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Abstract—Every person has their own schedule of activities 

that they want to do. However, given the time they have, it’s not 

always possible to do all the activities in their schedule, so choosing 

some activities in their schedule is the only option. Every activity 

might have its own priority value and the time needed to finish that 

activity, so it could be quite hard to choose activity effectively. This 

is where Dynamic Programming comes in place, by using Dynamic 

Programming we could maximize the total priority value in 

choosing the activities while also considering the time taken, thus 

giving us the option of choosing activities effectively. 
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I.  INTRODUCTION 

A list of activity is used to take an overview of all activities 
that is considered to be finished. Take for an example, a college 
student is given many tasks to do and they are all needed to be 
done by one month, in this case, that student might have a list of 
activities in one month including the task mentioned and maybe 
also including the other outer task the student has. 

Choosing activities is sometimes a burden, when all 
activities cannot be done in the given time. It might not be good 
to choose activities randomly without any consideration, 
because every activity might have its own priority value, and 
choosing randomly could always be ineffective. 

There are many considered attributes an activity could have. 
For an example, an activity could have an attributes such as the 
priority value and the time needed to finish the activity. So 
choosing activities effectively could be very hard if there is a lot 
of activities to be done. While this problem might seem hard, but 
this type of problem is actually a pretty good demonstration 
problem that can be solved with dynamic programming. 

Dynamic Programming is one of the best strategies to solve 
problems in maximizing/minimizing value while also 
considering attributes and constraints. In this paper, the author 
would like to show how dynamic programming could solve 
various problem on choosing activities. 

II. THEORY 

A. Choosing Activity Problem 

This problem is actually a self-thought problem and could be 
generalized as the following: 

Given a positive integer 𝑛 denoting the number of activities 
to be chosen, and a list of activities with 𝑛 activites: 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 

Every activity has the same attributes set (𝑆), that defines the 
property of the activity. The set 𝑆 must have a priority value 
as a member in it. The value of an attribute 𝑚 from the 
activity 𝑎 is denoted with 𝑎(𝑚) where 𝑎 is an activity and 
𝑚 ∈ 𝑆. We are also given a constraint statement (𝐶) that must 
not be violated. 

Choose the optimal sequence of activities in the given list of 
activities that gives the highest total priority value while also 
fulfilling constraints in 𝐶. 

 

Let’s have an example, consider a list of activities with 5 
activity: 

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 

Every activity has the attribute set 𝑆 = (𝑝, 𝑡). Where 𝑝 is a 
priority value and 𝑡 is the time taken to finish the activity (in 
some unit time). Let’s say we have the attributes assigned to a 
value in this table below: 

𝑎 (activity) 𝑝 (priority value) 𝑡 (time taken) 

1 10 5 

2 40 4 

3 30 6 

4 50 3 

5 70 13 
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The constraint statement (𝐶) is as follows, The total time taken 
from the activity chosen must not exceed 10. With all that in 
mind, find the optimal subset! 

 Formally, if 𝑅 is the set of activities chosen then we must 
have ∑ 𝑎(𝑡) ≤ 10𝑎∈𝑅  and the value of ∑ 𝑎(𝑝)𝑎∈𝑅  is maximized. 

 Let’s try out some solution, consider choosing 𝑅 as the 
subset solution with: 

𝑅 = (𝑎1, 𝑎2, 𝑎5) 

We will have a total priority value of: 

∑ 𝑎(𝑝)

𝑎∈𝑅

= 𝑎1(𝑝) + 𝑎2(𝑝) + 𝑎5(𝑝) 

= 10 + 40 + 70 

= 120 

But keep in mind that we would have a total time taken value of: 

∑ 𝑎(𝑝)

𝑎∈𝑅

= 𝑎1(𝑡) + 𝑎2(𝑡) + 𝑎5(𝑡) 

= 5 + 4 + 13 = 22 > 10 

This violates 𝐶 and cannot be considered as a solution. 

