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Abstract—Flood-It is a puzzle where a player is given a grid 

separated into regions with various colors. The player need to 

flood the puzzle by coloring the top-left region with the minimum 

number of moves. The goal of this paper is to examine the 

performance of greedy and A* algorithm in finding the solution to 

solve the Flood-It puzzle. 
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I.  INTRODUCTION 

Flood-It is a puzzle made by LabPixies, an Israeli developer 
team, in March 2009. The game starts with a n x n grid that is 
separated into different regions with c colors. The player then 
needs to expand the top-left region by flooding it with different 
colors. The game ends when there is only one region left in the 
grid, which is the grid itself. This puzzle has already been proven 
to be NP-hard for c >= 3 [1]. 

In this paper, the author compares the difference in 
performance between two heuristic-based algorithms, Greedy 
and A*. The greedy algorithm tries to find the optimal solution 
in each step, whereas the A* algorithm uses both current and 
approximate knowledge to get to the optimal solution. Both of 
these algorithms can be used to find a solution to this puzzle, 
though the optimality of the solution can’t be guaranteed. 

 

II. THEORIES 

A. Flood-It Puzzle 

Flood-It is a puzzle made by LabPixies, an Israeli developer 
team, in March 2009. The game starts with a n x n grid that is 
separated into different regions with c colors. Let us call the top-
left region the seed region. Flooding is an operation where the 
player chooses a color, change the seed region into the selected 
color, and floods the neighboring regions that has the same color 
as the chosen color. The player need to minimize the number of 
flooding operations done. 

Below is an example of the puzzle with n = 5 and c = 3. 

 

Figure 1: Starting a puzzle with n = 5 and c = 3. (Created 
using [2]) 

When the player chooses the green color, the grid turns 
into: 

 

Figure 2: Grid after choosing green. (Created using [2]) 

A possible sequence of moves is: Green, Red, Yellow, 
Green, Red with a total of 5 moves. This solution is not optimal. 
This puzzle can also be solved with this sequence of moves: 
Green, Yellow, Red, Green. In fact, this sequence with 4 moves 
is optimal. There is no other way to solve this puzzle in less than 
4 moves. 

 

Figure 3: Completed puzzle. (Created using [2]) 

Finding the optimal moves has already been proven to be a 
NP-hard problem, as this game can be reduced from the shortest 
common supersequence problem [1]. 
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B. P and NP 

In computer science, a decision problem is a problem whose 
solution can only be “yes” or “no”. An example of this is: Given 
a number. Determine if the number is prime. If the number is 6, 
then the answer is “yes”. If the number is 7, then the answer is 
“no”. There are no other possible answers to this problem. 

Decision problems can be classified into two complexity 
classes: P (Polynomial) and NP (Non-deterministic 
Polynomial). A decision problem is classified as P if the problem 
can be solved with an algorithm whose complexity can be stated 
as a polynomial function, therefore requires a polynomial time 
to complete. A decision problem is classified as NP if the 
problem can be solved with a non-deterministic algorithm, 
whose verification can be done within a polynomial time. Here, 
verification means that if a candidate answer is given, the 
correctness of this solution can be determined within a 
polynomial time. For now, P is a subset of NP, as nobody has 
proven P = NP or P ≠ NP. 

NP-Complete problems are decision problems that are 
classified as NP and all NP problems can be reduced into NP-
Complete problems within a polynomial time. If an NP-
Complete problem can be solved within a polynomial time, then 
all NP problems that can be reduced into this problem can be 
solved within a polynomial time. Examples of well known NP-
Complete problems include the Satisfiability Problem (SAT), 
the Travelling Salesman Problem and the Sum of Subset 
Problem. NP-Hard problems are problems that are as hard as 
NP-Complete problems, but not limited to decision problems. 

 

Figure 4: Euler diagram for P, NP, NP-Complete and NP-
Hard set of problems. [3] 

Although there are no polynomial time algorithms to find the 
solution of NP-Complete problems, we can use several 
techniques to find solutions to these problems, such as 
approximation, randomization, restriction, parameterization and 
heuristic. 

