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Abstract—The pandemic of COVID-19 had drastically altered 

human interactions and activities, with the scope and impact that 

might be approximately gauged through social media activities. 

Assessing the sentiments expressed within these social media 

activities might be one of the factors considered in making policy 

responses in the pandemic. In this paper the author will 

demonstrate a simple sentiment analysis of tweets made in 

context of COVID-19 quarantine using the pattern-matching 

Knuth-Morris Pratt algorithm. 
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I.  INTRODUCTION 

Few had anticipated in the New Year’s Eve of 2020 that in 
a few months, human activities and interactions will be 
drastically overhauled, transformed, overturned, and global 
economy crippled by the fear of a contagious global outbreak. 
Although SARS-CoV-19 was first identified in Wuhan in 
December 2019, very few recognized the microbe’s 
catastrophic potential, even among national governments and 
esteemed international institutions.  

Within the space of approximately five months since the 
strain’s first identification, the virus had infected at least over 
three million individuals globally, killing hundreds of 
thousands. Nearly two months has passed since it is declared as 
a global pandemic. The virus had since shifted away from its 
native homeland in the central Chinese Mainland, ravaging 
picturesque tourist spots of Spain and northern regions of Italy, 
shutting down the global financial center of New York City, 
putting billions worldwide into de facto house arrest as 
governments scramble into increasingly draconian measures to 
prevent uncontrollable outbreak in their territory. 

It is safe to say that the pandemic had changed the rhythm 
of human activities like it had never been. The freefall of stock 
exchanges, unemployment spikes, and complete shutdown of 
once-bustling public spaces and commercial establishments 
gave obvious hints on the ongoing new normal. Of course, it is 
possible that the transformation is mere temporary 
readjustment. It is highly likely that life will return to normalcy 
immediately as the virus recedes through one way or another: 
pressured into extinction through herd immunity, vanquished 
by new vaccines, or merely having its outbreak cycle halted 

through aggressive lockdown. Which policy is the most 
prudent is, of course, heavily contested by many. 

In fact, the role of policy—especially responses from 
central national governments and international agencies—is 
also very important in the current trajectory of events. As 
humans are now living wealthier than they have ever been in 
history, the governments have more resources than ever in 
employing the means necessary to deal with the pandemic as 
they see fit. Past pandemics faced much weaker, poorer 
governments, incapable to do anything against what was 
practically a wrathful act of God. Current governments are 
more capable than ever to stare the eye of the storm. 

The problem is, as the world has barely passed the first 
wave of the pandemic’s infection, no one has certain idea about 
the actual, overall effect of any of the policies, let alone 
assessing their unintended consequences.  

 For example, as most governments embark on limiting 
activities outside home, it remains unknown whether this 
significantly affects the psychological health of their citizens 
one way or another. Of course, this should not be the only thing 
taken into account in policy decisions—plenty of things, such 
as the probability of uncontrollable outbreak in itself, also 
matters. However, it could be factored into one of the variables 
considered when undertaking a pandemic policy. 

 There are several ways to identify the state of psychological 
health during “quarantine” or “lockdown” policy, although 
each has their own flaws. In this paper, we will analyze popular 
sentiments during COVID-19 isolation through crude 
sentiment analysis using Knuth-Morris-Pratt algorithm. 

II. FUNDAMENTAL THEORY 

A. Twitter 

Twitter is a microblogging and social networking service 
created in 2006 by Jack Dorsey, Noah Glass, Biz Stone, and 
Evan Williams[1]. Today, Twitter is one of the most popular 
social media platforms available, with over 100 million daily 
users and 500 million tweets daily. 

Within Twitter, users might send and interact with short 
messages known as “tweets”. Tweets were restricted up to 280 
characters, up to 140 characters prior to 2017. Registered users 
might interact with the tweets in various ways: post, like, or 
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retweet, but unregistered users might only read tweets from 
non-protected accounts. 

