evaluations, a state is evaluated as drawn if both players can 
play indefinitely with optimal play, meaning that neither player 
can force a win. Lastly, a state is evaluated as unknown if we 
cannot determine the real evaluation of the state yet. The 
unknown evaluation is the default evaluation for every state in 
the game, with an exception to those of lost states. Having 
these enumerated values, we then define f as the priority of an 
evaluated state to be expanded. 

The evaluation function f we define earlier is the key to 
utilize best first search algorithm. Using this function, we are 
finally able to determine which node is the “best” to expand at 
any time. Still, we need to determine the priority of those 
enumerated values, which evaluation should be prioritized, and 
which should not be. In our approach, we order those values 
priority from the highest to lowest as being lost, losing, drawn, 
winning, and unknown. 

While it seems like a random order, there is a reasoning 
behind this order. Before any expansion or evaluation, we 
know that a certain state must be evaluated as lost, regardless 
of what are their children states or parent states. A position is 
lost if both hands are dead, meaning the only states that are lost 
are in the form of 00-XY with X and Y being any possible 
number as depicted in Fig. 3. Thus, we already know which 
states are lost, whereas the rest remains unknown. Furthermore, 
we knew that the parents of lost and losing states must be 
winning states, regardless of what other children the parent has. 
For example, let A be a lost or losing state. If there is any state 
B such that there is a move from B which results in A, then the 
player can play the move and force their opponent to be in a 
lost or losing state, therefore losing the game. In consequence, 
the player having to move at state B is winning, thus evaluates 
state B as winning. 

 

Fig. 3. Hands represented by 00-04 lost position. 

In contrast with lost and losing states, drawn states 
guarantee their parents to be evaluated as drawn if and only if 
the parent does not have any children which is losing or lost. 
As the parents of lost and losing states are winning, it does not 
matter if they have a drawn child, they are still winning. 
Nevertheless, if none of the children are lost or losing, the 
parents of drawn states must be drawn. The reason being that if 
the parent is not winning, then it can force a draw by going to 
the drawn state. For instance, let A be a state which does not 
have any losing children, but has a drawn child B. Then the 
player to move at state A can force a draw by playing a move 
which results in state B. 

Winning states are the second least prioritized in our case 
with the reason being that they require more calculation than 
the previous three. Aside of winning and drawn, the parents of 
winning states can also be losing, or even still be unknown. 
They are losing if and only if all their children are winning and 
are unknown if all previous conditions are not met. It is 
possible because if, say, a state has only winning children, then 
it must be losing because there is nothing the player to move 
can do to avoid a winning state for their opponent. 

Lastly, the least prioritized evaluation is the unknown 
evaluation. As opposed to all the other evaluations, we do not 
expand unknown states to evaluate their parents. Instead, we 
evaluate the state so that it is no longer unknown. The idea of 
this approach is that we can not guarantee that all the unknown 
states will be evaluated after we expand their children since 
expanding winning states does not ensure their parents to not 
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be unknown. Therefore, for the unknown states remaining, we 
evaluate them as if they were a parent of other states, meaning 
that we check if they have a lost or losing child, or if they have 
a drawn child, and so on. However, evaluating the states 
instead of expanding them introduces inconsistency. From the 
previous evaluations and expansions, we may have evaluated a 
state as being drawn because it has a drawn child and not a lost 
or losing child. But we didn’t know if it has an unknown child 
to be evaluated afterwards. That being the case, the unknown 
child may later be evaluated as losing. As a result, we 
incorrectly evaluate the state as drawn where it should be 
winning instead. 

To address this issue, we need to reevaluate and re-expand 
all parents of every state we expand if the evaluation of the 
state is changed. Although it seems counter-intuitive and 
contradicts the purpose of heuristic evaluation function in [4], 
the reevaluation is necessary to obtain correct and complete 
result of the evaluations. Consequently, we need to memoize 
every state evaluation in order to determine whether their new 
evaluation differs from the old one. To simplify the evaluation, 
we do not use a table to memoize the previous evaluation, but 
rather “attach” the current evaluation of a state to the state 
itself. In addition to this simplification, we enforce the 
evaluation algorithm to reevaluate unknown states to not 
remain unknown and be at least drawn instead because they 
will be reevaluated regardless of what their actual evaluation is. 
Thus, the pseudocode to evaluate every state in the game is as 
follows. 

build the state-space graph of Chopsticks, 
  store in S 
let Q be a priority queue with priority 
  function f as defined 
for each lost state P in S, enqueue P to Q 
while Q is not empty: 
  dequeue Q, store in R 
  for each parent of R as P: 
    reevaluate P 
    if the evaluation of P is changed, enqueue 
      P to Q 
 

III. RESULTS AND DISCUSSION 

After applying the algorithm to evaluate all different 
possible states, we end up with a state-space graph containing 
all states which are evaluated as either lost, losing, winning, or 
drawn.  Out of 225 functionally distinct positions we 
mentioned earlier, there are only 207 reachable positions in this 
variation of the game. This means that 18 of those positions are 
impossible to reach due to having no connection to other states. 
Hence, since the state-space graph connects every state with 
one another with their respective move, we obtain the 
information of which state results from which state. As a result, 
we can infer the optimal play by choosing the best possible 
move at any state. 