Heuristic is an algorithm that can work reasonably well, but 
does not always produce optimal solutions. Greedy and A* are 
examples of algorithms that utilize heuristic approach. 

C. Greedy Algorithm 

A greedy algorithm is any algorithm that follows the 
problem-solving heuristic of making the locally optimal choice 
at each stage with the intent of finding a global optimum [4]. 

 The greedy algorithm consists of several elements: 

• Candidate set (C), set of possible solutions. 

• Solution set (S), set of selected solutions chosen from 
the candidate set. 

• Selection function, function to select a candidate from 
the candidate set. 

• Feasible function, function to determine if a candidate 
can be selected. 

• Objective function, function that calculates a value 
based on a candidate set or solution set. 

 A common scheme for the greedy algorithm is as follows: 

function greedy(input C: candidate_set) → 

candidate_set 

Declaration 
  x : candidate 
  S : candidate_set 
Algorithm 
  S ← {} 

  while (not SOLUTION(S)) and (C ≠ {}) do 
    x ← SELECTION(C) 
    C ← C - {x} 

    if (FEASIBLE(S ∪ {x}) then 

      S ← S ∪ {x} 
   
  if (SOLUTION(S)) then 
    return S 
  else 

    write(‘No solution’) 
    return {} 

  

The greedy algorithm does not always guarantee an optimal 
solution. Although it always choose a local optimal choice, that 
choice may lead to a suboptimal solution. Different selection 
functions may choose different choices. Finding a “good 
enough” selection function is the key in devising a greedy 
algorithm. 

D. Pathfinding Algorithms 

Pathfinding is the process of finding a route between two 
points that meets a defined criteria. This criteria can be anything 
from cheapest, shortest, most profitable, etc. 

There are several pathfinding algorithms, such as: 

• Breadth First Search (BFS) 

Starting from a node, the graph is traversed layer by 
layer. BFS explores all neighbor nodes at the current 
depth level before moving to the nodes at the next 
depth level. The agenda can be maintained using a 
queue. In an unweighted graph, BFS will always find 
the shortest path between any two nodes. 

• Depth First Search (DFS) 

DFS explores as far as possible along a branch, and 
backtrack to the previous nodes if no solution is found 
in that branch. The agenda can be maintained using a 
stack. In an unweighted graph, DFS will not always 
find the shortest path between any two nodes. 
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• Dijkstra and Uniform Cost Search (UCS) 

Dijkstra works in a similar way to BFS. Other than 
traversing layer by layer, Dijkstra chooses the current 
shortest node to the source node in every step. The 
agenda can be maintained using a priority queue. 
Dijkstra will always find the shortest path in any graph 
(both weighted and unweighted). Dijkstra can be 
regarded as a variant of UCS, where the goal node is 
not defined and the processing continues until all nodes 
have been removed from the priority queue. 

• Greedy Best First Search (GBFS) 

GBFS works by choosing the current “shortest” node 
to the goal node in every step. As the distance (cost) of 
each node to the goal node is unknown, we estimate the 
cost using a heuristic function. The problems with 
GBFS are that the algorithm may get stuck in a local 
optimum, it is undoable and the heuristic function may 
not be accurate enough. Therefore, GBFS will not 
always find the shortest path in a graph. 

• A* 

A* algorithm works by combining both UCS and 
GBFS, where the previous cost (UCS) and an estimated 
future cost (GBFS) is combined (added together) to 
determine the value of a node. The optimality of A* 
algorithm is determined by the admissibility of the 
heuristic function. A heuristic function is admissible if 
for every node n, h(n) ≤ h*(n), where h(n) is the 
estimated cost and h*(n) is the true cost to reach the 
goal node from n. An example of an admissible 
heuristic function is the straight line distance between 
two points in a map, due to the triangle inequality. If 
the heuristic function is admissible, A* will always find 
the shortest path in any graph (both weighted and 
unweighted). 

