
Server Allocation using Dinic’s Algorithm

Yonatan Viody 13518120
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

yonatanviody@gmail.com

Abstract—Nowadays, the usage of servers are everywhere.
For companies that have many customers, the need for servers is
crucial and sometimes is not fulfilled because the demand is
higher than the resources’ availability. We need to find a better
way to allocate our servers to give the maximum throughput. In
this paper, one method for server allocation will be discussed as a
max flow problem which can be solved by using Dinic's
algorithm.

Keywords—server allocation; max flow; Dinic’s algorithm;

I. INTRODUCTION
The COVID-19 outbreak, that's happening right now,

is changing everything. Before COVID-19 appeared, people
liked to go hang out, shop, work, and play together. But now,
people need to maintain a distance between each other for
their safety. To reduce the spreading rate of COVID-19, some
countries are doing lockdown and social distancing. Work,
study, and some other activities are disturbed by this outbreak.
Everything depends on online applications now and that's a
fact.

Because of social distancing, people intend to use
online applications more often. Some of them are online
meeting applications. Online meeting applications can be
considered as server intensive applications. That's why online
meeting applications require servers, not just two or
centralized in one country, but many and distributed in
multiple countries for better experiences. For example, when
we are using google meet, other people are also using them,
but we don't feel any differences. That's because your meeting
and other meetings are allocated on different servers. And not
just online meetings, online games are also using many servers
so there is no significant delay between user actions.

There are many ways on how to allocate servers.
Commonly, servers are allocated using 2 approaches, dynamic
and static. Both of them are efficient in a particular situation.
We will be discussing both server allocation in this paper.
Static server allocation is preferred because of many reasons.
Here is an example to see the reason why static server
allocation is much preferred than dynamic.

Image 1 Simple dynamic server allocation

There are 2 countries from the example above, which
are A and B. Country A has 100 servers and 4000 incoming
connections. Country B has 400 servers and 2000 incoming
connections. Let’s assume that country A’s incoming
connections happen before country B. So if we allocate
servers dynamically, we can say that 100 servers of country A
and 400 servers of country B are allocated for 500 incoming
connections from country A and we need to wait for 3500
more incoming connections to be fulfilled. You can see that
country B’s incoming connections are waiting too long for
them to be fulfilled. And what if we used a time-shared
approach or prioritized the connections that are waiting too
long or something else? These approaches are not giving us
any optimal solution and are expensive, so why do we even
bother to consider them? We can consider using both
approaches at the same time, but how to allocate them?
Therefore, in this paper, the writer wants to find the numbers
of servers needed for static and dynamic allocation to get the
best result.

II. THEORETICAL FRAMEWORK

A. Graph
A graph is a representation of discrete objects and

their connections. A graph consists of vertices and edges.
Vertices represent discrete objects and edges represent their
connections.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Graphs can be divided into two types based on the
direction orientation on edge, which are:

a. Undirected graph

Graphs, whose edges don’t have direction orientation,
are undirected graphs.

b. Directed graph

Graphs, whose edges have direction orientation, are
directed graphs.

Here is an example of an undirected graph and a
directed graph.

Image 2 Example of directed and undirected graph

B. Breadth-First Search Algorithm
Breadth-first search (BFS) algorithm is an algorithm

for traversing graph data structures. BFS algorithm visits all
adjacent vertices from the current vertex first and repeatedly
visits the new adjacent vertices from the old adjacent vertices
after all the old adjacent vertices are visited, until it arrives at
the goal vertex or visited all vertices. BFS algorithm is
implemented using a queue because the first vertex that arrives
is the first vertex that is served by the algorithm. Commonly,
the BFS algorithm steps from vertex s are as follows:

1. Visit vertex s
2. Visit all adjacent vertices from vertex s
3. Visit unvisited vertices that are adjacent from vertices

before
4. Repeat until all vertices are visited

Image 3 Example of BFS (Source:
https://www.freelancinggig.com/blog/wp-content/uploads/201

9/02/BFS-and-DFS-Algorithms.png)

C. Depth-First Search Algorithm
Depth-first search (DFS) algorithm is also an

algorithm for traversing graph data structures. DFS algorithm
explores the most recently discovered vertex and leaves some
discovered vertices behind. DFS algorithm is implemented
using a stack, because the last discovered vertex is the first
vertex that is served by the algorithm. Commonly, the DFS
algorithm steps from vertex s are as follows:

1. Visit vertex s
2. Visit vertex a that is adjacent from vertex s
3. Repeat step 2 for vertex a and so on.
4. If there is no unvisited vertex, backtrack to the latest

vertex and repeat step 2.
5. Stop until all vertices are visited.

Image 4 Example of DFS (Source:

https://www.freelancinggig.com/blog/wp-content/uploads/201
9/02/BFS-and-DFS-Algorithms.png)

D. Max-flow Problem
Max-flow or maximum flow problem is a problem

where we wish to compute the greatest rate at which we can
transfer flow from a source to a sink. This problem can be
solved by some algorithms, including Dinic’s algorithm. The
idea of this problem is that an edge is like a pipe that has a
capacity and a flow that can’t be higher than its capacity. For
example, we have a flow network graph given below.

