
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Using Dynamic Programming to Choose Activities

Effectively
Using Dynamic Programming to Choose Activites Effectively From a List of Activity

Where Every Activity Has Its Own Considered Attributes

Muhammad Hasan (13518012)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

muhammadhasan50@gmail.com

Abstract—Every person has their own schedule of activities

that they want to do. However, given the time they have, it’s not

always possible to do all the activities in their schedule, so choosing

some activities in their schedule is the only option. Every activity

might have its own priority value and the time needed to finish that

activity, so it could be quite hard to choose activity effectively. This

is where Dynamic Programming comes in place, by using Dynamic

Programming we could maximize the total priority value in

choosing the activities while also considering the time taken, thus

giving us the option of choosing activities effectively.

Keywords—dynamic programming, activity, priority, effective

I. INTRODUCTION

A list of activity is used to take an overview of all activities
that is considered to be finished. Take for an example, a college
student is given many tasks to do and they are all needed to be
done by one month, in this case, that student might have a list of
activities in one month including the task mentioned and maybe
also including the other outer task the student has.

Choosing activities is sometimes a burden, when all
activities cannot be done in the given time. It might not be good
to choose activities randomly without any consideration,
because every activity might have its own priority value, and
choosing randomly could always be ineffective.

There are many considered attributes an activity could have.
For an example, an activity could have an attributes such as the
priority value and the time needed to finish the activity. So
choosing activities effectively could be very hard if there is a lot
of activities to be done. While this problem might seem hard, but
this type of problem is actually a pretty good demonstration
problem that can be solved with dynamic programming.

Dynamic Programming is one of the best strategies to solve
problems in maximizing/minimizing value while also
considering attributes and constraints. In this paper, the author
would like to show how dynamic programming could solve
various problem on choosing activities.

II. THEORY

A. Choosing Activity Problem

This problem is actually a self-thought problem and could be
generalized as the following:

Given a positive integer 𝑛 denoting the number of activities
to be chosen, and a list of activities with 𝑛 activites:

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛

Every activity has the same attributes set (𝑆), that defines the
property of the activity. The set 𝑆 must have a priority value
as a member in it. The value of an attribute 𝑚 from the
activity 𝑎 is denoted with 𝑎(𝑚) where 𝑎 is an activity and
𝑚 ∈ 𝑆. We are also given a constraint statement (𝐶) that must
not be violated.

Choose the optimal sequence of activities in the given list of
activities that gives the highest total priority value while also
fulfilling constraints in 𝐶.

Let’s have an example, consider a list of activities with 5
activity:

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5

Every activity has the attribute set 𝑆 = (𝑝, 𝑡). Where 𝑝 is a
priority value and 𝑡 is the time taken to finish the activity (in
some unit time). Let’s say we have the attributes assigned to a
value in this table below:

𝑎 (activity) 𝑝 (priority value) 𝑡 (time taken)

1 10 5

2 40 4

3 30 6

4 50 3

5 70 13

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

The constraint statement (𝐶) is as follows, The total time taken
from the activity chosen must not exceed 10. With all that in
mind, find the optimal subset!

 Formally, if 𝑅 is the set of activities chosen then we must
have ∑ 𝑎(𝑡) ≤ 10𝑎∈𝑅 and the value of ∑ 𝑎(𝑝)𝑎∈𝑅 is maximized.

 Let’s try out some solution, consider choosing 𝑅 as the
subset solution with:

𝑅 = (𝑎1, 𝑎2, 𝑎5)

We will have a total priority value of:

∑ 𝑎(𝑝)

𝑎∈𝑅

= 𝑎1(𝑝) + 𝑎2(𝑝) + 𝑎5(𝑝)

= 10 + 40 + 70

= 120

But keep in mind that we would have a total time taken value of:

∑ 𝑎(𝑝)

𝑎∈𝑅

= 𝑎1(𝑡) + 𝑎2(𝑡) + 𝑎5(𝑡)

= 5 + 4 + 13 = 22 > 10

This violates 𝐶 and cannot be considered as a solution.

