
Depth-first Search Algorithm Implementation on
Detecting Possible Deadlocks on Operating Systems

Muhammad Fauzan Rafi Sidiq Widjonarto - 13518147
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

fauzanrafisidiq@gmail.com 13518147@std.stei.itb.ac.id

Abstract—Operating systems are inseparable in the modern
life, embedded in various Internet of Things and computers of
various sizes. They are used mainly for providing useful interface
to users, but one of the services the operating system provide is
resource allocation for processes. Upon these allocation processes,
a state called a deadlocked state can arise, where all process
involved is waiting for another forever, thus crashing the
operating system. Operating systems need to have a deadlock
avoidance mechanism to know whether the current state will
result in deadlocked state. In this paper, author will discuss the
implementation of depth-first search algorithm to a graph
modelled state of process to determine whether it will resulted in
a deadlock or not.

Keywords—depth-first search; deadlock; operating system;
resource allocation; graph modelling;

I. INTRODUCTION
Operating systems are the organizers of computers,

handling almost every aspect possible about a unit of
computer. The need of operating systems has arise, where all
kinds of devices and services has been embedded with some
level of digitalization need a form of operating system. Trends
in society about the Internet of Things (IoT) and
microcomputers have arise because of the repeated Fourth
Industrial Revolution narration. In effect, markets for various
operating systems for these devices have arise as well [1].

One of operating system’s service is the allocation of
resources to existing processes. Not only to ensure the process’
success, but also to synchronize processes of mutual resource
needs. This service is important for running various processes
in a computer, defining its usability in the real world. Thus,
this service and usage is instrumental in any computers.

According to Silberschatz [2], in a multiprogramming
environment, several processes may compete for a finite
number of resources. A process requests resources; if the
resources are not available at that time, the process enters a
waiting state. Sometimes, a waiting process is never again able
to change state, because the resources it has requested are held
by other waiting processes. This situation is called a deadlock.

To prevent this, operating systems have mechanisms to
avoid deadlock. One of them is to determine whether a state is

may result in deadlock or not from the current state of process
and resources. Provided these information, it is possible to
model the state as a graph, and from the model the
implementation of depth-first search algorithm to solve this
problem will be discussed further in this paper.

II. THEORETICAL FRAMEWORK
A. Graph

A graph is a discrete mathematical structure in which every
object defined on the graph is related to one another in
some configuration. The objects of the mathematical
abstraction corresponds in a graph is called vertices. The
representation of the connections of the objects, which is the
connection between the vertices, is called edges. Degree is
the amount of edges adjacent to a vertex.

Figure 1. Source:
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

For example, in figure 1, node 6 has a degree of 1,
while node 5 has a degree of 3. Two nodes are said to be
adjacent if they’re connected with the same edge. Node 6 and
node 4 are adjacent to each other, but node 6 and node 1
aren’t adjacent to each other.

Graph has many variations, but for modelling interactions
of objects there are three useful variations of graphs:

1. Undirected Graph, where the edges of the graph don’t
have any direction in the connection.

2. Directed Graph, where the edges of the graph
have direction in the connection.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

mailto:fauzanrafisidiq@gmail.com

3. Weighted Graph, where the graphs edges have a
number (the weight) is assigned to each edge. Such
weights might represent for example costs, lengths or
capacities.

Graph has been considered as one of the best mathematical
models because of its applicability in almost any problems. It
is also widely used as models because of vast amount
of “connectivity” problems in the modern world. Not just
in mathematics, but also in computer science to model
networks, sociology to model social circles and social
networks, and in network theory as a fundamental concept.

B. Resource Allocation on Operating Systems
On operating systems, resource allocation has been one of

the instrumental services that is important to be done right. If
not, then the underlying management of the operating system
is at best a failure. One of the reasons why operating systems
came to being is to organize and allocate resources available
for best use [2]. In that case, operating systems must have
tools to allocate available resources to be assigned to existing
processes.