 If we try to list all solution possibility that does not violates 
𝐶, then we could have the possible solution shown at this table: 

𝑅 (subset chosen) Total priority value Total time taken 

(𝑎1) 10 5 

(𝑎2) 40 4 

(𝑎3) 30 6 

(𝑎4) 50 3 

(𝑎1, 𝑎2) 50 9 

(𝑎1, 𝑎4) 60 8 

(𝑎2, 𝑎3) 70 10 

(𝒂𝟐, 𝒂𝟒) 𝟗𝟎 𝟕 

(𝑎3, 𝑎4) 80 9 

 

From the table above, we could conclude that the optimal subset 
to choose is (𝑎2, 𝑎4) with a total priority value of 90, and a total 
time taken of 7. 

 The example shown is only one of the possibilities that the 
choosing activity problem have, in other cases it could have a 
different set of attributes for the activity and also a different 
constraint statement. 

B. Dynamic Programming 

Dynamic Programming is an algorithmic technique often 

used to solve various problems. The algorithmic technique 

behind dynamic programming is usually based on a starting 

state of the problem, and a recurrent formula or relation 

between successive states. A state of the problem usually 

represents a sub-solution, i.e. a partial solution or a solution 

based on a subset of a given input. The states are built one by 

one, based on the previously built states [1]. 

 

Dynamic programming is usually used for two types of 

problem [2]: 

 Finding an optimal solution: We want to find a solution 

that is as large/small as possible. 

 Counting the number of solution: We want to calculate 

the total number of possible solution. 

 
One of the concept of dynamic programming is that if sub-

problems can be nested recursively inside larger problems, so 
that dynamic programming methods are applicable, then there is 
a relation between the value of the larger problem and the values 
of the sub-problem [3].  

To have a better understanding in dynamic programming, 
let’s try out solving a classical problem called the 0-1 Knapsack 
Problem with dynamic programming. 

The 0-1 Knapsack Problem is generally described as the 
following: 

Given a set of 𝑛 items, numbered from 1 up to 𝑛, each with a 
weight value of 𝑤𝑖  and a value of 𝑣𝑖, along with a maximum 
capacity of 𝑊. We would like to have: 

∑ 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 maximized 

While also having: 

∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝑊 and 𝑥𝑖 ∈ {0,1} 

Here 𝑥𝑖 represents the number of instances of item 𝑖 to be 
included in the knapsack. 

Informally, the problem is to maximize the sum of the values 
of the items in the knapsack so that the sum of the weight is 
less than or equal to the knapsack’s capacity 

 

Now, let us put values into the general problem so that we 
could have an example to work with.  Let say we have a 
knapsack capacity of 𝑊 = 8, and 4 items with given values 
shown in the table below: 

Item Value Weight 

1 2 1 

2 2 3 

3 5 4 

4 6 5 

  

 One of the possible solution is to choose the item 2 and the 
item 4, this gives us a total value of 8 and a total weight of 8. 
However, this is not the optimal solution. 
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 The optimal solution is to choose the item 1, item 2, and item 
3, this gives us a total value of 9 and a total weight of 8. 

To solve this problem with dynamic programming we will 
have find a good defined state that we could work with. Notice 
that, the important thing is to consider taking or not taking an 
item and also to consider the knapsack capacity. So, we could 
have a dynamic programming state as the following: 

𝑑𝑝𝑖,𝑗 = max value of item 1 to 𝑖 with a knapsack value of 𝑗 

In this definition, 𝑑𝑝𝑖,𝑗 is used to store the maximum value of 

item we will have if we only consider item 1 to item 𝑖 with a 
knapsack value of 𝑗. 

 Now that we have a defined state, we’ll have to find a 
recursive statement to find the relationship between states. First, 
we’ll have to consider the base state. If we have zero element, 
then we will always have: 

𝑑𝑝0,𝑗 = 0 

No matter what the knapsack weight is, we can’t have any value 
to take from so the value item is always zero. And if the 
knapsack weight is zero, we would also have: 

𝑑𝑝𝑖,0 = 0 

Logically, every item must have a weight to it, so we can’t 
actually take any item if the knapsack weight is zero, thus giving 
us a value item of zero. 