A common scheme for the A* algorithm is as follows: 

function astar(input start: node, input end: 

node) → path 
Declaration 
  q : priority_queue of state, sorted 

according to increasing gval + hval 
  cur, next : state {state consists of gval, 

hval, node} 
Algorithm 
  cur.gval ← 0 {starting node} 

  cur.hval ← h(cur.node) {heuristic} 

  cur.node ← start 
  q.push(start) 
  while (not EMPTY(q)) do 
    cur ← q.top() 
    q.pop() 
    if (cur.node = end) then 
      return RECONSTRUCT_PATH(cur) 
    for (every possible transition) do 
      next.gval ← cur.val + 

GET_DISTANCE(cur, transition) 

      next.node ← GET_NODE(cur, transition) 
      next.hval ← h(next.node) {heuristic} 

      q.push(next) 

  write(‘No solution’) 
  return {} 

E. Flood Fill Algorithm 

Flood fill is an algorithm that is used to find a bounded area 

that is connected to a given node. Flood fill can be implemented 

using different kinds of algorithms. We can implement flood 

fill using a DFS-like algorithm. In DFS, the algorithm stops 

when the goal node is found. In flood fill, there is no goal node. 

The algorithm stops only if the stack is empty. 

 

Below is an example of how the flood fill algorithm works. 

The cells colored white are cells that are unexplored and 

available. The cells colored black are cells that are unavailable 

(can’t be visited). The cells colored green are cells that have 

been visited by the flood fill algorithm. The starting cell is the 

bottom-left cell. The cells that are connected to the starting cell 

is filled step by step, until all the cells become green. Notice 

that the flood fill algorithm could not pass the black cells, and 

therefore leaving the top-right cell unvisited. 

 

 
Figure 5: Illustration of the flood fill algorithm, starting 

from the bottom-left cell. 

 

Below is the pseudocode for implementing flood fill using 

a DFS-like algorithm: 
procedure floodfill(input start: point) 
Declaration 
  p, cur, next : point 
  s : stack of point 
Algorithm 
  s.push(start) 
  while (not EMPTY(s)) do 
    cur ← s.top() 
    s.pop() 
    for (every possible direction) do 
      next ← GET_POINT(cur, direction) 
      if (not VISITED(next)) then 
        s.push(next) 
  return 
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III. GREEDY ALGORITHM IN SOLVING FLOOD-IT 

A. Identifying Elements 

In order to solve the puzzle using the greedy algorithm, we 
need to first identify the elements. 

1. Candidate set 

The candidate set for this program are all the possible 
sequence of moves that can be selected by the player. This 
sequence can be infinitely long, as a cycle is possible when 
solving this puzzle. 

For example, here is a puzzle with n = 4 and c = 4. The colors 
are represented with an integer ranging from 1 to c. 

1133 

3421 

2341 

2412 

The player can make an alternating move: 212121...., 
making the sequence length infinite. 

2. Solution set 

The solution set consists of sequences of moves that lead to 
the puzzle solution. The puzzle is considered complete if the 
puzzle has only one color. An example of a complete puzzle is: 

2222 

2222 

2222 

2222 

The move that can be made to the puzzle in part 1 to make 
this is: 324132. 

3. Selection function 

We can select any color from the possible colors, but in order 
to minimize the number of moves, we need to choose a color 
which (hopefully) leads to the optimal solution (shortest 
sequence of moves). 

Observe that in order to reach the solution, we need to 
expand the top-left region as much as we can. In fact, if we don’t 
expand it, we may make an infinite sequence. Intuitively, this 
can also be the basis of our selection function. In each move, we 
choose a color which expands the top-left region the most. In 
case of a tie, we can choose any color. 

The author demonstrates this using the puzzle in section  III. 
A. 1. We have this puzzle: 

1133 

3421 

2341 

2412 

We skip color 1, as it is clearly useless to choose the same 
color. We also skip color 2, as it doesn’t expand the region. 