For its implementation, Twitter relies mostly on open-
source software. Twitter web interface uses Ruby on Rails 
framework, deployed on a performance-enhanced Ruby 
Enterprise Edition implementation of Ruby. The service’s 
application programming interface (API) also allows other web 
services and applications to integrate with Twitter. 

Users might access Twitter through its website interface, 

Short Message Service (SMS), or its mobile application. 

B. Sentiment Analysis 

Sentiment analysis is contextual mining of text which 
identifies and extracts subjective information in source material 
using natural language processing, text analysis, computational 
linguistics, biometrics, and other such methods[2]. It analyzes 
people’s opinions, sentiments, evaluations, appraisals, 
attitudes, and emotions towards certain entities[3]. 

There are also terms that are broadly similar in definition 
such as sentiment analysis, opinion mining, opinion  extraction, 
sentiment mining, subjectivity analysis, affect analysis, emotion  
analysis, review mining, etc. They generally fall under the 
same umbrella as sentiment analysis, and this is the term that is 
more commonly used. 

In general, sentiment analysis has been instigated at three 
main levels: 

• Document level, classifying whether a whole 
opinion document representing a positive or 
negative sentiment. This particular task is known 
as document-level sentiment classification. 

• Sentence level, determining whether each sentence 
expressed opinion that can be roughly summarized 
into three categories: positive, negative, or neutral. 

• Entity and aspect level, also known as feature 
level (feature-based opinion mining and 
summarization). Performing finer-grained 
analysis, such that the assessment is directed 
directly at the opinion itself instead of the 
language structure. The goal of this level of 
analysis is to discover sentiments on entities 
and/or their aspects. 

 Broadly speaking, there are two kinds of opinions. Regular 
opinions express a sentiment only on an particular entity or  an  
aspect  of  the  entity.  Comparative  opinions, meanwhile,  
compare multiple entities based on some of their shared 
aspects. 

C. String-Matching Algorithm 

String-matching algorithm is an algorithm intended to 
search a certain pattern or string inside a larger pattern or 
text[4]. The string-matching problem is the problem of finding 
all valid shifts with which a given pattern P occurs in a given 
text T. 

 

Figure 1. Source: Cormen et al., Introduction to Algorithms. 

The most basic, brute-force algorithm to resolve the string-
matching problem is often called the naïve algorithm (see Fig. 
1). The naive algorithm finds all valid shifts using a loop that 
checks the condition P[1 . .m] = T [s + 1 . . s + m] for each of 
the n − m + 1 possible values of s. The naive string-matching 
procedure can be interpreted graphically as sliding a “template” 
containing the pattern over the text, noting for which shifts all 
of the characters on the template equal the corresponding 
characters in the text. Procedure naive string-matcher takes 
time O((n − m + 1)m), and this bound is tight in the worst case. 

For obvious reason, the naïve algorithm is not the optimal 
procedure for this problem. 

D. Knuth-Morris-Pratt Algorithm 

One of the algorithms that might be applied to solve string-
matching problems is the Knuth-Morris-Pratt algorithm, often 
abbreviated as the KMP algorithm. The KMP algorithm is an 
algorithm that uses preprocessing approach of patterns to avoid 
trivial comparisons. Unlike the brute force or naïve algorithm, 
it avoids recomputing matches. It compares string from left to 
right, and uses linear time for exact matching. 

 
Figure 2. Source: Cormen et al., Introduction to 

Algorithms. 

The Knuth-Morris-Pratt algorithm utilizes something 
known as the prefix function (see Fig. 2). The prefix function π 
for a pattern encapsulates knowledge about how the pattern 
matches against shifts of itself. This information can be used to 
avoid testing useless shifts in the naive pattern-matching 
algorithm or to avoid the precomputation of δ for a string-
matching automaton. 
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The Knuth-Morris-Pratt algorithm is given in the 
pseudocode as the following. The first is the main KMP-
Matcher algorithm: 

KMP-MATCHER(T, P) 

1. n ← length[T ] 

2. m ← length[P] 

3. π ← COMPUTE-PREFIX-FUNCTION(P) 

4. q ← 0 ✄ Number of characters 

matched. 

