Contoh-contoh persoalan lain yang diselesaikan dengan
Dynamic Programming

EXAMPLE 1 Coin-row problem There is arow of n coins whose values are some
positive integers ¢y, 2, .. ., ca, Dot necessarily distinct. The goal is to pick up the
maximum amount of money subject to the constraint that no two coins adjacent
in the initial row can be picked up.

Let Fin) be the maximum amount that can be picked up from the row of n
coins. To derive a recurrence for F(n), we partition all the allowed coin selections
into two groups: those that include the last coin and those without it. The largest
amount we can get from the first group is equal to ¢, + Fi{n — 2)—the value of the
nth coin plus the maximum amount we can pick up from the first n — 2 coins. The
maximum amount we can get from the second group is equal to Fin — 1) by the
definition of Fin). Thus, we have the following recurrence subject to the obvious
initial conditions:

Finy=max|c, + Fin—2), Fin — 1)} forn =1,

We can compute Fin) by filling the one-row table left to right in the manner
similar to the way it was done for the nth Fibonacci number by Algorithm Fib{n)
in Section 2.5.

ALGORITHM CoinRow(C|1..n])

[[Applies formula (8.3) bottom up to find the maximum amount of money
/lthat can be picked up from a coin row without picking two adjacent coins
{Mnput: Array C|1..n | of positive integers indicating the coin values
HOutput: The maximum amount of money that can be picked up
Fl0]—0; F|1]|=—C|1]
fori —2tondo

Fli] <= max(C[i|+ F|i — 2|, F[i —1])
return Fn |

The application of the algorithm to the coin row of denominations 5,1, 2, 10,
6, 21s shown in Figure 8.1. It yields the maximum amount of 17. It is worth pointing



index |a|1|z|3]|a]|5|E
c Bl 12110162
FIOl=0,F[ll=,=5 FlO|&
index |o|1]|z]|2]|4]|5|E
c Bl 1211062
Fl2l=max{1 4+ 0, 5i=5 FlO|B]E
index |ol1]z]|2|4]|3]|E
C El12110 62
FI3l =max{2 + 5. 5}=7 FIO|B|6]|7
index o1z |3|4]|5]|6
c 1211062
Fl4] = max{10 + 5, 7} =15 FIO|I5|5]7|15
index|o|1|z]3|2]s5|&
C El12110 62
FIEl =maxic + 7, 158} = 15 Fl1o)1a1a|7 1515
index |o|1|z]a]a]s5|6
C ST 1210062
FI8] = max{Z + 15, 18} =17 FlO|a|&a |7 1515177

FIGURE 8.1 Solving the coin-row problem by dynamic programming for the coin row
5 1.2 10,6, 2.

out that, in fact, we also solved the problem for the first i coins in the row given
for every 1 =1 = 6. For example, for i = 3, the maximum amount is F(3) =7.

To find the coins with the maximum total value found, we need to back-
trace the computations to see which of the two possibilities—ec, + Fin — 2) or
Fin — 1)—produced the maxima in formula (8.3). In the last application of the
formula, it was the sum cs + F{4), which means that the coin cs = 2 1s a part of an
optimal solution. Moving to computing Fi{4), the maximum was produced by the
sum ¢y + F(2), which means that the coin cy = 10 is a part of an optimal solution
as well. Finally, the maximum in computing F(2) was produced by Fil), implying
that the coin 7 is not the part of an optimal solution and the coin ¢y = 5is. Thus, the
optimal solution is ¢y, ¢y, c5). To avoid repeating the same computations during
the backtracing, the information about which of the two terms in (8.3) was larger
can be recorded in an extra array when the values of F are computed.