 If we have at least one element, then we can either take the 
element or not take that element. It depends on the condition. So 
we could have a recursive statement as given in the following 
equation: 

𝑑𝑝𝑖,𝑗 = {
𝑑𝑝𝑖−1,𝑗 , if 𝑤𝑖 > 𝑗

max(𝑑𝑝𝑖−1,𝑗, 𝑑𝑝𝑖,𝑗−𝑤𝑖
+ 𝑣𝑖) , if 𝑤𝑖 ≤ 𝑗

 

 From here we are actually finished with our dynamic 
programming statements. Let’s wrap it up into one equation: 

𝑑𝑝𝑖,𝑗 = {

0, if 𝑖 = 0 or 𝑗 = 0                                 
𝑑𝑝𝑖−1,𝑗 , if 𝑤𝑖 > 𝑗                                    

max(𝑑𝑝𝑖−1,𝑗, 𝑑𝑝𝑖,𝑗−𝑤𝑖
+ 𝑣𝑖) , if 𝑤𝑖 ≤ 𝑗

 

 It’s easy to implement this in code, now that we have the 
formula. And once we have the answer, we could use backtrack 
to find the sequence of activity. 

 There is actually two approach of implementing dynamic 
programming, one is the top down approach and the other is the 
bottom up approach. 

 The top down approach is essentially filling up values from 
top to down while the bottom up approach is the opposite. In 
Author’s opinion, it’s a good practice to always use the bottom 
up approach using iterative rather than to use the top down 
approach while using the recursive function. This usually makes 
faster run time, because using recursive function would need 
additional timework from using stacks. 

 Now let’s try making a pseudocode of this algorithm with 
the bottom up approach. The key here is to iterate from zero to 
𝑛 with the 𝑖 values, and also to iterate from zero to 𝑊 with the 𝑗 

values. So we will have to for loop and within those two loops 
we will use the equation we have. The final answer will be the 
value of 𝑑𝑝𝑛,𝑊. So this is the pseudocode we will have: 

# Fill in dynamic programming tables 

for i in [0...n]: 

 for j in [0...W]: 

  if i==0 or j==0: 

   dp[i][j]0 

  else if w[i]>j: 

   dp[i][j]dp[i-1][j] 

  else: 

   dp[i][j]max(dp[i-1][j],dp[i][j-

w[i]]+v[i]) 

 

max_valuedp[n][w] 

 

# Backtrack to find sequence answer 

in 

jW 

answer[] 

while i>0: 

 if dp[i][j]==dp[i-1][j]: 

  # Skip activity-i 

  ii-1 

 else: 

  # Take activity-i 

  answer.append(i) 

  jj-w[i] 

  ii-1 

reverse(answer) 

 
 

Figure 1. Pseudocode of Using Dynamic Programming to 
Solve 0-1 Knapsack 

 It is easy to see that this algorithm will run in 𝑂(𝑛𝑊) time 
complexity and also the same for its memory complexity, where 
𝑛 is the number of item and 𝑊 is the capacity of the knapsack. 

 Notice that, 𝑑𝑝𝑖,𝑗 is actually a table to be filled with. So if we 

implement this algorithm we would have the following table 
values: 

       𝑗 

𝑖 

 

0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 

1 0 2 2 2 2 2 2 2 2 

2 0 2 2 2 4 4 4 4 4 

3 0 2 2 2 5 7 7 7 9 

4 0 2 2 2 5 7 8 8 𝟗 
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We could see from the table values that the answer is: 

𝑑𝑝𝑛,𝑊 = 𝑑𝑝4,8 = 9 

The good thing about using dynamic programming here is that 
we could actually see solution for sub-problems too. 

This 0-1 Knapsack Problem is actually very similar to the 
example problem in the choosing activity problem, so we could 
already see where the dynamic programming would be used. 