5. for i ← 1 to n ✄ Scan the text from 

left to right. 

6. do while q > 0 and P[q + 1]  = T [i 
] 

7. do q ← π[q] ✄ Next character does 

not match. 

8. if P[q + 1] = T [i ] 

9. then q ← q + 1 ✄ Next character 

matches. 

10. if q = m ✄ Is all of P matched? 

11. then print “Pattern occurs with 
shift” i − m 

12. q ← π[q] ✄ Look for the next match. 

 The next algorithm to be implemented in the pseudocode is 
the COMPUTE-PREFIX-FUNCTION, which is the 
border/prefix function intended to calculate the longest prefix 
which is also the suffix in the pattern. 

COMPUTE-PREFIX-FUNCTION(P) 

1. m ← length[P] 

2. π[1] ← 0 

3. k ← 0 

4. for q ← 2 to m 

5. do while k > 0 and P[k + 1]  = P[q] 

6. do k ← π[k] 

7. if P[k + 1] = P[q] 

8. then k ← k + 1 

9. π[q] ← k 

10. return π 

 The running time of COMPUTE-PREFIX-FUNCTION is  
O(m). Since the number of outer-loop iterations is  
O(m), and since the final potential function is at least as great 
as the initial potential function, the total actual worst-case 
running time of COMPUTE-PREFIX-FUNCTION is  
O(m). Similarly, the running time of KMP-MATCHER is 
O(n). Therefore, the running time of KMP algorithm overall is 
O(m+n). 

III. IMPLEMENTATION 

This section will explain the strategy and implementation of 
Opinion Mining for COVID-19 quarantine tweets using Knuth-
Morris-Pratt algorithm written in Python language. 

A. Preparation 

For the preparation, Tweepy package for Python must be 
downloaded through pip command like the following: 

pip install tweepy 

 This is necessary as Tweepy is the Python client for the 
official Twitter API. 
 In order to fetch tweets through Twitter API, an user needs 
to register an app through their twitter account. This is done 
through accessing https://developer.twitter.com/en/apps and 
afterwards filling the application details in order to create an 
app. 
 After the app has been created, the user then might access 
the app’s consumer key, consumer secret key, access token, 
and secret access token. These will be used in the next step. 

B. Sentiment Keywords and File-Reading 

The next step is designing positive and negative keywords 

to gauge the emotional level of a certain tweet. This will be 

implemented as file .txt, and for the sake of simplicity will 

exclude factors such as double negatives and sarcasm, thereby 

relying on the fundamental assumption that the tweeter tweets 

their opinion in straightforward manner. The keywords are 

implemented in English. 

The first is the positive keywords, written in the file 

positive.txt, as follows. 
fun 

enjoy 

love 

relax 

glad 

happy 

nice 

good 

merry 

jolly 

ecstatic 

Next is the negative keywords, keywords which express 

the tweeter’s negative emotion. They’re written in 

negative.txt, as follows. 
horrible 

awful 

bad 

terrible 

annoyed 

sad 

stuck 

mad 

angry 

trapped 

worst 

Finally, all files involved will be read into a readFile 

method, which receives the parameter of the file’s directory 
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before converting the file of .txt format into an array of lines. 

The method is as follows. 
def readFile(filepath): 

        f = open(filepath, 'r') 

        x = f.readlines() 

        f.close() 

        return x 

 

C. Knuth-Morris-Pratt Algorithm 

The next step of the implementation is the code for Knuth-
Morris-Pratt Algorithm, the pattern-matching algorithm applied 
in this case.  

Broadly speaking, the KMP algorithm can be divided into 
the main function and the border function. The border 
function’s role is to determine the size of the largest prefix in 
the text that is also the largest suffix in that text. 