Using the Coinfow to find Fin), the largest amount of money that can be
picked up, as well as the coins composing an optimal set, clearly takes ®({n) time
and B{n) space. This is by far superior to the alternatives: the straightforward top-



down application of recurrence (8.3 ) and solving the problem by exhaustive search
{Problem 3 in this section’s exercises). [ |

EXAMPLE 3 Coin-collecting problem Several coins are placed in cells of an
n x m board, no more than one coin per cell. A robot, located in the upper left cell
of the board, needs to collect as many of the coins as possible and bring them to
the bottom right cell. On each step, the robot can move either one cell to the right
or one cell down from its current location. When the robot visits a cell with a coin.
it always picks up that coin. Design an algorithm to find the maximum number of
coins the robot can collect and a path it needs to follow to do this.

Let Fii, j) be the largest number of coins the robot can collect and bring to
the cell (i, j) in the ith row and jth column of the board. It can reach this cell
either from the adjacent cell (i — 1, j) above it or from the adjacent cell {i, j — 1)
to the left of it. The largest numbers of coins that can be brought to these cells
are F{i —1, jyand F(i, j — 1), respectively. Of course, there are no adjacent cells

above the cells in the first row, and there are no adjacent cells to the left of the
cells in the first column. For those cells, we assume that Fii — 1. jyand F{i, j — 1)
are equal to 0 for their nonexistent neighbors. Therefore, the largest number of
colns the robot can bring to cell (i, j) is the maximum of these two numbers plus
one possible coin at cell (i, j) itself. In other words, we have the following formula
for Fii. ji:

Fa, jy=max{F(i—1j), Fii, - 1)) +¢; forl=i=n, 1=j=m

(8.5)
Fi, ji=0forl=j=m and F{i 0)=0"forl=<i=n,

where Cij = 1if there 15 a coin in cell (i, j), and cjj = (0 otherwise.

Using these formulas, we can fill in the n = m table of F{i, j) values either row
by row or column by column, as is typical for dynamic programming algorithms
involving two-dimensional tables



ALGORITHM RobotCoinCollection(C[1..n, 1..m])

[{Applies dynamic programming to compute the largest number of
/fcoins a robot can collect on an n > m board by starting at (1, 1)
/fand moving right and down from upper left to down right corner
/Mnput: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
/for cells with and without a coin, respectively
[fOutput: Largest number of coins the robot can bring to cell (n, m)
Fl1,1] < C[1, 1}, for j «—2tom do F[1, j] — F[1, j — 1]+ C[1, j]
fori «— 2 tondo

Fli,1]« Fli —1,1]+ C[i, 1]

for j +— 2 tom do

Fli, j] — max(F[i — 1. j], Fli, j — 1)) + C[i. j]

return Fln, m|

The algorithm is illustrated in Figure 8.3b for the coin setup in Figure 5.3a.
Since computing the value of F{i, j) by formula (8.5) for each cell of the table takes
constant time, the time efficiency of the algorithm is & (nm). Its space efficiency is,
obviously, also & (nm).

Tracing the computations backward makes it possible to get an optimal path:
if F(i — 1, j)y= F(i, j — 1), an optimal path to cell (i, j) must come down from
the adjacent cell above itz if F(i — 1, j) = F{i, j — 1), an optimal path to cell (i, j)
must come from the adjacent cell on the left; and if F(i — 1, ji=F({, j—1), 1t
can reach cell (i, j) from either direction. This yields two optimal paths for the
instance in Figure 8.3a, which are shown in Figure 83c. If ties are ignored, one
optimal path can be obtained in B(n + m) time.
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FIGURE 8.3 (a) Coins to collect. (b) Dynamic programming algonthm results. (g} Two
paths to collect & coins, the maximum number of coins possible.



5.6 STRING EDITING

We are given two strings X = z1,z9,...,2, and Y = y1,y2,...,Uym, Where
z;, 1 <4 <mn,andy;, 1 <j <m,are members of a finite set of symbols
known as the alphabet. We want to transform X into Y using a sequence
of edit operations on X. The permissible edit operations are insert, delete,
and change (a symbol of X into another), and there is a cost associated with
performing each. The cost of a sequence of operations is the sum of the costs
of the individual operations in the sequence. The problem of string editing

is to identify a minimum-cost sequence of edit operations that will transform
X into Y.

