
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

COVID-19 Quarantine Tweets Sentiment Analysis

using Knuth-Morris-Pratt Algorithm

Faris Muhammad Kautsar 13518105 (Author)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): farismuhammad8201@gmail.com

Abstract—The pandemic of COVID-19 had drastically altered

human interactions and activities, with the scope and impact that

might be approximately gauged through social media activities.

Assessing the sentiments expressed within these social media

activities might be one of the factors considered in making policy

responses in the pandemic. In this paper the author will

demonstrate a simple sentiment analysis of tweets made in

context of COVID-19 quarantine using the pattern-matching

Knuth-Morris Pratt algorithm.

Keywords—COVID-19; Knuth-Morris-Pratt; String-Matching;

Sentiment Analysis; Opinion Mining

I. INTRODUCTION

Few had anticipated in the New Year’s Eve of 2020 that in
a few months, human activities and interactions will be
drastically overhauled, transformed, overturned, and global
economy crippled by the fear of a contagious global outbreak.
Although SARS-CoV-19 was first identified in Wuhan in
December 2019, very few recognized the microbe’s
catastrophic potential, even among national governments and
esteemed international institutions.

Within the space of approximately five months since the
strain’s first identification, the virus had infected at least over
three million individuals globally, killing hundreds of
thousands. Nearly two months has passed since it is declared as
a global pandemic. The virus had since shifted away from its
native homeland in the central Chinese Mainland, ravaging
picturesque tourist spots of Spain and northern regions of Italy,
shutting down the global financial center of New York City,
putting billions worldwide into de facto house arrest as
governments scramble into increasingly draconian measures to
prevent uncontrollable outbreak in their territory.

It is safe to say that the pandemic had changed the rhythm
of human activities like it had never been. The freefall of stock
exchanges, unemployment spikes, and complete shutdown of
once-bustling public spaces and commercial establishments
gave obvious hints on the ongoing new normal. Of course, it is
possible that the transformation is mere temporary
readjustment. It is highly likely that life will return to normalcy
immediately as the virus recedes through one way or another:
pressured into extinction through herd immunity, vanquished
by new vaccines, or merely having its outbreak cycle halted

through aggressive lockdown. Which policy is the most
prudent is, of course, heavily contested by many.

In fact, the role of policy—especially responses from
central national governments and international agencies—is
also very important in the current trajectory of events. As
humans are now living wealthier than they have ever been in
history, the governments have more resources than ever in
employing the means necessary to deal with the pandemic as
they see fit. Past pandemics faced much weaker, poorer
governments, incapable to do anything against what was
practically a wrathful act of God. Current governments are
more capable than ever to stare the eye of the storm.

The problem is, as the world has barely passed the first
wave of the pandemic’s infection, no one has certain idea about
the actual, overall effect of any of the policies, let alone
assessing their unintended consequences.

 For example, as most governments embark on limiting
activities outside home, it remains unknown whether this
significantly affects the psychological health of their citizens
one way or another. Of course, this should not be the only thing
taken into account in policy decisions—plenty of things, such
as the probability of uncontrollable outbreak in itself, also
matters. However, it could be factored into one of the variables
considered when undertaking a pandemic policy.

 There are several ways to identify the state of psychological
health during “quarantine” or “lockdown” policy, although
each has their own flaws. In this paper, we will analyze popular
sentiments during COVID-19 isolation through crude
sentiment analysis using Knuth-Morris-Pratt algorithm.

II. FUNDAMENTAL THEORY

A. Twitter

Twitter is a microblogging and social networking service
created in 2006 by Jack Dorsey, Noah Glass, Biz Stone, and
Evan Williams[1]. Today, Twitter is one of the most popular
social media platforms available, with over 100 million daily
users and 500 million tweets daily.

Within Twitter, users might send and interact with short
messages known as “tweets”. Tweets were restricted up to 280
characters, up to 140 characters prior to 2017. Registered users
might interact with the tweets in various ways: post, like, or

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

retweet, but unregistered users might only read tweets from
non-protected accounts.