One of ways to model processes trying to get resources is
using a graph. This model is called the Resource Allocation
Graph, illustrated in figure 2. This special graph has these
properties:

1. It has two types of nodes: one representing a process
and one representing a resource

2. The graph is a directed graph, where every nodes
always alternates in connectivity: a process node
always connect to resource node, and vice versa.

3. A resource nodes degree indicates its instance on the
underlying system: if it has a degree of one, then the
resource is instantiated exactly once, etc.

4. The direction of the edges has a special meaning: if it
is directed from a process node then it means that the
process wants to acquire a resource. If it is directed
towards a process node the it means that the resource
is already been acquired by the process

Figure 2. Source:
https://www.geeksforgeeks.org/resource-allocation-graph-rag-in-oper

ating-system/

When two or more process is trying to acquire an acquired
resource of one another, a state called deadlock has occured.

The processes involved cannot run or activated because it
waits for another, forever. Thus, at this point the program can
crash. With the graph model, a deadlock can be detected if
there is a cycle on the Resource Allocation Graph model. If the
model is a single instance resource model, then a cycle in the
system means the system is in a deadlocked state. But in a
multi instance model of the graph, a cycle means that a
deadlock may be occured, but requires further examination.
Thus, the deadlock prevention methodologies of the operating
system must prevent a cycle to be formed, or it must assess the
state to analyze a possible deadlock in the future.

C. Depth-first Search Algorithm
Depth-first search (DFS) algorithm is a graph-traversing

algorithm where the traversing order starts from “depth” first,
traversing on every child until it cannot be expanded anymore
and starts to backtrack, until all of the nodes connected are
visited.

DFS is used for many purposes and exists in many
different types to serve the purpose of the problem. But the
DFS algorithm has a general shape of algorithm, as the
following:

1. Initialize an array to indicate that the i-th node has
been visited. Let it be called visited

2. Traverse the graph from the initial node. Process the
node for the purpose of the problem, and then mark
the node visited. (visited[init_node] = true).

3. If the node doesn’t have any adjacent nodes, then
backtrack to the parent node. Backtracking means
find all remaining unvisited nodes.

4. If the node in fact have adjacent nodes, then repeat
step 2 for all of the adjacent nodes.

5. If all nodes have been visited, then stop. The
traversing is done.

The algorithm of DFS can be realized using recursion or
using stack data structure. The implementation of the
algorithm is not bounded to one form or another.

DFS algorithm is widely used in detecting cycles on a
graph due to its nature of traversing through the depths of the
graph, and finding the strongly connected parts of a graph, that
is two or more nodes of a graph connected to one another,
creating a cycle. And we will see that the DFS algorithm will
prove to be a good solution on solving cycle problem, in which
our deadlock problem is modelled.

III. IMPLEMENTATION
In this paper, the state of process and resources is modelled

using a graph, more specifically Resource Allocation Graph.
The program is made to detect any cycles on the graph model
using DFS algorithm. If a cycle is detected, then the current
state may turn into a deadlocked state, so the programs output
will be a “warning” of a possible upcoming deadlock state.
But if no cycle is detected, then the program return a safe
message.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

The program is written in C++ language. The program’s
input is an external file of a state table of the process and
resources with the following format:

<number of resource>
<all resource names>
<number of process>
(repeat for all process)
<i-th process>
<i-th process acquired resource>
<resources i-th process wants to acquire>
(end repeat)

A file example:

example.txt

5
A B C D E
2
P1
1 A
1 B
P2
3 A B C
2 D E

The example means that there are five resources in total,
labeled A through E. And then there are two processes, P1 and
P2. P1 already acquired resource A and trying to acquire B. P2
already acquired A, B, C and trying to acquire D and E. Note
that it is implicitly stated that the model is a multi instance
model because A is already acquired by more than one
processes.

To model the graph, we use a modified data structure using
C++ standard library and built-in data structures:

typedef struct {
 vector<string> resourceNodes;
 vector<string> processNodes;
 vector<pair<string, string>> connectivity;
} Graph;

Here are the explanation of the struct fields:

● The graph is modelled based on the multi-instance
model (set to be true). If it is in fact modelled using
single instance, this field is set to be false. But

● vector<string> resourceNodes is a field to set
track on every resources on the graph.