 

III. USING DYNAMIC PROGRAMMING TO SOLVE CHOOSING 

ACTIVITY PROBLEM 

In this section we will try solving several choosing activity 
problems by using dynamic programming. 

A. Choosing Activity Problem with Attributes Including 

Priority Value and Time Taken to Finish Activity 

To start off, let us demonstrate the use of dynamic 
programming with the problem given in the example problem of 
choosing activity problem. The problem is stated as below: 

Given a list of activity of 𝑛 activites: 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 

Every activity has an attribute set 𝑆: 

𝑆 = (𝑝, 𝑡) 

Where 𝑝 → priority value and 𝑡 → time taken to finish 
activity. 

Find a subset of activities chosen such that the total time taken 
does not exceed 𝑇 and the total priority value is maximized. 

 

Let’s have the same values given in the problem example. 
We will have 𝑇 = 10, and the other values are shown in the 
following table: 

𝑎 (activity) 𝑝 (priority value) 𝑡 (time taken) 

1 10 5 

2 40 4 

3 30 6 

4 50 3 

5 70 13 

 

Notice that this problem is pretty similar to what was given 
in the 0-1 Knapsack Problem Statement. The key here is that the 
time is actually equivalent to the weight in the knapsack 
problem. So, we could actually use the exact method as before. 

 

 

 

Let us define 𝑑𝑝𝑖,𝑗 as the maximum total value from 𝑎1 up 

to 𝑎𝑛 with 𝑇 = 𝑗, then we will have the following equation: 

   

𝑑𝑝𝑖,𝑗 = {

0, if 𝑖 = 0 ∨  𝑗 = 0                                                 

𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗                                                

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)) , if 𝑎𝑖(𝑡) ≤ 𝑗

 

In this definition: 

𝑎𝑖(𝑡) = the value of time attribute of activity-𝑖 

𝑎𝑖(𝑝) = the value of priority value of activity-𝑖. 

Then we could have the following pseudocode: 

# Fill in the dynamic programming tables 

for i in [0...n]: 

 for j in [0...T]: 

  if i==0 or j==0: 

   dp[i][j]0 

  else if a[i].t>j: 

   dp[i][j]dp[i-1][j] 

  else: 

   dp[i][j]max(dp[i-1][j],dp[i][j-

a[i].t]+a[i].p) 

 

max_valuedp[n][T] 

 

# Backtrack to find sequence answer 

in 

jT 

answer[] 

while i>0: 

 if dp[i][j]==dp[i-1][j]: 

  # Skip activity-i 

  ii-1 

 else: 

  # Take activity-i 

  answer.append(i) 

  jj-a[i].t 

  ii-1 

reverse(answer) 

 

Figure 2. Pseudocode of Dynamic Programming to Solve 
Choosing Activity Problem Section III.A. 

 The algorithm implemented will have a time complexity and 
a memory complexity of 𝑂(𝑛𝑇) where 𝑛 is the number of 
activity and 𝑇 is the time limit. 
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 The answer to the problem is 𝑑𝑝𝑛,𝑇. The value of 𝑑𝑝𝑖,𝑗 is 

given in the following table: 

      𝑗 

𝑖 

 

0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 10 10 10 10 10 10 

2 0 0 0 0 40 40 40 40 40 40 40 

3 0 0 0 30 40 40 40 70 70 70 70 

4 0 0 0 30 40 40 50 70 70 80 90 

5 0 0 0 30 40 40 50 70 70 80 𝟗𝟎 

 

We could see from the table that the answer is: 

𝑑𝑝𝑛,𝑇 = 𝑑𝑝5,10 = 90 

Which is the same correct answer found in the example problem 
explanation. 

B. Choosing Activity Problem with Attributes Including 

Priority Value, Time Taken to Finish Activity, and 

Deadline Time of The Activity. 