Color 3 can be a chosen color, and it expands the region by 3 
cells. Color 4 can also be chosen, but it only expands the region 
by 1 cell. 

As color 3 is the best color in this step, we choose to color 
the region with color 3, turning the puzzle into: 

3333 

3421 

2341 

2412 

4. Feasible function 

It is always feasible to choose any color in this puzzle, but 
choosing some color may be worse than others, as discussed in 
section III. A. 3. 

5. Objective function 

The objective function of this puzzle is to minimize the 
number of moves to reach the solution. 

B. Complexity Analysis 

In each step we try to flood the puzzle using c colors and the 

flooding process takes n2 steps. Notice that in each step, we 

eliminate at least one region. There are at most n x n regions in 

the puzzle, where each cell has a different color to all its 

neighbors. Therefore, the worst case complexity for the greedy 

algorithm is O(cn4). 

 

IV. A* ALGORITHM IN SOLVING FLOOD-IT 

A. Heuristic Function 

To get an optimal solution, the heuristic function that is used 
to estimate the cost from current state to the goal state must 
always be less than the true cost. Some of you may think that the 
number of regions in the puzzle is a good estimate. It is not a 
good estimate as the number of eliminated regions in every 
move can be greater than 1. In fact, it is pretty rare to only 
eliminate one region. Thus, this heuristic function is not 
admissible . 

A better estimate is to divide the number of regions with c, 
the number of possible colors. This is due to the nature of the 
puzzle, where clearing a color can expose the top-left region to 
more regions. In a 14x14 puzzle with 6 color, there is a 
maximum of 196 regions. Dividing this with 6 gives us 32.67. 
This is a pretty good estimate, as usually the game can end with 
less than 30 moves. A randomly generated puzzle only has 
around 120 - 140 regions, making the expected average move 
length around 20 - 24. The classic game allows the player to 
make a maximum of 25 moves. 

The optimal solution to the puzzle at section III. A. 1. can 
actually be found using the A* algorithm. A possible sequence 
of optimal moves is: 43412. 
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B. Complexity Analysis 

We can calculate the value of the heuristic function by using the 

flood fill algorithm, keeping track of the number of regions 

filled. This process takes n x n operations. The search space of 

this algorithm is cd, where c is the number of colors and d is the 

depth of the state space search tree. The agenda is implemented 

in a priority queue, with an insertion complexity of O(log n). 

Therefore, the complexity of this algorithm is O(n2cdlogcd). 

 

V. PERFORMANCE ANALYSIS OF GREEDY AND A* ALGORITHM 

IN SOLVING FLOOD-IT 

A. Implementation 

In order to find out the difference in performance of the 

Greedy and A* algorithm, the author implements both 

approaches using C++. No external libraries are used. My 

program also allows the user to play the game themselves and 

measure how well do the user perform compared to both of the 

algorithms. 

 

Here are some screenshots from the program: 

 

 
Figure 6: Solving the normal1 puzzle. 

 

 
Figure 7: Playing the game yourself. 

 
Figure 8: Showing moves taken by the solver step-by-step. 

 

B. Testing 

The author makes 5 batches of tests: small, smalln, normal, 

large and largen, each consisting of 5 puzzles. A generator has 

also been written to be used if a user wants to make a random 

puzzle with his/her own parameters. Small, normal and large 

puzzles are all 14x14 puzzles, but with c values of 5, 6 and 7 

respectively. Smalln, normal and largen puzzles all have 6 

colors, but with grid sizes of 12x12, 14x14 and 16x16 

respectively. The normal batch is reused. The author also try to 

solve the 1st puzzle of every batch, serving as a benchmark to 

both of these algorithms. 

 

1. c as free variable (small, normal, large) 

 

n is always 14. c is 5, 6, and 7 for small, normal and large 

respectively. Time is measured in seconds.  