● vector<string> processNodes is a field to set track
on every process on the graph.

● vector<pair<string, string>> connectivity is a
field to map all connectivity of the nodes to a vector
of pairs: where the directed graph is directed from
the first element of the tuple.

Program for parsing the external file is as following:

#include <bits/stdc++.h>
using namespace std;

void parseToGraph(Graph * g, string filename) {
 ifstream file;
 string hold;
 int n;
 file.open("example.txt");
 /* Read number of resources */
 file >> n;

 /* Plug the resources to graph */
 for(int i = 0; i < n; i++) {
 file >> hold;

 g->resourceNodes.push_back(hold);
 }

 /* Read number of processes */
 file >> n;

 /* Plug the resources to graph, and make
connectivity array */
 for(int i = 0; i < n; i++) {
 string pName;
 int size;
 file >> pName;

 g->processNodes.push_back(pName);

 file >> size;

 for(int j = 0; j < size; j++) {
 file >> hold;
 pair <string, string> p = make_pair(hold,
pName);
 g->connectivity.push_back(p);
 }

 file >> size;

 for(int j = 0; j < size; j++) {
 file >> hold;
 pair <string, string> p =
make_pair(pName, hold);
 g->connectivity.push_back(p);
 }
 }

 for(auto res : g->resourceNodes) {

 g->visited[res] = false;
 }

 for(auto pro : g->processNodes) {

 g->visited[pro] = false;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 }

 file.close();
}

Finally, the algorithm to detect cycles on the graph with
DFS algorithm is as follows:

void resetVisited(Graph * g) {
 for(auto a : g->visited) {
 a.second = false;
 }
}

bool isCycleExistFromNode(Graph * g, string node,
vector<string> parents) {
 vector<string> adjacent;
 int cnt = 0;
 bool returningStatus = false;
 bool searchParent = false;

 for(auto a : parents) {
 if(a == node) {
 searchParent = true;
 break;
 }
 }

 if(g->visited[node] || searchParent) {

 return true;
 }

 g->visited[node] = true;
 parents.push_back(node);

 for(auto n : g->connectivity) {
 if(n.first == node) {
 adjacent.push_back(n.second);
 }
 }

 if(adjacent.size() > 0) {
 for(auto n : adjacent) {
 returningStatus = returningStatus ||
isCycleExistFromNode(g, n, parents);
 }
 }

 return returningStatus;
}

bool isCycleExist(Graph g) {
 /* Keep track paths from the recursion */

 vector<string> parents;

 for(int i = 0; i < g.processNodes.size(); i++)
{
 resetVisited(&g);
 if(isCycleExistFromNode(&g,
g.processNodes[i], parents)) {
 return true;
 }
 }
 return false;
}

The DFS algorithm utilizes function to detect a cycle from
every node to ensure every possible cycles, due to the fact that
the graph model is a directed graph. The function starts from
every node of the graph to ensure all cycles are covered and
detected. The DFS algorithm finds a cycle if an expanded node
is already visited before as the parent of itself, thus a cycle is
detected. If this happens, then the program returns true. If all
of the nodes are already visited, then no cycles have been
detected and returns false.

The driver code for the program is as follows:

int main(int argc, char* argv[]) {
 /* Initialize variables */
 Graph RAG;
 string filename;

 /* Error message for file error */
 if(argc < 1) {
 cerr << "No file submitted to be
analyzed";
 return -1;
 }

 /* input filename from command */
 filename = argv[1];

 /* Parse external file to graph data structure
*/
 parseToGraph(&RAG, filename);

 /* Analyze using DFS is cycle exist on graph
*/
 if(isCycleExist(RAG)) {

 cout << "The state is NOT safe. " <<
 "The state of Deadlock may arise from this
state." <<
 endl;
 } else {

 cout << "The state is safe." << endl;
 }

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

 return 0;
}

The program receives the filename from the command line
receiver, hence the use of arguments on the main driver
function. It is signals the possible deadlock state from the DFS
analysis.