 Consider having a deadline for an activity. If the time is over 
the due deadline, then that activity can no longer be taken. This 
is often found when having tasks with different deadlines. In 
general, the problem in this section can be stated as the 
following: 

Given a list of activities of 𝑛 activities: 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 

Every activity has an attribute set 𝑆: 

𝑆 = (𝑝, 𝑡, 𝑑) 

Where: 

𝑝 = priority value 

𝑡 = time taken to finish activity 

𝑑 = deadline of the activity 

Find an optimal sequence of activities (𝑅), such that the total 
priority value is maximal. Take in mind the constraint (𝐶) for 
this problem is that for every 𝑎 ∈ 𝑅, the time in which we 
take the activity (𝑠) is valid, that is:  

𝑠 ≤ 𝑎(𝑡) − 𝑎(𝑑) 

Informally, every time an activity is taken, it must be a valid 
time taken. 

 

  

 

 Let’s take an example, for the given value shown in this 
table: 

𝑎 

(activity) 

𝑝 

(priority value) 

𝑡 

(time taken) 

𝑑 

(deadline) 

1 4 3 7 

2 5 2 6 

3 6 3 7 

  

 In this example, we cannot take all the activity, because it 
will violate 𝐶. So, let’s try taking two activity, assume we take 
𝑎1 then 𝑎2 then we will have a total priority value of 9. If we try 
to take all possibility, we would have an optimal solution by 
taking 𝑎3 then 𝑎1 giving us a total priority value of 11. 

 Notice that, the order of taking the activity matters, so any 
two subsets having the same element with different order might 
have different take on the constraint. So, with that in mind, it’s 
a good idea to sort ascending the activity first by their due 
deadline. 

 Now that the activities are sorted by their deadline, we could 
have better idea of making a recursion. But first, Let’s try to find 
a good state of dynamic programming to work with. 

 We could see that time is an important consideration to take 
on this problem, so for every time we might have a different 
maximum answer. As a result, we could have a state of dynamic 
programming defined as the following: 

𝑑𝑝𝑖,𝑗 = max value  of first 𝑖 activites at time 𝑗 

In this definition, 𝑑𝑝𝑖,𝑗 is used to store the maximum priority 

value considering 𝑎1, 𝑎2, … , 𝑎𝑖 (after it is sorted) at time 𝑗. 

 For the base case, if we have either zero activity or zero time 
than we would have: 

𝑑𝑝𝑖,𝑗 = 0, if 𝑖 = 0 ∨  𝑗 = 0 

The recursion or transition we have will take consider of taking 
the current activity or not, so we will have a transition as follow: 

𝑑𝑝𝑖,𝑗 = {
𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖−1,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)), if 𝑎𝑖 ≤ 𝑗 ∧ 𝑗 < 𝑎𝑖(𝑑)
 

This is actually quite similar to the definition we have in 0-1 
Knapsack Problem. 

 To wrap all dynamic programming states, we will have the 
following equation: 

𝑑𝑝𝑖,𝑗 = {

0,   if 𝑖 = 0 ∨ 𝑗 = 0                                                                    

𝑑𝑝𝑖−1,𝑗 , if 𝑎𝑖(𝑡) > 𝑗                                                                   

max(𝑑𝑝𝑖−1,𝑗 , 𝑑𝑝𝑖−1,𝑗−𝑎𝑖(𝑡) + 𝑎𝑖(𝑝)), if 𝑎𝑖 ≤ 𝑗 ∧ 𝑗 < 𝑎𝑖(𝑑)
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 Notice that the answer for this problem can be in any time 𝑗, 
since 𝑗 have to be less than or equal to the largest deadline, we 
could say 𝑗 ≤ 𝑇, where 𝑇 = longest deadline in the activity. So 
we will have: 

answer = max
0≤𝑗≤𝑇

𝑑𝑝𝑛,𝑗 

 Now all that left is to implement the code. Note that, because 
we sort the list of activities, we might have the number order 
activity to be different. So, let us store initial index of activity 
denoted by 𝑎𝑖(𝑖𝑑𝑥). Here is the pseudocode: 