For its implementation, Twitter relies mostly on open-
source software. Twitter web interface uses Ruby on Rails
framework, deployed on a performance-enhanced Ruby
Enterprise Edition implementation of Ruby. The service’s
application programming interface (API) also allows other web
services and applications to integrate with Twitter.

Users might access Twitter through its website interface,

Short Message Service (SMS), or its mobile application.

B. Sentiment Analysis

Sentiment analysis is contextual mining of text which
identifies and extracts subjective information in source material
using natural language processing, text analysis, computational
linguistics, biometrics, and other such methods[2]. It analyzes
people’s opinions, sentiments, evaluations, appraisals,
attitudes, and emotions towards certain entities[3].

There are also terms that are broadly similar in definition
such as sentiment analysis, opinion mining, opinion extraction,
sentiment mining, subjectivity analysis, affect analysis, emotion
analysis, review mining, etc. They generally fall under the
same umbrella as sentiment analysis, and this is the term that is
more commonly used.

In general, sentiment analysis has been instigated at three
main levels:

• Document level, classifying whether a whole
opinion document representing a positive or
negative sentiment. This particular task is known
as document-level sentiment classification.

• Sentence level, determining whether each sentence
expressed opinion that can be roughly summarized
into three categories: positive, negative, or neutral.

• Entity and aspect level, also known as feature
level (feature-based opinion mining and
summarization). Performing finer-grained
analysis, such that the assessment is directed
directly at the opinion itself instead of the
language structure. The goal of this level of
analysis is to discover sentiments on entities
and/or their aspects.

 Broadly speaking, there are two kinds of opinions. Regular
opinions express a sentiment only on an particular entity or an
aspect of the entity. Comparative opinions, meanwhile,
compare multiple entities based on some of their shared
aspects.

C. String-Matching Algorithm

String-matching algorithm is an algorithm intended to
search a certain pattern or string inside a larger pattern or
text[4]. The string-matching problem is the problem of finding
all valid shifts with which a given pattern P occurs in a given
text T.

Figure 1. Source: Cormen et al., Introduction to Algorithms.

The most basic, brute-force algorithm to resolve the string-
matching problem is often called the naïve algorithm (see Fig.
1). The naive algorithm finds all valid shifts using a loop that
checks the condition P[1 . .m] = T [s + 1 . . s + m] for each of
the n − m + 1 possible values of s. The naive string-matching
procedure can be interpreted graphically as sliding a “template”
containing the pattern over the text, noting for which shifts all
of the characters on the template equal the corresponding
characters in the text. Procedure naive string-matcher takes
time O((n − m + 1)m), and this bound is tight in the worst case.

For obvious reason, the naïve algorithm is not the optimal
procedure for this problem.

D. Knuth-Morris-Pratt Algorithm

One of the algorithms that might be applied to solve string-
matching problems is the Knuth-Morris-Pratt algorithm, often
abbreviated as the KMP algorithm. The KMP algorithm is an
algorithm that uses preprocessing approach of patterns to avoid
trivial comparisons. Unlike the brute force or naïve algorithm,
it avoids recomputing matches. It compares string from left to
right, and uses linear time for exact matching.

Figure 2. Source: Cormen et al., Introduction to

Algorithms.

The Knuth-Morris-Pratt algorithm utilizes something
known as the prefix function (see Fig. 2). The prefix function π
for a pattern encapsulates knowledge about how the pattern
matches against shifts of itself. This information can be used to
avoid testing useless shifts in the naive pattern-matching
algorithm or to avoid the precomputation of δ for a string-
matching automaton.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

The Knuth-Morris-Pratt algorithm is given in the
pseudocode as the following. The first is the main KMP-
Matcher algorithm:

KMP-MATCHER(T, P)

1. n ← length[T]

2. m ← length[P]

3. π ← COMPUTE-PREFIX-FUNCTION(P)

4. q ← 0 ✄ Number of characters

matched.

5. for i ← 1 to n ✄ Scan the text from

left to right.