IV. CASE STUDIES

In this chapter, the cycle-finding algorithm will be
executed on a few case study. Specifically on cases of disjoint
graph models, cyclic multi-instance and single-instance model,
and safe states of the processes.

First test is the example on the previous chapter, renamed
as tc1.txt:

tc1.txt

5
A B C D E
2
P1
1 A
1 B
P2
3 A B C
2 D E

Here, the state is safe because the resources are
multi-instanced and the process P2 is gaining the unallocated
resource, hence can be done and releasing B in effect.

The result is as follows:

Figure 3

Second test is the example of cyclic single-instanced state,

named tc2.txt:

tc2.txt

3
A B C
3
P1
1 A
1 B
P2
1 B
1 C
P3
1 C

1 A

Here, the state is not safe due to the circular wait: a state
where of waiting processes must exist such that P1 is waiting
for a resource held by P2 , P2 is waiting for a resource held by
P3, and P3 is waiting for resource held by P1.

The result is as follows:

Figure 4

Third test is the example of cyclic single-instanced state

with disjoint graph model, named tc3.txt:

tc3.txt

4
A B C D
3
P1
1 A
1 B
P2
1 B
1 A
P3
1 C
1 D
P4
1 D
1 C

Here, the state is not safe due to circular waits on different
graph: a disjoint graph, due to processes needing different
resources:

The result is as follows:

Figure 5

Fourth test is the example normal disjoint graphs, renamed

as tc4.txt:

tc4.txt

8
A B C D E F G H
4
P1
1 A
1 B
P2

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

3 A B C
2 D E
P3
1 F
1 G
P4
1 G
1 H

Here, the state is safe, similar to tc1.txt, with addition on
the second disjoint graph: process P4 is gaining the
unallocated resource, hence can be done and releasing G in
effect to process P3, finishing the process in effect.

The result is as follows:

Figure 6

This warning system using DFS to detect possible

deadlocks can be integrated with the underlying system of the
operating system. If a deadlock in fact detected, then the
system can perform much more sophisticated methods to
detect the deadlock, such as Banker’s Algorithm.

Overall, the performance of the algorithm is as the
following table:

Test Case Result

Normal state Correct

Circular wait state Correct

Disjoint cyclic state Correct

Disjoint normal state Correct

Table 1. Result of the program with various test cases

The tests of the case studies are performed with machine

with this specification:
● OS: Ubuntu 18.04.4 LTS x86_64
● CPU: Intel i5-8250U (8) @ 3.400GHz
● GPU: NVIDIA GeForce MX150
● Memory: 3951MiB / 7869MiB

V. CONCLUSION
Depth-first search algorithm can be used to detect cycles

on a model graph, and prove to be very useful to solve the

detection of possible deadlock state in process and resource
management problem of operating systems, thus can improve
the performance of the operating system and improving the
deadlock avoidance techniques.

SOURCE CODE LINK
https://github.com/mufraswid/dfs-detecting-deadlock

VIDEO LINK AT YOUTUBE
https://youtu.be/KcD4l_W0_Pk

ACKNOWLEDGMENT
The author would like to thank God the Almighty for

His grace and blessings. The author would also thank Dr.
Ir. Rinaldi Munir, M.T., as the lecturer of Algorithm Design
(IF2211), the author’s family, and friends for their support in
the making of this paper.

REFERENCES
[1] https://www.cisco.com/c/en/us/solutions/internet-of-things/future-of-iot.

html
[2] A. Silberschatz, P.B Gavin, and G. Gagne, “Operating System Concepts”

Phil. Trans. Roy. Soc. London, 8th Edition.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Mei 2020

Muhammad Fauzan Rafi Sidiq Widjonarto 13518147

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://github.com/mufraswid/dfs-detecting-deadlock