Let D(z;) be the cost of deleting the symbol z; from X, I(y;) be the cost
of inserting the symbol y; into X, and C(z;,y;) be the cost of changing the
symbol x; of X into y;.

Example 5.19 Consider the sequences X = x1,29,23,24,%5 = a,a,b,a,b
and Y = y1,y2,y3,y4 = b,a,b,b. Let the cost associated with each insertion
and deletion be 1 (for any symbol). Also let the cost of changing any symbol
to any other symbol be 2. One possible way of transforming X into Y is
delete each z;,1 < ¢ < 5, and insert each y;,1 < j < 4. The total cost of
this edit sequence is 9. Another possible edit sequence is delete 21 and x5
and insert y4 at the end of string X. The total cost is only 3. a

A solution to the string editing problem consists of a sequence of decisions,
one for each edit operation. Let £ be a minimum-cost edit sequence for
transforming X into Y. The first operation, O, in £ is delete, insert, or
change. If £’ = £ — {O} and X' is the result of applying O on X, then &’
should be a minimum-cost edit sequence that transforms X’ into ¥. Thus
the principle of optimality holds for this problem. A dynamic programming
solution for this problem can be obtained as follows. Define cost(s,j) to be
the minimum cost of any edit sequence for transforming z1,zs2,...,; into
Y1,Y2,...,y; (for 0 < i <nand 0 <j <m). Compute cost(z,7) for each i
and 7. Then cost(n,m) is the cost of an optimal edit sequence.

For i = j = 0, cost(i,j) = 0, since the two sequences are identical (and
empty). Also, if = 0 and 7 > 0, we can transform X into Y by a sequence of



deletes. Thus, cost(i,0) = cost(i—1,0)+ D(z;). Similarly, ifi = 0 and j > 0,
we get cost(0,7) = cost(0,5 — 1) + I(y]) Ifi#0and j #0, z1,29,...,2
can be transformed into y1,y2,...,y; in one of three ways:

1. Transform z1,%g,...,T; 1 into y1,y2,...,¥y; using a minimum-cost edit

sequence and then delete z;. The corresponding cost is cost(i — 1, 7) +

2. Transform z1,%2,...,Z;— Into yi,y2,...,y;_1 using a minimum-cost
edit sequence and then change the symbol z; to y;. The associated
cost is cost(i — 1,j — 1) + C(z;, y;).

3. Transform z, s, . co T into vy, Y2, Y51 using a minimum—cos‘g edit
sequence and then insert y;. This corresponds to a cost of cost(i, j —

The minimum cost of any edit sequence that transforms zi,z2,...,x;
into y1,y2,...,y; (for ¢ > 0 and § > 0) is the minimum of the above three
costs, according to the principle of optimality. Therefore, we arrive at the
following recurrence equation for cost(t, j):

0 1=7=0
-} cost(i—1,0) + D(x;) j=0,i>0
costlt:0) =\ cost(0,j — 1)+ I(y;) i=0, j >0 (5.13)
cost'(i, j) i>0,j>0

where cost'(1,7) = min { cost(i — 1,7) + D(z;),
cost(i — 1,5 — 1) + C(zs,y;),
cost(i,j — 1) + I{y;) }

We have to compute cost(i, j) for all possibles values of i and 7 (0 <i < n
and 0 < j <m). There are (n + 1)(m + 1) such values. These values can be
computed in the form of a table, M, where each row of M corresponds to a
particular value of ¢ and each column of M corresponds to a specific value
of j. M(i,j) stores the value cost(i,7). The zeroth row can be computed
first since it corresponds to performing a series of insertions. Likewise the
zeroth column can also be computed. After this, one could compute the
entries of M in row-major order, starting from the first row. Rows should
be processed in the order 1,2,...,n. Entries in any row are computed in
increasing order of column number.