 If we try to list all solution possibility that does not violates
𝐶, then we could have the possible solution shown at this table:

𝑅 (subset chosen) Total priority value Total time taken

(𝑎1) 10 5

(𝑎2) 40 4

(𝑎3) 30 6

(𝑎4) 50 3

(𝑎1, 𝑎2) 50 9

(𝑎1, 𝑎4) 60 8

(𝑎2, 𝑎3) 70 10

(𝒂𝟐, 𝒂𝟒) 𝟗𝟎 𝟕

(𝑎3, 𝑎4) 80 9

From the table above, we could conclude that the optimal subset
to choose is (𝑎2, 𝑎4) with a total priority value of 90, and a total
time taken of 7.

 The example shown is only one of the possibilities that the
choosing activity problem have, in other cases it could have a
different set of attributes for the activity and also a different
constraint statement.

B. Dynamic Programming

Dynamic Programming is an algorithmic technique often

used to solve various problems. The algorithmic technique

behind dynamic programming is usually based on a starting

state of the problem, and a recurrent formula or relation

between successive states. A state of the problem usually

represents a sub-solution, i.e. a partial solution or a solution

based on a subset of a given input. The states are built one by

one, based on the previously built states [1].

Dynamic programming is usually used for two types of

problem [2]:

 Finding an optimal solution: We want to find a solution

that is as large/small as possible.

 Counting the number of solution: We want to calculate

the total number of possible solution.

One of the concept of dynamic programming is that if sub-

problems can be nested recursively inside larger problems, so
that dynamic programming methods are applicable, then there is
a relation between the value of the larger problem and the values
of the sub-problem [3].

To have a better understanding in dynamic programming,
let’s try out solving a classical problem called the 0-1 Knapsack
Problem with dynamic programming.

The 0-1 Knapsack Problem is generally described as the
following:

Given a set of 𝑛 items, numbered from 1 up to 𝑛, each with a
weight value of 𝑤𝑖 and a value of 𝑣𝑖, along with a maximum
capacity of 𝑊. We would like to have:

∑ 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 maximized

While also having:

∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝑊 and 𝑥𝑖 ∈ {0,1}

Here 𝑥𝑖 represents the number of instances of item 𝑖 to be
included in the knapsack.

Informally, the problem is to maximize the sum of the values
of the items in the knapsack so that the sum of the weight is
less than or equal to the knapsack’s capacity

Now, let us put values into the general problem so that we
could have an example to work with. Let say we have a
knapsack capacity of 𝑊 = 8, and 4 items with given values
shown in the table below:

Item Value Weight

1 2 1

2 2 3

3 5 4

4 6 5

 One of the possible solution is to choose the item 2 and the
item 4, this gives us a total value of 8 and a total weight of 8.
However, this is not the optimal solution.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 The optimal solution is to choose the item 1, item 2, and item
3, this gives us a total value of 9 and a total weight of 8.

To solve this problem with dynamic programming we will
have find a good defined state that we could work with. Notice
that, the important thing is to consider taking or not taking an
item and also to consider the knapsack capacity. So, we could
have a dynamic programming state as the following:

𝑑𝑝𝑖,𝑗 = max value of item 1 to 𝑖 with a knapsack value of 𝑗

In this definition, 𝑑𝑝𝑖,𝑗 is used to store the maximum value of

item we will have if we only consider item 1 to item 𝑖 with a
knapsack value of 𝑗.

 Now that we have a defined state, we’ll have to find a
recursive statement to find the relationship between states. First,
we’ll have to consider the base state. If we have zero element,
then we will always have:

𝑑𝑝0,𝑗 = 0

No matter what the knapsack weight is, we can’t have any value
to take from so the value item is always zero. And if the
knapsack weight is zero, we would also have:

𝑑𝑝𝑖,0 = 0

Logically, every item must have a weight to it, so we can’t
actually take any item if the knapsack weight is zero, thus giving
us a value item of zero.