 

Greedy 

No Small Normal Large 

Time Moves Time Moves Time Moves 

1 0.000 20 0.015 39 0.000 31 

2 0.000 28 0.000 31 0.015 36 

3 0.000 25 0.016 29 0.015 31 

4 0.000 28 0.000 32 0.000 38 

5 0.000 26 0.000 33 0.000 36 

Avg 0.000 25.4 0.006 32.8 0.006 34.4 
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A* 

No Small Normal Large 

Time Moves Time Moves Time Moves 

1 0.015 17 29.063 24 24.484 26 

2 0.046 23 0.328 23 401.813 25 

3 0.031 21 0.172 22 151.657 22 

4 0.109 23 4.828 24 16.999 25 

5 0.015 18 0.328 24 42.078 24 

Avg 0.432 20.4 6.944 23.4 127.406 24.4 

Table 1: Performance of Greedy and A* in solving 14x14 

puzzle with different c. 

 

For the first puzzle in each batch, the author took 22 moves 

for small, 31 moves for normal, and 37 moves for large. 

 

2. n as free variable (smalln, normal, largen) 

 

c is always 6. n is 12, 14, and 16 for small, normal and large 

respectively. Time is measured in seconds. 

 

Greedy 

No Small Normal Large 

Time Moves Time Moves Time Moves 

1 0.000 23 0.015 39 0.015 34 

2 0.000 27 0.000 31 0.000 36 

3 0.000 25 0.016 29 0.000 31 

4 0.000 23 0.000 32 0.000 38 

5 0.016 30 0.000 33 0.015 36 

Avg 0.003 25.6 0.006 32.8 0.006 35 

A* 

No Small Normal Large 

Time Moves Time Moves Time Moves 

1 1.219 19 29.063 24 0.235 26 

2 1.265 20 0.328 23 406.890 25 

3 0.343 18 0.172 22 153.437 22 

4 0.422 20 4.828 24 17.125 25 

5 1.235 20 0.328 24 42.093 24 

Avg 0.897 19.4 6.944 23.4 123.956 24.4 

Table 2: Performance of Greedy and A* in solving a 6-color 

puzzle with different n. 

 

For the first puzzle in each batch, the author took 22 moves 

for small, 31 moves for normal, and 28 moves for large. 

C. Analysis 

As we can see from the data above, the greedy algorithm 

produces sequences with more moves than A*, but performs the 

computation very fast (virtually instant). A* also uses a lot of 

memory, there are some large cases where it uses around 6GB 

RAM. This is due to the search state space tree that grows larger 

and larger as nodes with larger depths are explored. 

 

The runtime of A* increases exponentially, both on varying 

c and n. A possible reason for this is that more moves are 

required to solve the puzzle, and thus increasing the complexity 

exponentially. We can also see that the runtime is not evenly 

distributed, implying that the positions of regions in the test 

cases greatly impacts the runtime. As the heuristic function 

used is admissible, the solution produced by A* algorithm is 

guaranteed to be optimal, i.e. there are no shorter sequence of 

moves that lead to the solution. 

 

Although greedy produces a suboptimal result, this result is 

still better than solving the puzzle manually. Although the 

number of the author’s moves are pretty close to the greedy 

algorithm, players can learn tricks and strategies to improve 

their score. 

 

All the source code and test cases can be found in my 

GitHub repo: https://github.com/moondemon68/Flood-It-

Solver. 

 

VI. CONCLUSION 

Both greedy algorithm and A* algorithm can be used to solve 
the Flood-It puzzle. Greedy algorithm uses a short time and takes 
low memory space to produce a suboptimal solution. A* 
algorithm uses a long time and takes a lot of memory space, but 
produces an optimal solution. There may be better heuristic 
functions or algorithms that can lead the solution of this puzzle, 
and finding them can be a topic for future researches in computer 
science. 

 

VIDEO LINK AT YOUTUBE 

The author makes a video explaining how Greedy and A* 
algorithm explained here works in a nutshell. The video is made 
in Bahasa Indonesia and can be found here: 
https://youtu.be/pqPSelI-jZs. 
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