# sort the activity by their deadline first 

sort(a, deadline) 

# set T as the largest deadline value 

Ta[n].d 

# fill in the dynamic programming tables 

for i in [0...n]: 

 for j in [0..T]: 

  if i==0 or j==0: 

   dp[i][j]0 

  else: 

   dp[i][j]dp[i-1][j] 

   if j<a[i].d and j-a[i].t>=0: 

    dp[i][j]max(dp[i][j],dp[i-1][j-

a[i].t]+a[i].p) 

# find maximum priority value 

max_value0 

pos0 

for i in [0...T]: 

 if dp[n][i]>max_value: 

  max_valuedp[n][i] 

  posi 

# use backtrack to find chosen activities 

answer[] 

in 

jpos 

while i>0: 

 if dp[i][j]==dp[i-1][j]: 

   # skip activity 

   ii-1 

 else: 

   # take activity 

   answer.append(a[i].idx) 

   jj-a[i].t 

   ii-1 

reverse(answer) 

 

Figure 3. Pseudocode of Dynamic Programming to Solve 
Choosing Activity Problem Section 3.B. 

 We could see that the algorithm used here will have a time 
complexity and a memory complexity of 𝑂(𝑛𝑇) where 𝑛 is the 
number of activities and 𝑇 is the longest deadline from the list 
of activity. 

 The value 𝑑𝑝𝑖,𝑗 is given in the following table: 

      𝑗 

𝑖 

 

0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 0 5 5 5 5 0 0 

2 0 0 5 5 5 9 9 0 

3 0 0 5 6 6 𝟏𝟏 𝟏𝟏 0 

 

 We could see from the table above that the answer is 11, 
which is to take 𝑎3 then 𝑎2. 

C. Choosing Activity Problem with Attributes Including 

Priority Value, Start Time, and End Time. 

All the problems we have solved, have the same start time 
that the activity could be taken. Consider every activity to have 
its own start time and end time. In those range time from start 
time to end time, we can only do one activity. 

In this problem, we can’t have two activities colliding 
together at the same time. An example of this problem is when 
we are needed to choose some activities in which every activity 
has its own fixed time to finish that activity. 

In general, the problem in this section can be stated as the 
following: 

Given a list of activity with 𝑛 activities: 

𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 

Every activity has an attribute set 𝑆: 

𝑆 = (𝑝, 𝑠, 𝑒) 

Where: 

𝑝 = priority value 

𝑠 = start time 

𝑒 = end time 

Find an optimal sequence of activities (𝑅), such that the total 
priority value is maximal. Take in mind the constraint (𝐶) for 
this problem is that there is no collision between any activities 
in 𝑅 
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We will have an example for the activity values as shown in 
this following table: 

𝑎 

(activity) 

𝑝 

(priority value) 

𝑠 

(start time) 

𝑒 

(end time) 

1 2 1 4 

2 5 5 6 

3 1 2 3 

4 8 4 9 

5 1 7 9 

 

From this example, it could be proven that, the optimal way 
we could choose is to take 𝑎3 then 𝑎4 giving us a maximum total 
priority of 9. 

Notice that, it is better to sort the activity first by their start 
time, so we could have a more organized activity. This sorting 
is also useful so that we can see the transition between states 
easier. 

After sorting the activity, notice that for every activity 𝑎𝑖 and 
𝑎𝑗 (𝑖 < 𝑗) (in the order of sort) we could combine this activity if 

and only if 𝑎𝑖(𝑒) < 𝑎𝑗(𝑠). By using this fact, we could have a 

defined state of dynamic programming as follow: 

𝑑𝑝𝑖 = maximum value having 𝑎𝑖  and it′s combination 

 With this defined state, it’s actually easier to construct the 
dynamic programming properties than what we have solved 
previously. 

Let us define the base state for this problem. If we have zero 
activity then: 

𝑑𝑝0 = 0 

Otherwise we could iterate back to the value we have before and 
combine it. 