 If we have at least one element, then we can either take the
element or not take that element. It depends on the condition. So
we could have a recursive statement as given in the following
equation:

𝑑𝑝𝑖,𝑗 = {
𝑑𝑝𝑖−1,𝑗 , if 𝑤𝑖 > 𝑗

max(𝑑𝑝𝑖−1,𝑗, 𝑑𝑝𝑖,𝑗−𝑤𝑖
+ 𝑣𝑖) , if 𝑤𝑖 ≤ 𝑗

 From here we are actually finished with our dynamic
programming statements. Let’s wrap it up into one equation:

𝑑𝑝𝑖,𝑗 = {

0, if 𝑖 = 0 or 𝑗 = 0
𝑑𝑝𝑖−1,𝑗 , if 𝑤𝑖 > 𝑗

max(𝑑𝑝𝑖−1,𝑗, 𝑑𝑝𝑖,𝑗−𝑤𝑖
+ 𝑣𝑖) , if 𝑤𝑖 ≤ 𝑗

 It’s easy to implement this in code, now that we have the
formula. And once we have the answer, we could use backtrack
to find the sequence of activity.

 There is actually two approach of implementing dynamic
programming, one is the top down approach and the other is the
bottom up approach.

 The top down approach is essentially filling up values from
top to down while the bottom up approach is the opposite. In
Author’s opinion, it’s a good practice to always use the bottom
up approach using iterative rather than to use the top down
approach while using the recursive function. This usually makes
faster run time, because using recursive function would need
additional timework from using stacks.

 Now let’s try making a pseudocode of this algorithm with
the bottom up approach. The key here is to iterate from zero to
𝑛 with the 𝑖 values, and also to iterate from zero to 𝑊 with the 𝑗

values. So we will have to for loop and within those two loops
we will use the equation we have. The final answer will be the
value of 𝑑𝑝𝑛,𝑊. So this is the pseudocode we will have:

Fill in dynamic programming tables

for i in [0...n]:

 for j in [0...W]:

 if i==0 or j==0:

 dp[i][j]0

 else if w[i]>j:

 dp[i][j]dp[i-1][j]

 else:

 dp[i][j]max(dp[i-1][j],dp[i][j-

w[i]]+v[i])

max_valuedp[n][w]

Backtrack to find sequence answer

in

jW

answer[]

while i>0:

 if dp[i][j]==dp[i-1][j]:

 # Skip activity-i

 ii-1

 else:

 # Take activity-i

 answer.append(i)

 jj-w[i]

 ii-1

reverse(answer)

Figure 1. Pseudocode of Using Dynamic Programming to
Solve 0-1 Knapsack

 It is easy to see that this algorithm will run in 𝑂(𝑛𝑊) time
complexity and also the same for its memory complexity, where
𝑛 is the number of item and 𝑊 is the capacity of the knapsack.

 Notice that, 𝑑𝑝𝑖,𝑗 is actually a table to be filled with. So if we

implement this algorithm we would have the following table
values:

 𝑗

𝑖

0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 2 2 2 2 2 2 2 2

2 0 2 2 2 4 4 4 4 4

3 0 2 2 2 5 7 7 7 9

4 0 2 2 2 5 7 8 8 𝟗

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

We could see from the table values that the answer is:

𝑑𝑝𝑛,𝑊 = 𝑑𝑝4,8 = 9

The good thing about using dynamic programming here is that
we could actually see solution for sub-problems too.

This 0-1 Knapsack Problem is actually very similar to the
example problem in the choosing activity problem, so we could
already see where the dynamic programming would be used.

III. USING DYNAMIC PROGRAMMING TO SOLVE CHOOSING

ACTIVITY PROBLEM

In this section we will try solving several choosing activity
problems by using dynamic programming.

A. Choosing Activity Problem with Attributes Including

Priority Value and Time Taken to Finish Activity

To start off, let us demonstrate the use of dynamic
programming with the problem given in the example problem of
choosing activity problem. The problem is stated as below:

Given a list of activity of 𝑛 activites:

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛

Every activity has an attribute set 𝑆:

𝑆 = (𝑝, 𝑡)

Where 𝑝 → priority value and 𝑡 → time taken to finish
activity.

Find a subset of activities chosen such that the total time taken
does not exceed 𝑇 and the total priority value is maximized.

Let’s have the same values given in the problem example.
We will have 𝑇 = 10, and the other values are shown in the
following table:

𝑎 (activity) 𝑝 (priority value) 𝑡 (time taken)

1 10 5

2 40 4

3 30 6

4 50 3

5 70 13

Notice that this problem is pretty similar to what was given
in the 0-1 Knapsack Problem Statement. The key here is that the
time is actually equivalent to the weight in the knapsack
problem. So, we could actually use the exact method as before.