6. do while q > 0 and P[q + 1] = T [i
]

7. do q ← π[q] ✄ Next character does

not match.

8. if P[q + 1] = T [i]

9. then q ← q + 1 ✄ Next character

matches.

10. if q = m ✄ Is all of P matched?

11. then print “Pattern occurs with
shift” i − m

12. q ← π[q] ✄ Look for the next match.

 The next algorithm to be implemented in the pseudocode is
the COMPUTE-PREFIX-FUNCTION, which is the
border/prefix function intended to calculate the longest prefix
which is also the suffix in the pattern.

COMPUTE-PREFIX-FUNCTION(P)

1. m ← length[P]

2. π[1] ← 0

3. k ← 0

4. for q ← 2 to m

5. do while k > 0 and P[k + 1] = P[q]

6. do k ← π[k]

7. if P[k + 1] = P[q]

8. then k ← k + 1

9. π[q] ← k

10. return π

 The running time of COMPUTE-PREFIX-FUNCTION is
O(m). Since the number of outer-loop iterations is
O(m), and since the final potential function is at least as great
as the initial potential function, the total actual worst-case
running time of COMPUTE-PREFIX-FUNCTION is
O(m). Similarly, the running time of KMP-MATCHER is
O(n). Therefore, the running time of KMP algorithm overall is
O(m+n).

III. IMPLEMENTATION

This section will explain the strategy and implementation of
Opinion Mining for COVID-19 quarantine tweets using Knuth-
Morris-Pratt algorithm written in Python language.

A. Preparation

For the preparation, Tweepy package for Python must be
downloaded through pip command like the following:

pip install tweepy

 This is necessary as Tweepy is the Python client for the
official Twitter API.
 In order to fetch tweets through Twitter API, an user needs
to register an app through their twitter account. This is done
through accessing https://developer.twitter.com/en/apps and
afterwards filling the application details in order to create an
app.
 After the app has been created, the user then might access
the app’s consumer key, consumer secret key, access token,
and secret access token. These will be used in the next step.

B. Sentiment Keywords and File-Reading

The next step is designing positive and negative keywords

to gauge the emotional level of a certain tweet. This will be

implemented as file .txt, and for the sake of simplicity will

exclude factors such as double negatives and sarcasm, thereby

relying on the fundamental assumption that the tweeter tweets

their opinion in straightforward manner. The keywords are

implemented in English.

The first is the positive keywords, written in the file

positive.txt, as follows.
fun

enjoy

love

relax

glad

happy

nice

good

merry

jolly

ecstatic

Next is the negative keywords, keywords which express

the tweeter’s negative emotion. They’re written in

negative.txt, as follows.
horrible

awful

bad

terrible

annoyed

sad

stuck

mad

angry

trapped

worst

Finally, all files involved will be read into a readFile

method, which receives the parameter of the file’s directory

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

before converting the file of .txt format into an array of lines.

The method is as follows.
def readFile(filepath):

 f = open(filepath, 'r')

 x = f.readlines()

 f.close()

 return x

C. Knuth-Morris-Pratt Algorithm

The next step of the implementation is the code for Knuth-
Morris-Pratt Algorithm, the pattern-matching algorithm applied
in this case.

Broadly speaking, the KMP algorithm can be divided into
the main function and the border function. The border
function’s role is to determine the size of the largest prefix in
the text that is also the largest suffix in that text.

Below is the implementation of the KMP main function:
def KMPSearch(pat, txt):

 m = len(pat)

 n = len(txt)

 fail = self.computeFail(pat)

 i = 0

 j = 0

 while (i < n):

 if (pat[j].casefold() ==

txt[i].casefold()):

 print(pat[j].casefold())

 if (j == m - 1):

 return i - m + 1

 i+=1

 j+=1

 elif (j > 0):

 j = fail[j-1]

 else:

 i+=1

 return -1

 The next is the implementation of the KMP border
function:

def computeFail(self, pat):

 fail = [0]*len(pat)

 fail[0] = 0

 m = len(pat)

 j = 0

 i = 1

 while (i < m):