𝑑𝑝𝑖 = 𝑎𝑖(𝑝) + max
0≤𝑗<𝑖

(𝑑𝑝𝑗 , where 𝑎𝑗(𝑒) < 𝑎𝑖(𝑠)) 

Note that, for every 1 ≤ 𝑖 ≤ 𝑛 we will have to make the 
inequality 𝑎0(𝑒) < 𝑎𝑖(𝑠) to always hold true. 

 To implement this code, remember that because we sort the 
list of activities, we might have the number order activity to be 
different. So, let us store every initial index of activity denoted 
by 𝑎𝑖(𝑖𝑑𝑥). 

 

 

 

 

 

 

 

 We could use two for loops and an array to store transition, 
so we could backtrack and find the sequence solution. Here is 
the pseudocode: 

# sort the activity by start time first 

sort(a, start_time) 

# fill in the dynamic programming tables 

back = [0 for i in [0...n]] 

for i in [0...n]: 

 if i == 0: 

  dp[i]0 

 else: 

  dp[i]a[i].p 

  for j in [0...i]: 

   if j==0 or a[j].e<a[i].s: 

    curdp[j]+a[i].p 

    if cur>dp[i]: 

     dp[i]cur 

     back[i]j 

# find the maximum priority value 

max_value0 

pos0 

for i in [0...n]: 

 if dp[i]>max_value: 

  max_valuedp[i] 

  posi 

# backtrack to find sequence activity 

answer[] 

ipos 

while i>0: 

 answer.append(a[i].idx) 

 iback[i] 

reverse(answer) 

 

Figure 4. Pseudocode of Dynamic Programming to Solve 
Choosing Activity Problem Section 3.C. 

 We could see that the implemented algorithm will have a 
time complexity of 𝑂(𝑛2) and a memory complexity of 𝑂(𝑛) 
where 𝑛 is the number of activity. 

 An interesting thing about this problem is we could actually 
reduce the time complexity to 𝑂(𝑛 log 𝑛) by using an advanced 
data structure such as segment tree, but it will not be explained 
further in this paper. 
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 The value for 𝑑𝑝𝑖  is given in the following table: 

𝑖 Value 

1 2 

2 1 

𝟑 𝟗 

4 7 

5 8 

 

We could see from the table above that the maximum total 
priority value is 9, this is of course by chosing 𝑎3 then 𝑎4. 

 

IV. PROGRAM TESTING 

This section will show a screenshot of program testing for 
every problem in section III. The code is implemented with C++ 
and is tested with the given PC specification: 

Component Description 

Operating System 
Windows 10 Home Single 

Language 64-bit 

CPU 
Intel Core i7 @ 1.80GHz 

Kaby Lake-U/Y 14nm 

RAM 16GB DDR3 

Motherboard 
ASUSTek COMPUTER 

INC. UX430UNR (UE31) 

Storage 512GB SanDisk SSD 

Graphics 

Intel UHD Graphics 620 

2047MB NVIDIA GeForce 
MX150 

 

All of the source code and test cases in this section could be 
seen at https://github.com/muhammadhasan01/IF2211-Strategi-
Algoritma/tree/master/ProgramMakalah. 

A. Program Testing for Problem Section III.A 

 Test Case I 

In this test case, it will include the exact same value given 

in the example problem. The program will read the file 

testSectionIIIA_1.in. Here is the output of the program: 

 

Figure 5. Screenshot Output for Test Case I Problem III.A. 

 

 Test Case II 

In this test case, we will have 𝑛 = 100 activities with 𝑇 =
100. The program will read the file testSectionIIIA_2.in. Here 

is the output of the program: 

 

 
Figure 6. Screenshot Output for Test Case II Problem III.A. 

 

 Test Case III 

In this test case, we will have 𝑛 = 1000 activities with 𝑇 =
1000. The program will read the file testSectionIIIA_3.in. 