Let us define 𝑑𝑝𝑖,𝑗 as the maximum total value from 𝑎1 up

to 𝑎𝑛 with 𝑇 = 𝑗, then we will have the following equation:

𝑑𝑝𝑖,𝑗 = {

0, if 𝑖 = 0 ∨ 𝑗 = 0

𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)) , if 𝑎𝑖(𝑡) ≤ 𝑗

In this definition:

𝑎𝑖(𝑡) = the value of time attribute of activity-𝑖

𝑎𝑖(𝑝) = the value of priority value of activity-𝑖.

Then we could have the following pseudocode:

Fill in the dynamic programming tables

for i in [0...n]:

 for j in [0...T]:

 if i==0 or j==0:

 dp[i][j]0

 else if a[i].t>j:

 dp[i][j]dp[i-1][j]

 else:

 dp[i][j]max(dp[i-1][j],dp[i][j-

a[i].t]+a[i].p)

max_valuedp[n][T]

Backtrack to find sequence answer

in

jT

answer[]

while i>0:

 if dp[i][j]==dp[i-1][j]:

 # Skip activity-i

 ii-1

 else:

 # Take activity-i

 answer.append(i)

 jj-a[i].t

 ii-1

reverse(answer)

Figure 2. Pseudocode of Dynamic Programming to Solve
Choosing Activity Problem Section III.A.

 The algorithm implemented will have a time complexity and
a memory complexity of 𝑂(𝑛𝑇) where 𝑛 is the number of
activity and 𝑇 is the time limit.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 The answer to the problem is 𝑑𝑝𝑛,𝑇. The value of 𝑑𝑝𝑖,𝑗 is

given in the following table:

 𝑗

𝑖

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 10 10 10 10 10 10

2 0 0 0 0 40 40 40 40 40 40 40

3 0 0 0 30 40 40 40 70 70 70 70

4 0 0 0 30 40 40 50 70 70 80 90

5 0 0 0 30 40 40 50 70 70 80 𝟗𝟎

We could see from the table that the answer is:

𝑑𝑝𝑛,𝑇 = 𝑑𝑝5,10 = 90

Which is the same correct answer found in the example problem
explanation.

B. Choosing Activity Problem with Attributes Including

Priority Value, Time Taken to Finish Activity, and

Deadline Time of The Activity.

 Consider having a deadline for an activity. If the time is over
the due deadline, then that activity can no longer be taken. This
is often found when having tasks with different deadlines. In
general, the problem in this section can be stated as the
following:

Given a list of activities of 𝑛 activities:

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛

Every activity has an attribute set 𝑆:

𝑆 = (𝑝, 𝑡, 𝑑)

Where:

𝑝 = priority value

𝑡 = time taken to finish activity

𝑑 = deadline of the activity

Find an optimal sequence of activities (𝑅), such that the total
priority value is maximal. Take in mind the constraint (𝐶) for
this problem is that for every 𝑎 ∈ 𝑅, the time in which we
take the activity (𝑠) is valid, that is:

𝑠 ≤ 𝑎(𝑡) − 𝑎(𝑑)

Informally, every time an activity is taken, it must be a valid
time taken.

 Let’s take an example, for the given value shown in this
table:

𝑎

(activity)

𝑝

(priority value)

𝑡

(time taken)

𝑑

(deadline)

1 4 3 7

2 5 2 6

3 6 3 7

 In this example, we cannot take all the activity, because it
will violate 𝐶. So, let’s try taking two activity, assume we take
𝑎1 then 𝑎2 then we will have a total priority value of 9. If we try
to take all possibility, we would have an optimal solution by
taking 𝑎3 then 𝑎1 giving us a total priority value of 11.

 Notice that, the order of taking the activity matters, so any
two subsets having the same element with different order might
have different take on the constraint. So, with that in mind, it’s
a good idea to sort ascending the activity first by their due
deadline.

 Now that the activities are sorted by their deadline, we could
have better idea of making a recursion. But first, Let’s try to find
a good state of dynamic programming to work with.