Below is the implementation of the KMP main function: 
def KMPSearch(pat, txt):  

    m = len(pat)  

 n = len(txt) 

 fail = self.computeFail(pat) 

 i = 0 

 j = 0 

 while (i < n): 

    if (pat[j].casefold() == 

txt[i].casefold()): 

        print(pat[j].casefold()) 

        if (j == m - 1): 

            return i - m + 1 

            i+=1 

            j+=1 

        elif (j > 0): 

            j = fail[j-1] 

        else: 

             i+=1 

        return -1 

 The next is the implementation of the KMP border 
function: 

def computeFail(self, pat): 

  fail = [0]*len(pat) 

  fail[0] = 0 

  m = len(pat) 

  j = 0  

  i = 1 

  while (i < m): 

       if (pat[j].casefold() == 

pat[i].casefold()): 

           fail[i] = j + 1 

           i+=1 

           j+=1 

           elif (j > 0): 

               j = fail[j-1] 

           else: 

               fail[i] = 0 

               i+=1 

   return fail 

 

D. Twitter API 

The next step is building the Twitter client to acquire 

tweets that will be analyzed by the sentiment analyzer[5]. The 

first preparation for this step is ensuring that Tweepy package 

is already imported, as the following. Regex will also need to 

be imported in order to clean the tweets. Regex already had a 

built-in package in Python which could be called by ‘re’. 
import tweepy 

import re 

 The next step is creating a class of a Twitter client, which 
contains all the methods necessary for sentiment analysis 
(including the KMP algorithm above). The client will have an 
attribute of an array of positive keywords and of negative 
keywords, respectively. Also, the client will be initialized 
through the consumer key, consumer secret key, access token, 
and secret access token that previously had been saved when 
the app is created. Then the initializer will also attempt to 
authenticate these keys and tokens. 

class TwitterClient(object): 

  pospat = [] 

  negpat = [] 

  def __init__(self):  

      consumer_key = XXXX 

      consumer_secret = XXXX 

      access_token = XXXX 

      access_token_secret = XXXX  

      try:  

       self.auth = 

OAuthHandler(consumer_key, 

consumer_secret)            

self.auth.set_access_token(access_token, 

access_token_secret) 

       self.api = tweepy.API(self.auth)  

       except:  

            print("Error: Authentication 

Failed") 

 The next method to create inside the client is a tweet 
cleaner. Using regular expression, this will remove links and 
special characters for the tweet so that it may be processed in a 
more simplified manner. 

def clean_tweet(self, tweet): 

        return ' '.join(re.sub("(@[A-Za-

z0-9]+)|([^0-9A-Za-z\t])|(\w+:\/\/\S+)", " 

", tweet).split()) 

 The next method to create is intended to return certain 
sentiments expressed inside the tweet according to the 
parameters already defined (namely, positive and negative 
keywords). 
 The method is implemented as follows: the text will iterate 
through each keyword, searching whether they contain the 
positive or negative keyword. If the word is acquired, then the 
tweet’s sentiment will be set depending on whether the word is 
positive or negative. If none exists, then it will be categorized 
as neutral instead. The sentiment is returned in the form of a 
string. 
 The implementation in Python is as the following. 
def get_tweet_sentiment(self, tweet): 

  post = -1 

  neg = -1 
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  text = self.clean_tweet(tweet) 

 for i in range(len(self.pospat)): 

        checkpost = 

self.KMPSearch(self.pospat[i], text) 

      if (checkpost != -1): 

         post = checkpost 

         break 

       if (post == -1): 

          for j in 

range(len(self.negpat)): 

          checkneg = 

self.KMPSearch(self.negpat[j], text) 

           if (checkneg != 1): 

               neg = checkneg 

               break 

   if (post != -1): 

            return 'positive' 

   elif (neg != -1): 

            return 'negative' 

   else: 

            return 'neutral' 