A. Drawn States 

Out of 207 reachable positions, our evaluations shows that 
there are 100 drawn positions in the game, as shown in Table I. 

TABLE I.  CHOPSTICKS DRAWN POSITIONS 

Drawn Positions 

02-02 02-11 02-12 02-14 02-22 

02-23 02-33 02-34 02-44 03-13 

03-14 03-22 03-24 03-44 04-02 

04-03 04-11 04-14 04-22 04-23 

04-24 04-33 04-34 04-44 11-03 

11-11 11-13 11-22 11-23 11-24 

11-44 12-11 12-12 12-23 12-24 

12-34 12-44 13-11 13-13 13-22 

13-23 13-24 13-33 13-34 13-44 

14-02 14-11 14-12 14-13 14-14 

14-22 14-23 14-24 14-33 14-34 

14-44 22-02 22-11 22-12 22-14 

22-22 22-23 22-33 22-34 22-44 

23-11 23-14 23-22 23-24 23-34 

23-44 24-14 24-22 24-23 24-24 

24-33 24-34 24-44 33-04 33-11 

33-22 33-24 33-33 33-34 33-44 

34-14 34-22 34-24 34-33 34-34 

44-03 44-04 44-12 44-13 44-14 

44-22 44-23 44-24 44-33 44-34 

We see that none of the drawn states player to play hands 
are 01, unlike the other hands. Likewise, none of the opponent 
hands are 01 either. On the other hand, we also find that 11-11, 
the starting hands, are drawn. That being so, we know that with 
the perfect play, both players can force a draw which in the 
context of chopsticks is to play indefinitely. 

B. Winning States 

There are 107 remaining non-drawn states in the game. We 
observe that most of these 107 states are winning. The 
evaluation result indicates that 72 out of 107 remaining states 
are winning, as shown in Table II. 

TABLE II.  CHOPSTICKS WINNING POSITIONS 

Winning Positions 

01-04 01-14 02-01 02-03 02-04 02-13 

02-24 03-01 03-02 03-03 03-12 04-01 

04-04 04-12 04-13 11-02 11-04 11-12 

11-14 11-34 12-01 12-03 12-04 12-13 

12-14 13-01 13-02 13-03 13-04 13-12 

13-14 14-01 14-03 14-04 22-01 22-03 

22-04 22-13 22-24 23-01 23-02 23-03 

23-04 23-12 23-13 23-23 23-33 24-01 

24-02 24-03 24-04 24-11 24-12 24-13 

33-01 33-02 33-03 33-12 33-13 33-14 

33-23 34-01 34-02 34-03 34-04 34-11 

34-12 34-13 34-23 44-01 44-02 44-11 
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In contrast with drawn states, we observe that most of the 
01 hands starts to show up. Out of 15 functionally distinct AB-
01 hands, there are 12 which are winning. On the contrary, 
only 2 of 15 01-XY hands are winning. 

C. Losing States 

Our evaluation shows that there are 21 losing positions in 
the game out of the remaining 35 positions. Table III lists all 21 
positions evaluated as losing. 

TABLE III.  CHOPSTICKS LOSING POSITIONS 

Losing Positions 

01-01 01-02 01-03 01-11 01-12 01-13 01-22 

01-23 01-24 01-33 01-34 01-44 03-04 03-11 

03-23 03-33 03-34 11-33 12-02 12-22 12-33 

It is noticeable that most of the losing hands are in the form 
of 01-XY, being more than half of all losing hands. 
Furthermore, it is also evident that 17 out of 21 losing hands 
has a dead hand. With that said, we can infer that there is quite 
a chance of losing when we have a dead hand at any time. 
Aside of losing positions, the winning positions also confirm 
this inference. As we observed, 41 of 72 positions states show 
the opponent hands having an empty hand. 

D. Lost States 

There are 15 functionally distinct hands for each player. 
Because lost states are in the form of 00-XY for any possible X 
and Y, there should be 15 lost positions in the game. 
Nonetheless, 00-00 position is impossible to reach, resulting in 
only 14 lost positions available, as shown in Table IV. 