Because, there is too much of the output, the screenshot output 

will only include the results, and so here is the output of the 

program: 

 
Figure 7. Screenshot Output for Test Case III Problem III.A. 

 

B. Program Testing for Problem Section III.B 

 Test Case I 

In this test case, it will include the exact same value given 

in the example problem. The program will read the file 

testSectionIIIB_1.in. Here is the output of the program: 

 
Figure 8. Screenshot Output for Test Case I Problem III.B. 

 

 

https://github.com/muhammadhasan01/IF2211-Strategi-Algoritma/tree/master/ProgramMakalah
https://github.com/muhammadhasan01/IF2211-Strategi-Algoritma/tree/master/ProgramMakalah
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 Test Case II 

In this test case, we will have 𝑛 = 100 activities and 

random values ranging between 1 to 100. The program will 

read the file testSectionIIIB_2.in. Here is the output of the 

program: 

 

 
Figure 9. Screenshot Output for Test Case II Problem III.B. 

 

 Test Case III 

In this test case, we will have 𝑛 = 1000 activities. With 

random values ranging between 1 to 1000. The program will 

read the file testSectionIIIA_3.in. Because, there is too much of 

the output, the screenshot output will only include the results, 

and so here is the output of the program: 

 
Figure 10. Screenshot Output for Test Case III Problem III.B. 

 

C. Program Testing Problem Section III.C 

 Test Case I 

In this test case, it will include the exact same value given 

in the example problem. The program will read the file 

testSectionIIIC_1.in. Here is the output of the program: 

 
Figure 11. Screenshot Output for Test Case I Problem III.C. 

 

 

 

 Test Case II 

In this test case, we will have 𝑛 = 100 activities with start 

time and end time ranging between values of 1 to 2000. The 

program will read the file testSectionIIIC_2.in. Here is the 

output of the program: 

 

 
Figure 12. Screenshot Output for Test Case II Problem III.C. 

 

 Test Case III 

In this test case, we will have 𝑛 = 1000 activities. The start 

time and end time will have a value ranging in 1 to 2000. The 

program will read the file testSectionIIIC_3.in. Because, there 

is too much of the output, the screenshot output will only 

include the results, and so here is the output of the program: 

 
Figure 13. Screenshot Output for Test Case III Problem III.C. 

 

V. CONCLUSION 

Choosing a lot of activity is sometimes very hard for us to 

handle ourselves. However, by using dynamic programming we 

could not only solve the problem effectively, but we could also 

see the entire process and the sub-problem that includes it.  
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VIDEO LINK AT YOUTUBE 

To see a brief video about this paper, please refer to this link 

https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=

youtu.be 

ACKNOWLEDGEMENT 

First and foremost, I would like to thank Allah Azza wa 

Jalla for the opportunity that He has given me, so that I could 

undertake all challenges and embrace all the support I had up 

until now. I would also like to thank Mr. Rinaldi Munir as the 

lecturer of Algorithm Strategy (IF2211) and to everyone 

involved, for their time and struggle in teaching and guiding 

me, so that I could learn many new knowledge about 

algorithms and also as a guidance for me to complete this 

paper. 

 

REFERENCES 

 
[1] Kapoor, Karan. Everything About Dynamic Programming. 

https://codeforces.com/blog/entry/43256 accessed on May 1, 2020 

[2] Laaksonen, Antti. Competitive Programming Handbook. Draft July 3, 
2018. 

[3] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. (2001), 
Introduction to Algorithms (2nd ed.), MIT Press & McGraw–Hill, ISBN 
0-262-03293-7 . pp. 344. 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini 

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari 

makalah orang lain, dan bukan plagiasi. 

 

Bandung, 02 Mei 2020 

 
Muhammad Hasan (13518012) 

    

 

 
 

 

 

 

 

https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=youtu.be
https://www.youtube.com/watch?v=Z5uXfaNTAR4&feature=youtu.be
https://codeforces.com/blog/entry/43256