The entries of M can also be computed in column-major order, starting
from the first column. Looking at Equation 5.13, we see that each entry of
M takes only O(1) time to compute. Therefore the whole algorithm takes
O(mn) time. The value cost(n,m) is the final answer we are interested in.
Having computed all the entries of M, a minimum edit sequence can be



obtained by a simple backward trace from cost(n,m). This backward trace
is enabled by recording which of the three options for i > 0,7 > 0 yielded
the minimum cost for each ¢ and 3.

Example 5.20 Consider the string editing problem of Example 5.19. X =
a,a,b,a,band Y = b,a,b,b. Each insertion and deletion has a unit cost and
a change costs 2 units. For the cases 1 =0,j5 > 1, and 5 = 0,7 > 1, cost(s, j)
can be computed first (Figure 5.18). Let us compute the rest of the entries
in row-major order. The next entry to be computed is cost(1,1).

cost(1,1) min {cost(0,1) + D(z1),co0st(0,0) + C(z1,y1),cost(1,0) + I(y1)}
min {2,2 2} =

Next is computed cost(1,2).

cost(1,2) min {cost(0, ) D(z1),cost(0,1) + C(x1,y2),cost(1,1) + I(y2)}

min {3,1,3} =

The rest of the entries are computed similarly. Figure 5.18 displays the
whole table. The value cost(5,4) = 3. One possible minimum-cost edit
sequence 1s delete xq, delete x9, and insert y4. Another possible minimum

cost edit sequence is change x; to y2 and delete z4. O
NT o1 2 3 4
il T T T ]
o— 0 1 2 3 4
11 2 1 2 3
2= 2 3 2 3 4
13 2 3 2 3
4— 4 2 3 4
s5— 5 4 3 2 3

Figure 5.18 Cost table for Example 5.20



5.8 RELIABILITY DESIGN

In this section we look at an example of how to use dynamic programming
to solve a problem with a multiplicative optimization function. The prob-
lem is to design a system that is composed of several devices connected in
series (Figure 5.19). Let r; be the reliability of device D; (that is, r; is the
probability that device 7 will function properly). Then, the reliability of the
entire system is IIr;. Even if the individual devices are very reliable (the
r;'s are very close to one), the reliability of the system may not be very
good, For example, if n = 10 and r; = .99, 1 < ¢ < 10, then IIr; = .904.
Hence, it is desirable to duplicate devices. Multiple copies of the same de-
vice type are connected in parallel (Figure 5.20) through the use of switching
circuits. The switching circuits determine which devices in any given group
are functioning properly. They then make use of one such device at each
stage.

If stage ¢ contains m; copies of device D;, then the probability that all
m; have a malfunction is (1 —r;)™i. Hence the reliability of stage ¢ becomes

—%Dl DZHD3%... ﬁ\,}

Figure 5.19 n devices D;, 1 < i < n, connected in series

stage 1 stage 2 stage 3 stage n
D, D D,
D, D,
Dl —= D, =
D D2 bs D
1 [)3 n

Figure 5.20 Multiple devices connected in parallel in each stage



1 — (1 —ry)™. Thus, if r; = .99 and m; = 2, the stage reliability becomes
9999. In any practical situation, the stage reliability is a little less than
1—(1—r;)™ because the switching circuits themselves are not fully reliable.
Also, failures of copies of the same device may not be fully independent (e.g.,
if failure is due to design defect). Let us assume that the reliability of stage
i is given by a function ¢;(m;), 1 < n. (It is quite conceivable that ¢;(m;)
may decrease after a certain value of m;.) The reliability of the system of
stages is LI <;<pngpi(m;).