 if (pat[j].casefold() ==

pat[i].casefold()):

 fail[i] = j + 1

 i+=1

 j+=1

 elif (j > 0):

 j = fail[j-1]

 else:

 fail[i] = 0

 i+=1

 return fail

D. Twitter API

The next step is building the Twitter client to acquire

tweets that will be analyzed by the sentiment analyzer[5]. The

first preparation for this step is ensuring that Tweepy package

is already imported, as the following. Regex will also need to

be imported in order to clean the tweets. Regex already had a

built-in package in Python which could be called by ‘re’.
import tweepy

import re

 The next step is creating a class of a Twitter client, which
contains all the methods necessary for sentiment analysis
(including the KMP algorithm above). The client will have an
attribute of an array of positive keywords and of negative
keywords, respectively. Also, the client will be initialized
through the consumer key, consumer secret key, access token,
and secret access token that previously had been saved when
the app is created. Then the initializer will also attempt to
authenticate these keys and tokens.

class TwitterClient(object):

 pospat = []

 negpat = []

 def __init__(self):

 consumer_key = XXXX

 consumer_secret = XXXX

 access_token = XXXX

 access_token_secret = XXXX

 try:

 self.auth =

OAuthHandler(consumer_key,

consumer_secret)

self.auth.set_access_token(access_token,

access_token_secret)

 self.api = tweepy.API(self.auth)

 except:

 print("Error: Authentication

Failed")

 The next method to create inside the client is a tweet
cleaner. Using regular expression, this will remove links and
special characters for the tweet so that it may be processed in a
more simplified manner.

def clean_tweet(self, tweet):

 return ' '.join(re.sub("(@[A-Za-

z0-9]+)|([^0-9A-Za-z\t])|(\w+:\/\/\S+)", "

", tweet).split())

 The next method to create is intended to return certain
sentiments expressed inside the tweet according to the
parameters already defined (namely, positive and negative
keywords).
 The method is implemented as follows: the text will iterate
through each keyword, searching whether they contain the
positive or negative keyword. If the word is acquired, then the
tweet’s sentiment will be set depending on whether the word is
positive or negative. If none exists, then it will be categorized
as neutral instead. The sentiment is returned in the form of a
string.
 The implementation in Python is as the following.
def get_tweet_sentiment(self, tweet):

 post = -1

 neg = -1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 text = self.clean_tweet(tweet)

 for i in range(len(self.pospat)):

 checkpost =

self.KMPSearch(self.pospat[i], text)

 if (checkpost != -1):

 post = checkpost

 break

 if (post == -1):

 for j in

range(len(self.negpat)):

 checkneg =

self.KMPSearch(self.negpat[j], text)

 if (checkneg != 1):

 neg = checkneg

 break

 if (post != -1):

 return 'positive'

 elif (neg != -1):

 return 'negative'

 else:

 return 'neutral'

 The next is the function to fetch and parse tweets. The
function will call Twitter API to fetch tweets, storing them in
an empty array. Then it will parse tweets acquired one-by-one.
As the tweets are being parsed, it will acquire the tweet’s full
text as well as the sentiment acquired from that tweet through
get_tweet_sentiment() function.
 The full implementation of the function is as follows.
def get_tweets(self, query, count = 10):

 tweets = []

 try:

 fetched_tweets = self.api.search(q

= query, count = count,

tweet_mode='extended')

 for tweet in fetched_tweets:

 parsed_tweet = {}

 parsed_tweet['text'] =

tweet.full_text

 parsed_tweet['sentiment'] =

self.get_tweet_sentiment(tweet.full_text)

 if tweet.retweet_count > 0:

 if parsed_tweet not in

tweets:

 tweets.append(parsed_tweet)

 else:

tweets.append(parsed_tweet)

 return tweets

 except tweepy.TweepError as e:

 print("Error : " + str(e))