 We could see that time is an important consideration to take
on this problem, so for every time we might have a different
maximum answer. As a result, we could have a state of dynamic
programming defined as the following:

𝑑𝑝𝑖,𝑗 = max value of first 𝑖 activites at time 𝑗

In this definition, 𝑑𝑝𝑖,𝑗 is used to store the maximum priority

value considering 𝑎1, 𝑎2, … , 𝑎𝑖 (after it is sorted) at time 𝑗.

 For the base case, if we have either zero activity or zero time
than we would have:

𝑑𝑝𝑖,𝑗 = 0, if 𝑖 = 0 ∨ 𝑗 = 0

The recursion or transition we have will take consider of taking
the current activity or not, so we will have a transition as follow:

𝑑𝑝𝑖,𝑗 = {
𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖−1,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)), if 𝑎𝑖 ≤ 𝑗 ∧ 𝑗 < 𝑎𝑖(𝑑)

This is actually quite similar to the definition we have in 0-1
Knapsack Problem.

 To wrap all dynamic programming states, we will have the
following equation:

𝑑𝑝𝑖,𝑗 = {

0, if 𝑖 = 0 ∨ 𝑗 = 0

𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖−1,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)), if 𝑎𝑖 ≤ 𝑗 ∧ 𝑗 < 𝑎𝑖(𝑑)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 Notice that the answer for this problem can be in any time 𝑗,
since 𝑗 have to be less than or equal to the largest deadline, we
could say 𝑗 ≤ 𝑇, where 𝑇 = longest deadline in the activity. So
we will have:

answer = max
0≤𝑗≤𝑇

𝑑𝑝𝑛,𝑗

 Now all that left is to implement the code. Note that, because
we sort the list of activities, we might have the number order
activity to be different. So, let us store initial index of activity
denoted by 𝑎𝑖(𝑖𝑑𝑥). Here is the pseudocode:

sort the activity by their deadline first

sort(a, deadline)

set T as the largest deadline value

Ta[n].d

fill in the dynamic programming tables

for i in [0...n]:

 for j in [0..T]:

 if i==0 or j==0:

 dp[i][j]0

 else:

 dp[i][j]dp[i-1][j]

 if j<a[i].d and j-a[i].t>=0:

 dp[i][j]max(dp[i][j],dp[i-1][j-

a[i].t]+a[i].p)

find maximum priority value

max_value0

pos0

for i in [0...T]:

 if dp[n][i]>max_value:

 max_valuedp[n][i]

 posi

use backtrack to find chosen activities

answer[]

in

jpos

while i>0:

 if dp[i][j]==dp[i-1][j]:

 # skip activity

 ii-1

 else:

 # take activity

 answer.append(a[i].idx)

 jj-a[i].t

 ii-1

reverse(answer)

Figure 3. Pseudocode of Dynamic Programming to Solve
Choosing Activity Problem Section 3.B.

 We could see that the algorithm used here will have a time
complexity and a memory complexity of 𝑂(𝑛𝑇) where 𝑛 is the
number of activities and 𝑇 is the longest deadline from the list
of activity.

 The value 𝑑𝑝𝑖,𝑗 is given in the following table:

 𝑗

𝑖

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 5 5 5 5 0 0

2 0 0 5 5 5 9 9 0

3 0 0 5 6 6 𝟏𝟏 𝟏𝟏 0

 We could see from the table above that the answer is 11,
which is to take 𝑎3 then 𝑎2.

C. Choosing Activity Problem with Attributes Including

Priority Value, Start Time, and End Time.

All the problems we have solved, have the same start time
that the activity could be taken. Consider every activity to have
its own start time and end time. In those range time from start
time to end time, we can only do one activity.

In this problem, we can’t have two activities colliding
together at the same time. An example of this problem is when
we are needed to choose some activities in which every activity
has its own fixed time to finish that activity.