 The next is the function to fetch and parse tweets. The 
function will call Twitter API to fetch tweets, storing them in 
an empty array. Then it will parse tweets acquired one-by-one. 
As the tweets are being parsed, it will acquire the tweet’s full 
text as well as the sentiment acquired from that tweet through 
get_tweet_sentiment() function. 
 The full implementation of the function is as follows. 
def get_tweets(self, query, count = 10): 

 tweets = []  

 try: 

    fetched_tweets = self.api.search(q 

= query, count = count, 

tweet_mode='extended') 

    for tweet in fetched_tweets:  

        parsed_tweet = {} 

        parsed_tweet['text'] = 

tweet.full_text 

        parsed_tweet['sentiment'] = 

self.get_tweet_sentiment(tweet.full_text) 

        if tweet.retweet_count > 0: 

           if parsed_tweet not in 

tweets:                   

            tweets.append(parsed_tweet)  

        else:             

tweets.append(parsed_tweet)  

            return tweets  

 

   except tweepy.TweepError as e: 

         print("Error : " + str(e)) 

 Last but not least is the implementation of the main() 
function, which will run when the program is called. The main 
will read positive.txt and negative.txt to the global array 
attributes. For query used for Twitter search, we will use 3 of 
most popular COVID-19 hashtags: #pandemicin5words, 
#stayhome, and #quarantineandchill. 
 After entering the query, the result will display the 
percentage of positive, negative, and neutral tweets, 
respectively. Also, the result will also print select chosen 
tweets that are perceived to be positive and negative. 
 The implementation in Python is as the following. 

def main(): 

  api = TwitterClient() 

  api.pospat = 

api.readFile("positive.txt") 

  api.negpat = 

api.readFile("negative.txt") 

  print("Enter your query: ") 

  tweets = api.get_tweets(query = 

"#stayhome", count = 100) + 

api.get_tweets(query = 

"#quarentineandchill", count = 100) +  

  api.get_tweets(query = 

"#pandemicin5words", count = 1000)  

  ptweets = [tweet for tweet in tweets 

if tweet['sentiment'] == 'positive'] 

  print("Positive tweets percentage: {} 

%".format(100*len(ptweets)/len(tweets))) 

    ntweets = [tweet for tweet in 

tweets if tweet['sentiment'] == 

'negative']  

  print("Negative tweets percentage: {} 

%".format(100*len(ntweets)/len(tweets)))  

  print("Neutral tweets percentage: {} 

%".format(100*(len(tweets) - len(ntweets) 

- len(ptweets))/len(tweets)))  

  print("\n\nPositive tweets:")  

    for tweet in ptweets[:10]:  

        print(tweet['text']) 

  print("\n\nNegative tweets:")  

    for tweet in ntweets[:10]:  

        print(tweet['text']) 

 At last, the main function could be initialized. 
if __name__ == "__main__":  

    main() 

IV. RESULT 

Below is the percentage-point result of the sentiment 
analysis: 

 

 Followed by a sample of positive tweets: 

 

 And then the negative ones. 
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V. CONCLUSION 

The pattern-matching Knuth-Morris-Pratt algorithm could 
be used to construct a crude sentiment analysis program for 
tweets using mere word-identification that is string-matched 
into the tweets. The end result the author acquires in general is 
that positive sentiment is more commonly expressed than 
negative ones, while most of the sentiments expressed are 
neutral. However, this is not without its flaws. 

One of the reason why positive sentiments might be more 
likely to be expressed might be the choosing of the queries. It is 
possible that users using the queries searched in the program 
are more likely to express positive sentiments during their 
quarantine/stay-at-home/lockdown. For this reason, in the 
future it might be possible to select for better queries, or allow 
query input directly to the program so that different sentiments 
might be assessed differently with different queries. 

Another thing to consider is that mere word-identification is 
generally far from being sufficient in expressing sentiments. 
Words might be preceded by negations that express the 
opposite sentiment overall (“This isn’t bad at all” will be 
counted as a negative sentiment in this program, for example). 
Therefore, the algorithm needs more fine-grained, 
comprehensive analysis to produce more accurate results. 

Regardless, sentiment analysis of COVID-19 quarantine 
tweets might express general public psychological health and 
opinion on the crisis, which might be useful for policy-making 

in response to this pandemic. This paper is intended, at the very 
least, to be a stepping stone for this scheme. 
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