TABLE IV.  CHOPSTICKS LOST POSITIONS 

Lost Positions 

00-01 00-02 00-03 00-04 00-11 00-12 00-13 

00-14 00-22 00-23 00-24 00-33 00-34 00-44 

 

E. Optimal Play 

By evaluating all reachable different states, we are finally 
able to figure out the optimal play for our variation of 
chopsticks. That being said, there are 207 different positions 
and 8 different moves which add up to roughly more than a 
thousand of position-move combinations, thus listing and 
remembering all the different combinations is basically 
impractical for casual player. Therefore, we need to simplify 
the best strategy or the optimal play of the game. Generally, the 
optimal play of the game can be classified by which 
classification of position we are at, as follows. 

• If we are at a drawn position, play any move that results 
in another drawn position. This strategy keeps the game 
going indefinitely and avoids losing the game. 

• If we are at a winning position, play any move that 
results in a losing position. This means we are forcing 
the opponent to lose the game regardless of what move 
they play afterwards. 

• If we are at a losing position, play a move that results in 
a winning position such that it has the least losing 
children states or positions. Although it is hard, this 
strategy increases the chances of our opponent to play 
the wrong move. 

• If we are at a lost position, there is nothing to be done 
since the game has already ended and we have lost the 
game. 

Using the strategies above, we should be able to force a 
draw if we play the correct move every time. Nonetheless, we 
should also be able to not lose easily when we are in a losing 
position. Still, remembering hundreds or thousands of positions 
or moves is not an easy task. Therefore, we study the positions 
further to analyze whether there is a pattern in the positions. 

Our previous strategy determines of what move to play at a 
given position. However, we can put a different perspective of 
the optimal play. Instead of determining the move to play at 
any position, we could also determine what moves to avoid at 
any position. As we observed, most of the 01-XY hands are 
losing as well as most of the AB-01 hands are winning. With 
the exceptions of 01-01 and 00-01 hands, all AB-01 hands are 
winning. Likewise, all 01-XY hands are losing with the 
exceptions of 01-04 and 01-14 hands. This discovery gives us a 
knowledge that we should avoid having 01 hands except if we 
can convert the position to a losing 01-01 position for our 
opponent. 

Another discovery we should mention is that 11-02 position 
is winning even though it can be reached as early as only one 
move played into the game. On the first position of the game 
which is 11-11, we can merge our hands to go into 11-02 
position. We must avoid playing the merge move at the 
beginning of the game since it will cost us to lose the game 
instantly. 

By now, we discover what are the moves or positions to 
avoid. Yet, we still can get more knowledge from the winning 
positions. Table II shows us that the most winning hands are 23 
and 34 each of which has 8 different winning position 
combinations. Moreover, any position with these hands is at 
least drawn by evaluation as shown in Table I and Table II. 
Consequently, in any given position, we should try to have 
these hands at any moment. However, we need to keep in mind 
that we cannot control our opponent moves to lead us to having 
such hands. 

With more analysis of the positions and evaluations above, 
we obtain more simplified optimal strategy in addition to our 
obvious strategy as follows. 

• Avoid merging both hands at the beginning of the 
game, i.e., avoid going from 11-11 position into 11-02 
position. 

• Avoid having 01 hands and try to force our opponent to 
have them instead. The only winning position with 01 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2021/2022 

 

hands is if we can convert the position to a 01-01 
position. 

• Any move is good to play at any position with 23 or 34 
hands as we cannot lose having those hands.  

IV. CONCLUSION 

Chopsticks is a turn-based game using both of players’ 
hands to play. Chopsticks can be played by 2 or more players. 
There are a lot of variants of chopsticks, one of which is the 
rollover variant which deduct the value by 5 for any hand 
having more value than 5. For this specific variation of 
chopstick with only 2 players, the game is drawn by the 
optimal play, i.e., both players can play indefinitely and 
without losing the game. 

The optimal play of the rollover variant is to avoid losing 
positions and go for drawn or even winning position if it is 
possible. There are 207 reachable functionally distinct 
positions which consist of 100 drawn positions, 72 winning 
positions, 21 losing positions, and 14 lost positions. To play the 
game optimally, player must play any move that results to a 
drawn position in a drawn position, play any move that results 
to a losing position in a winning position, or play a move that 
has the least losing chances in a losing position. In addition to 
this obvious strategy, player needs to avoid merging both hands 
at the first move, avoid having 01 hands and force them to the 
opponent instead, and try to reach 23 and 34 hands. 

VIDEO LINK AT YOUTUBE  

A more detailed explanation of the methods, approaches, 
and results is available to watch at 
https://youtu.be/FPrqtfIU_sM. 
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