Our problem is to use device duplication to maximize reliability. This
maximization is to be carried out under a cost constraint. Let ¢; be the
cost of each unit of device ¢ and let ¢ be the maximum allowable cost of
the system being designed. We wish to solve the following maximization
problem:

maximize I1;<;j<, ¢;(m;)
subject to »_ ¢m; < ¢ (5.17)
1<i<n

m; > 1 and integer, 1 <7< n
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A dynamic programming solution can be obtained in a manner similar to
that used for the knapsack problem. Since, we can assume each ¢; > 0, each
m; must be in the range 1 < m; < u;, where

U = '}c + ¢ — i Cj)/ciJ

1

The upper bound u; follows from the observation that m; > 1. An optimal
solution my,ma,...,m, is the result of a sequence of decisions, one decision
for each m;. Let f;(x) represent the maximum value of I1; <j<; ¢(m;) subject
to the constraints Zl<j<7; c;mj <xand 1 <my <wuy, 1 <7 <4 Then, the
value of an optimal solution is f,(c). The last decision made requires one to
choose m,, from {1,2,3,...,u,}. Once a value for m, has been chosen, the
remaining decisions must be such as to use the remaining funds ¢ — ¢, m,, in
an optimal way. The principal of optimality holds and

fule) = max {¢p(mpn)fr1(c —cpnmp)} (5.18)

1<mq <upn

For any f;(z), i > 1, this equation generalizes to

filz) = max {¢i(my) fio1(z — eimy) } (5.19)
1<m; <u;

Clearly, fo(x) =1 for all 2, 0 < z < ¢. Hence, (5.19) can be solved using
an approach similar to that used for the knapsack problem. Let S* consist
of tuples of the form (f, z), where f = f;(x). There is at most one tuple for
each different z that results from a sequence of decisions on mi,ma,...,m,.
The dominance rule (f1,z1) dominates (f2, x2) iff f1 > fo and 1 < 5 holds
for this problem too. Hence, dominated tuples can be discarded from S°.

Example 5.25 We are to design a three stage system with device types
D1, D5, and D3. The costs are $30, $15, and $20 respectively. The cost of
the system is to be no more than $105. The reliability of each device type is
.9, .8 and .5 respectively. We assume that if stage ¢ has m; devices of type ¢
in parallel, then ¢;(m;) = 1—(1—7;)™. In terms of the notation used earlier,
c1 =30, =15,¢c3 =20,¢c =105, = .9, ry = .8, r3 = .0, u1 = 2,us =3,
and ug = 3.

We use S to represent the set of all undominated tuples (f,z) that
may result from the various decision sequences for mj,mo,...,m;. Hence,
f(z) = fi(x). Beginning with $° = {(1,0)}, we can obtain each S* from $*~!
by trying out all possible values for m; and combining the resulting tuples
together. Using S; to represent all tuples obtainable from S*~1 by choosing

m; = j, we obtain S = {(.9, 30)} and S = {(.9, 30),(.99,60)}. The set
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52 = {(.72,45),(.792,75)}; S2= {(.864, 60)}. Note that the tuple (.9504, 90)
which comes from (.99, 60) has been eliminated from S7 as this leaves only
$10. This is not enough to allow m3 = 1. The set S7 = {(.8928,75)}. Com-
bining, we get 52 = {(.72,45), (.864, 60), (.8928, 75)} as the tuple (.792, 75) is
dominated by (.864, 60). The set S = {(.36,65), (.432,80), (.4464,95)}, S3
= {(.54,85), (.648,100)}, and S3 = {(.63,105)}. Combining, we get S =
{(.36,65), (.432, 80), (.54, 85), (.648,100)}.

The best design has a reliability of .648 and a cost of 100. Tracing back
through the $%s, we determine that m; = 1, ms = 2, and m3 = 2. O

As in the case of the knapsack problem, a complete dynamic programming
algorithm for the reliability problem will use heuristics to reduce the size of
the S"s. There is no need to retain any tuple (f,z) in S* with z value
greater that ¢ — >, ., ¢; as such a tuple will not leave adequate funds
to complete the system. In addition, we can devise a simple heuristic to
determine the best reliability obtainable by completing a tuple (f,z) in S°.
If this is less than a heuristically determined lower bound on the optimal
system reliability, then (f,z) can be eliminated from S*.

12