In general, the problem in this section can be stated as the
following:

Given a list of activity with 𝑛 activities:

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛

Every activity has an attribute set 𝑆:

𝑆 = (𝑝, 𝑠, 𝑒)

Where:

𝑝 = priority value

𝑠 = start time

𝑒 = end time

Find an optimal sequence of activities (𝑅), such that the total
priority value is maximal. Take in mind the constraint (𝐶) for
this problem is that there is no collision between any activities
in 𝑅

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

We will have an example for the activity values as shown in
this following table:

𝑎

(activity)

𝑝

(priority value)

𝑠

(start time)

𝑒

(end time)

1 2 1 4

2 5 5 6

3 1 2 3

4 8 4 9

5 1 7 9

From this example, it could be proven that, the optimal way
we could choose is to take 𝑎3 then 𝑎4 giving us a maximum total
priority of 9.

Notice that, it is better to sort the activity first by their start
time, so we could have a more organized activity. This sorting
is also useful so that we can see the transition between states
easier.

After sorting the activity, notice that for every activity 𝑎𝑖 and
𝑎𝑗 (𝑖 < 𝑗) (in the order of sort) we could combine this activity if

and only if 𝑎𝑖(𝑒) < 𝑎𝑗(𝑠). By using this fact, we could have a

defined state of dynamic programming as follow:

𝑑𝑝𝑖 = maximum value having 𝑎𝑖 and it′s combination

 With this defined state, it’s actually easier to construct the
dynamic programming properties than what we have solved
previously.

Let us define the base state for this problem. If we have zero
activity then:

𝑑𝑝0 = 0

Otherwise we could iterate back to the value we have before and
combine it.

𝑑𝑝𝑖 = 𝑎𝑖(𝑝) + max
0≤𝑗<𝑖

(𝑑𝑝𝑗 , where 𝑎𝑗(𝑒) < 𝑎𝑖(𝑠))

Note that, for every 1 ≤ 𝑖 ≤ 𝑛 we will have to make the
inequality 𝑎0(𝑒) < 𝑎𝑖(𝑠) to always hold true.

 To implement this code, remember that because we sort the
list of activities, we might have the number order activity to be
different. So, let us store every initial index of activity denoted
by 𝑎𝑖(𝑖𝑑𝑥).

 We could use two for loops and an array to store transition,
so we could backtrack and find the sequence solution. Here is
the pseudocode:

sort the activity by start time first

sort(a, start_time)

fill in the dynamic programming tables

back = [0 for i in [0...n]]

for i in [0...n]:

 if i == 0:

 dp[i]0

 else:

 dp[i]a[i].p

 for j in [0...i]:

 if j==0 or a[j].e<a[i].s:

 curdp[j]+a[i].p

 if cur>dp[i]:

 dp[i]cur

 back[i]j

find the maximum priority value

max_value0

pos0

for i in [0...n]:

 if dp[i]>max_value:

 max_valuedp[i]

 posi

backtrack to find sequence activity

answer[]

ipos

while i>0:

 answer.append(a[i].idx)

 iback[i]

reverse(answer)

Figure 4. Pseudocode of Dynamic Programming to Solve
Choosing Activity Problem Section 3.C.

 We could see that the implemented algorithm will have a
time complexity of 𝑂(𝑛2) and a memory complexity of 𝑂(𝑛)
where 𝑛 is the number of activity.

 An interesting thing about this problem is we could actually
reduce the time complexity to 𝑂(𝑛 log 𝑛) by using an advanced
data structure such as segment tree, but it will not be explained
further in this paper.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 The value for 𝑑𝑝𝑖 is given in the following table:

𝑖 Value

1 2

2 1

𝟑 𝟗

4 7

5 8

We could see from the table above that the maximum total
priority value is 9, this is of course by chosing 𝑎3 then 𝑎4.

IV. PROGRAM TESTING

This section will show a screenshot of program testing for
every problem in section III. The code is implemented with C++
and is tested with the given PC specification:

Component Description

Operating System
Windows 10 Home Single

Language 64-bit

CPU
Intel Core i7 @ 1.80GHz

Kaby Lake-U/Y 14nm

RAM 16GB DDR3

Motherboard
ASUSTek COMPUTER

INC. UX430UNR (UE31)

Storage 512GB SanDisk SSD

Graphics

Intel UHD Graphics 620

2047MB NVIDIA GeForce
MX150

All of the source code and test cases in this section could be
seen at https://github.com/muhammadhasan01/IF2211-Strategi-
Algoritma/tree/master/ProgramMakalah.