Image 5 Example of a flow network

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

From the flow network, we can see numbers that
represent the capacity and the flow on a certain edge. Initially,
there is no flow in all edges. We want to find the maximum
rate of flow that can be sent from the source and received by
the sink. We can see that the answer is 10, shown in the graph
below.

Image 6 Maximum flow in the flow network

E. Level Graph
A level graph is a graph where the vertices are

marked by a certain number that indicates its level. The idea is
that a level 3 vertex can only be accessed from level 2
vertices. This way, we can use a level graph to show us the
augmenting paths from the source to the sink in the flow
network. Level graphs can be constructed using BFS
algorithm because a vertex’s level is the shortest distance from
the source vertex to the vertex, which can be computed using
BFS.

F. Blocking Flow

A blocking flow is a condition when every path from
source to sink contains a saturated edge or more. Saturated
edges are edges in a flow network graph whose flow values
are equal to their capacities.

Image 7 A flow network graph

For example, given a flow network graph as above,
we can see that there are 2 saturated edges, which are edge s-a
and b-t, and 3 paths from source to sink, which are s-a-t, s-b-t,

and s-a-b-t, that have a saturated edge or more. Therefore we
can say that a blocking flow has occurred.

G. Dinic’s Algorithm
Dinic’s algorithm is one of the algorithms that are

used to solve max-flow problems. The general approach of
Dinic's algorithm is for a flow network graph G with n vertices
and m edges, repeatedly finds a blocking flow and effectively
increases flow along all paths from the source to the sink
(augmenting paths) for the corresponding level graph
simultaneously. Dinic’s algorithm steps are as follows:

1. Construct a level graph from the source to the sink.
2. Check if an augmenting path exists or not. If not,

stop.
3. Compute a blocking flow by sending flow using our

level graph.
4. Repeat from step 1 until there is no augmenting path

left.

Dinic’s algorithm time complexity is , O EV(2)

where is the time needed to compute a blocking flow O (V E)
and the constructions of the level graph could reach E-1 times.

H. Server Allocation
As discussed before, there are 2 approaches for server

allocation based on the time of allocation, static and dynamic.
Static server allocation happens before the runtime, where a
certain number of servers has already been assigned to an area.
Dynamic server allocation happens at the runtime, where a
certain number of servers can be allocated for an area if there
is a request. There is another approach for server allocation,
the hybrid between static and dynamic, where we allocated a
certain number of servers to an area, but spared some of the
servers for dynamic server allocation.

III. PROBLEM ANALYSIS

A. Decomposition
Server allocation can be represented as a flow

network graph. We can represent each country as a vertex.
Each country has incoming connections and servers. Incoming
connections from a country are represented by the edge from
the source to the country. The maximum servers that can be
allocated from a country are represented by the edge from the
country to the sink. A country can use other countries’ servers
if they allow the country to use their servers. This can be
represented by the edge from one country to another. We will
need to add 2 additional nodes, the source (as World) and the
sink (as Main Server).

The answers we seek are the amount of static and
dynamic allocation, and how we allocate the servers statically.
The amount of static and dynamic allocation can be shown by

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

simply print out the output, but we need a visualization to
show how we allocate the servers statically

B. Planning
We will use python programming language to solve

this problem. To implement Dinic’s algorithm, we will need 2
components, which are level graph constructor and flow
transmitter. We want to construct a level graph using BFS
algorithm and send a flow using DFS algorithm based on the
level graph. For level graph construction, we just want to get
the shortest augmenting paths, so we will stop until it reaches
the sink. For flow sending, we will just DFS each augmenting
path and make a reverse path to provide a possibility to retract
flow in an edge.

For our visualization, we can use matplotlib and
networkx library. What we want is to visualize a flow
network, which can be represented using a weighted directed
graph.

IV. IMPLEMENTATION

A. Graph Representation
For the implementation, the graph representation, that

is used, is a list of nodes that contain adjacent nodes’ names
and their edges’ capacities given below. The adjacent data is
represented using a dictionary with names as keys and
capacities as values.

class Node:

 def __init__(self, name):

 self.name = name

 self.adj = {}

 def addEdge(self, name, cap):

 self.adj[name] = cap

B. Level Graph Constructor
For constructing the level graph, we can use BFS

algorithm given below. We will assign the level based on the
depth from the source node and stop the BFS until it reaches
our destination node. If a node is already given a level value or
its edge capacity is 0, we don’t want to visit it at all.

BFS for setup level

def bfs(source, dest, nodes):

 q = Queue()

 q.put(source)

 level = {source: 0}

 visited = {}

 while (not q.empty()):

 name = q.get()

 if (name == dest):

 break

 if (name not in visited):

 visited[name] = True

 for x, cap in

nodes[name].adj.items():

 if (x not in level and cap >

0):

 level[x] = level[name] +

1

 q.put(x)

 return (name == dest, level)

C. Flow Transmitter
For sending the flow, we can use DFS algorithm

given below. We will do DFS based on our level graph
because the level graph represents our augmenting paths in our
flow network. By sending a flow, we can retract it, so we need
to construct reverse edges with the sent flow value as their
capacities.