 Last but not least is the implementation of the main()
function, which will run when the program is called. The main
will read positive.txt and negative.txt to the global array
attributes. For query used for Twitter search, we will use 3 of
most popular COVID-19 hashtags: #pandemicin5words,
#stayhome, and #quarantineandchill.
 After entering the query, the result will display the
percentage of positive, negative, and neutral tweets,
respectively. Also, the result will also print select chosen
tweets that are perceived to be positive and negative.
 The implementation in Python is as the following.

def main():

 api = TwitterClient()

 api.pospat =

api.readFile("positive.txt")

 api.negpat =

api.readFile("negative.txt")

 print("Enter your query: ")

 tweets = api.get_tweets(query =

"#stayhome", count = 100) +

api.get_tweets(query =

"#quarentineandchill", count = 100) +

 api.get_tweets(query =

"#pandemicin5words", count = 1000)

 ptweets = [tweet for tweet in tweets

if tweet['sentiment'] == 'positive']

 print("Positive tweets percentage: {}

%".format(100*len(ptweets)/len(tweets)))

 ntweets = [tweet for tweet in

tweets if tweet['sentiment'] ==

'negative']

 print("Negative tweets percentage: {}

%".format(100*len(ntweets)/len(tweets)))

 print("Neutral tweets percentage: {}

%".format(100*(len(tweets) - len(ntweets)

- len(ptweets))/len(tweets)))

 print("\n\nPositive tweets:")

 for tweet in ptweets[:10]:

 print(tweet['text'])

 print("\n\nNegative tweets:")

 for tweet in ntweets[:10]:

 print(tweet['text'])

 At last, the main function could be initialized.
if __name__ == "__main__":

 main()

IV. RESULT

Below is the percentage-point result of the sentiment
analysis:

 Followed by a sample of positive tweets:

 And then the negative ones.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

V. CONCLUSION

The pattern-matching Knuth-Morris-Pratt algorithm could
be used to construct a crude sentiment analysis program for
tweets using mere word-identification that is string-matched
into the tweets. The end result the author acquires in general is
that positive sentiment is more commonly expressed than
negative ones, while most of the sentiments expressed are
neutral. However, this is not without its flaws.

One of the reason why positive sentiments might be more
likely to be expressed might be the choosing of the queries. It is
possible that users using the queries searched in the program
are more likely to express positive sentiments during their
quarantine/stay-at-home/lockdown. For this reason, in the
future it might be possible to select for better queries, or allow
query input directly to the program so that different sentiments
might be assessed differently with different queries.

Another thing to consider is that mere word-identification is
generally far from being sufficient in expressing sentiments.
Words might be preceded by negations that express the
opposite sentiment overall (“This isn’t bad at all” will be
counted as a negative sentiment in this program, for example).
Therefore, the algorithm needs more fine-grained,
comprehensive analysis to produce more accurate results.

Regardless, sentiment analysis of COVID-19 quarantine
tweets might express general public psychological health and
opinion on the crisis, which might be useful for policy-making

in response to this pandemic. This paper is intended, at the very
least, to be a stepping stone for this scheme.

VIDEO LINK AT YOUTUBE

https://youtu.be/o_w3xkvwEhQ

ACKNOWLEDGMENT

The author would like to thank God for His blessings and
guidance in allowing the author to finish the paper. The author
would also thank Dr. Ir. Rinaldi Munir, M.T., as the lecturer of
Algorithm Design (IF2211), the author’s family, and friends
for their support in the making of this paper.

REFERENCES

[1] https://esrc.ukri.org/research/impact-toolkit/social-
media/twitter/what-is-twitter/

[2] https://towardsdatascience.com/sentiment-analysis-
concept-analysis-and-applications-6c94d6f58c17

[3] Bing Liu. “Sentiment Analysis and Opinion Mining”,
Morgan & Claypool Publishers, May 2012.

[4] Cormen, Thomas; Leiserson, Charles E.; Rivest, Ronald
L.; Stein, Clifford. “Introduction to Algorithms (Second
ed.)”. MIT Press and McGraw-Hill, 2001.

[5] https://www.geeksforgeeks.org/twitter-sentiment-
analysis-using-python/

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2020

Faris Muhammad Kautsar 13518105