A. Program Testing for Problem Section III.A

 Test Case I

In this test case, it will include the exact same value given

in the example problem. The program will read the file

testSectionIIIA_1.in. Here is the output of the program:

Figure 5. Screenshot Output for Test Case I Problem III.A.

 Test Case II

In this test case, we will have 𝑛 = 100 activities with 𝑇 =
100. The program will read the file testSectionIIIA_2.in. Here

is the output of the program:

Figure 6. Screenshot Output for Test Case II Problem III.A.

 Test Case III

In this test case, we will have 𝑛 = 1000 activities with 𝑇 =
1000. The program will read the file testSectionIIIA_3.in.

Because, there is too much of the output, the screenshot output

will only include the results, and so here is the output of the

program:

Figure 7. Screenshot Output for Test Case III Problem III.A.

B. Program Testing for Problem Section III.B

 Test Case I

In this test case, it will include the exact same value given

in the example problem. The program will read the file

testSectionIIIB_1.in. Here is the output of the program:

Figure 8. Screenshot Output for Test Case I Problem III.B.

https://github.com/muhammadhasan01/IF2211-Strategi-Algoritma/tree/master/ProgramMakalah
https://github.com/muhammadhasan01/IF2211-Strategi-Algoritma/tree/master/ProgramMakalah

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 Test Case II

In this test case, we will have 𝑛 = 100 activities and

random values ranging between 1 to 100. The program will

read the file testSectionIIIB_2.in. Here is the output of the

program:

Figure 9. Screenshot Output for Test Case II Problem III.B.

 Test Case III

In this test case, we will have 𝑛 = 1000 activities. With

random values ranging between 1 to 1000. The program will

read the file testSectionIIIA_3.in. Because, there is too much of

the output, the screenshot output will only include the results,

and so here is the output of the program:

Figure 10. Screenshot Output for Test Case III Problem III.B.

C. Program Testing Problem Section III.C

 Test Case I

In this test case, it will include the exact same value given

in the example problem. The program will read the file

testSectionIIIC_1.in. Here is the output of the program:

Figure 11. Screenshot Output for Test Case I Problem III.C.

 Test Case II

In this test case, we will have 𝑛 = 100 activities with start

time and end time ranging between values of 1 to 2000. The

program will read the file testSectionIIIC_2.in. Here is the

output of the program:

Figure 12. Screenshot Output for Test Case II Problem III.C.

 Test Case III

In this test case, we will have 𝑛 = 1000 activities. The start

time and end time will have a value ranging in 1 to 2000. The

program will read the file testSectionIIIC_3.in. Because, there

is too much of the output, the screenshot output will only

include the results, and so here is the output of the program:

Figure 13. Screenshot Output for Test Case III Problem III.C.

V. CONCLUSION

Choosing a lot of activity is sometimes very hard for us to

handle ourselves. However, by using dynamic programming we

could not only solve the problem effectively, but we could also

see the entire process and the sub-problem that includes it.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

VIDEO LINK AT YOUTUBE

To see a brief video about this paper, please refer to this link

https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=

youtu.be

ACKNOWLEDGEMENT

First and foremost, I would like to thank Allah Azza wa

Jalla for the opportunity that He has given me, so that I could

undertake all challenges and embrace all the support I had up

until now. I would also like to thank Mr. Rinaldi Munir as the

lecturer of Algorithm Strategy (IF2211) and to everyone

involved, for their time and struggle in teaching and guiding

me, so that I could learn many new knowledge about

algorithms and also as a guidance for me to complete this

paper.

REFERENCES

[1] Kapoor, Karan. Everything About Dynamic Programming.

https://codeforces.com/blog/entry/43256 accessed on May 1, 2020

[2] Laaksonen, Antti. Competitive Programming Handbook. Draft July 3,
2018.

[3] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. (2001),
Introduction to Algorithms (2nd ed.), MIT Press & McGraw–Hill, ISBN
0-262-03293-7 . pp. 344.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 02 Mei 2020

Muhammad Hasan (13518012)

https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=youtu.be
https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=youtu.be
https://codeforces.com/blog/entry/43256