DFS for sending flow

def dfsFlow(source, dest, level, depth,

flow, nodes):

 if (source == dest):

 return flow

 sum = 0

 for name, cap in

nodes[source].adj.items():

 if (name in level and level[name] ==

depth+1):

 t_flow = min(cap,flow)

 t_flow = dfsFlow(name, dest,

level, depth+1, t_flow, nodes)

 nodes[source].adj[name] -= t_flow

 if (source not in

nodes[name].adj):

 nodes[name].adj[source] =

t_flow

 else:

 nodes[name].adj[source] +=

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

t_flow

 sum += t_flow

 return sum

D. Dinic’s Algorithm
Here is the implementation of our Dinic’s algorithm.

We want to construct a level graph and see if it’s possible to
send a flow. If it’s possible, we just send flow simultaneously
using DFS. After there is no possible flow transfer left, we
return the max flow value that can be received by our
destination.

Dinic's Algorithm

def dinic(source, dest, nodes):

 possible, level = bfs(source, dest,

nodes)

 flow = 0

 while (possible):

 temp = dfsFlow(source, dest, level,

0, sys.maxsize, nodes)

 if (temp <= 0):

 break

 flow += temp

 possible, level = bfs(source, dest,

nodes)

 return flow

E. Main Program
Our main program will be the input handler and

construct the flow network graph based on the input. Don’t
forget to add two additional nodes (source and sink) to the
graph. After the graph is ready, we can call our Dinic’s
algorithm implementation and print out the result. And lastly,
we visualize the problem and the solution graph using our
visualizer as images. Full implementation can be seen in the
GitHub’s link.

V. TESTING

A. Test Cases
● Test Case 1

10
Indonesia 3 4
Zimbabwe 4 3
China 10 3
France 5 20

Singapore 8 10
US 3 4
England 4 3
Bangladesh 10 3
South Korea 5 20
Russia 8 10
5
Zimbabwe Indonesia 1
Singapore France 5
France China 3
Singapore China 4
Indonesia Singapore 100

Expected :

○ 50 static allocation
○ 10 dynamic allocation

Result :

● Test Case 2

3
Brazil 5 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Mongolia 8 200
Wales 2 5
2
Brazil Wales 100
Wales Brazil 2

Expected :

○ 15 static allocation
○ 2 dynamic allocation

Result :

● Test Case 3

3
Japan 100 60
Italia 30 50
Canada 57 70
2
Italia Japan 50
Canada Italia 20

Expected :

○ 180 static allocation
○ 7 dynamic allocation

Result :

B. Analysis
From the test results, we can see that the

implemented algorithm is indeed correct and able to solve
this problem with any given number of countries and
borrow relations. But, there are still weaknesses in this
program as follows:
1. The visualization is not the best because of

overlapping labels. We could fix this using another
visualization library that has better label placement.

2. For a case where 2 countries allow each other to
borrow servers (in test case 2), the implemented
algorithm will still give us the correct static and
dynamic allocation, but the flow network (from
visualization) is wrong because Dinic’s algorithm is
disoriented when a cycle, created from 2 edges,
exists.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

VI. CONCLUSION

Server allocation problem can be represented as a
max-flow problem and can be solved optimally using Dinic’s
algorithm as proven above. This shows that some real-life
problems can be represented as computer science problems
and can be solved using the correct algorithm. Even though
the problem has been solved, there is still room for
improvement, indicated from the test analysis. Further
research is needed to improve Dinic’s algorithm when a cycle,
created from 2 edges, exists, to always give the correct
solution in the form of network flow.

SOURCE CODE AT GITHUB
https://github.com/haverzard/CFF/tree/master/ServerAllocation

VIDEO LINK AT YOUTUBE

https://youtu.be/T1gKSVeGNek

ACKNOWLEDGMENT

The writer would like to thank Mr. Rinaldi Munir,
Ms. Masayu Leylia Khodra, and Ms. Nur Ulfa Maulidevi for
their guidance and patience in teaching algorithm strategies
course. Their lectures brought a lot of new insights about
algorithms and it has been an honor to learn from them.

REFERENCES

[1] How Stuff Works, "How to Host a Web Conference", accessed from
https://money.howstuffworks.com/business-communications/how-to-hos
t-a-web-conference.htm on April 20th, 2020.

[2] James A. Storer. An Introduction to Data Structures and Algorithms.
Berlin: Springer Science & Business Media, 2001, pp. 314.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. London: MIT
Press, 2009, pp. 586-612, 708-730.

[4] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating
System Concepts, Tenth Edition. New Jersey: Wiley, 2018, pp. 200-244.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang
saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 2 Mei 2020

Yonatan Viody 13518120

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://money.howstuffworks.com/business-communications/how-to-host-a-web-conference.htm
https://money.howstuffworks.com/business-communications/how-to-host-a-web-conference.htm

