
Finding Checkmate in N moves in Chess using 
Backtracking and Depth Limited Search Algorithm 

 

Moch. Nafkhan Alzamzami 13518132 
Informatics Engineering 

School of Electrical Engineering and Informatics 
Institute Technology of Bandung, Jalan Ganesha 10 Bandung 
nafkhanalzamzami@gmail.com 13518132@std.stei.itb.ac.id 

 
 
 

Abstract—There have been many checkmate potentials that       
players seem to miss. Players have been training for finding          
checkmates through chess checkmate puzzles. Such problems can        
be solved using a simple depth-limited search and backtracking         
algorithm with legal moves as the searching paths. 

Keywords—chess; checkmate; depth-limited search;    
backtracking; graph; 

I.  INTRODUCTION 
There have been many checkmate potentials that players        

seem to miss. Players have been training for finding         
checkmates through chess checkmate puzzles. Such problems       
can be solved using a simple depth-limited search and         
backtracking algorithm with legal moves as the searching        
paths. The use of backtracking is if we found a move that can             
make the opponent escape from the checkmate in the given          
amount of limited moves, then we can scrap that move and try            
the other possible moves. 

This algorithm can be used for creating and confirming the          
checkmate in N moves. This will make sure that the opponent           
cannot escape from the checkmate and so the puzzle is          
solvable with the moves that have to be found in N moves. 

 

II. BASE THEORY 

A. Chess 
Chess is a board game for two players.[1] It is played on a             

square board, made of 64 smaller squares, with eight squares          
on each side. Each player starts with sixteen pieces: eight          
pawns, two knights, two bishops, two rooks, one queen and          
one king.[2] The goal of the game is for each player to try and              
checkmate the king of the opponent. Checkmate is a threat          
('check') to the opposing king which no move can stop. It ends            
the game.[3][4] 

During the game the two opponents take turns to move one           
of their pieces to a different square of the board. One player            
('White') has pieces of a light color; the other player ('Black')           

has pieces of a dark color. There are rules about how pieces            
move, and about taking the opponent's pieces off the board.          
The player with white pieces always makes the first move.[4]          
Because of this, White has a small advantage, and wins more           
often than Black in tournament games.[5][6] 

Chess is played on a square board divided into eight rows           
of squares called ranks and eight columns called files, with a           
dark square in each player's lower left corner.[8] This is          
altogether 64 squares. The colors of the squares are laid out in            
a checker (chequer) pattern in light and dark squares. To make           
speaking and writing about chess easy, each square has a          
name. Each rank has a number from 1 to 8, and each file a              
letter from a to h. This means that every square on the board             
has its own label, such as g1, f5 or b3. The pieces are in white               
and black sets. The players are called White and Black, and at            
the start of a game each player has 16 pieces. The 16 pieces             
are one king, one queen, two rooks, two bishops, two knights           
and eight pawns.[4] In this game out can get up to a quadruple             
pawn, king, knight, queen, and also the king although it is very            
rare. 

The movement rules of chess are defined below: 

1. The knight is the only piece that can jump over          
another piece. 

2. No piece may move to a square occupied by a piece           
of the same color. 

3. All pieces capture the same way they move, except         
pawns. 

4. The king's move is one square in any direction. The          
king (K for short) may not move to any square where           
it is threatened by an opposing piece. However, the         
king can move to a square that is occupied by an           
opponent's piece and capture the piece, taking it off         
the board. 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



 
Fig. 1. Moves of the king 

(source: https://simple.wikipedia.org/wiki/Chess) 
5. The queen (Q) can move any distance in any         

direction on the ranks, files and diagonals. 

 
Fig. 2. Moves of the queen 

(source: https://simple.wikipedia.org/wiki/Chess) 
6. The rooks (R) move any distance on the ranks or          

files.[4] 

 
Fig. 3. Moves of the rook 

(source: https://simple.wikipedia.org/wiki/Chess) 
7. The bishops (B) move diagonally on the board. Since         

a bishop can only move diagonally, it will always be          
on the same color square.[7] 

 
Fig. 4. Moves of the bishop 

(source: https://simple.wikipedia.org/wiki/Chess) 
8. The knights (Kt or N) move in an "L" shape. Each           

move must be either two squares along a rank and          
one square along a file, or two squares along a file           
and one square along a rank. It is the only piece that            
can jump over other pieces. Like the other pieces, it          
captures an opposing piece by landing on its square. 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 

https://simple.wikipedia.org/wiki/Chess
https://simple.wikipedia.org/wiki/Chess
https://simple.wikipedia.org/wiki/Chess
https://simple.wikipedia.org/wiki/Chess


 
Fig. 5. Moves of the knight 

(source: https://simple.wikipedia.org/wiki/Chess) 
9. The pawns can only move up the board. On its first           

move a pawn may move either one or two squares          
forward. A pawn captures one square diagonally, not        
as it moves: see white circles on its diagram. Besides,          
in some situations pawns can capture opponent's       
pawns in a special way called en passant, which         
means in passing in French (see below).[4] 

 
Fig. 6. Moves of the pawn 

(source: https://simple.wikipedia.org/wiki/Chess) 
10. Once in every game, each king can make a special          

move, known as castling. When the king castles, it         
moves two squares to the left or right. When this          
happens, the rook is moved to stand on the opposite          
side of the King.[9] Castling is only allowed if all of           
these rules are kept:[10] 

a. Neither piece doing the castling may have       
been moved during the game. 

b. There must be no pieces between the king        
and the rook. 

c. The king may not be currently in check, nor         
may the king pass through any square       
attacked by the opponent. As with any       
move, castling is not allowed if it would        
place the king in check.[4] 

11. En passant ('in passing' in French) is a special         
capture. It is only available when a pawn moves         
forward two squares past an opposing pawn on an         
adjacent file. The opposing pawn must be on the 5th          
rank from its own side. Then the opponent's pawn         
can capture the double-mover as if it had only moved          
one square forward. This option is open on the next          
move only.[4] For example, if the black pawn has just          
moved up two squares from g7 to g5, then the white           
pawn on f5 can take it by en passant on g6. The en             
passant rule was developed when pawns were       
allowed to make their double move. The rule made it          
more difficult for players to avoid pawn exchanges        
and blockade the position. It kept the game more         
open. 

 
Fig. 7. En passant 

(source: https://simple.wikipedia.org/wiki/Chess) 
12. When a pawn moves to its eighth rank, it must be           

changed for a piece: a queen, rook, bishop, or knight          
of the same color (player's choice).[11] Normally, the        
pawn is queened, but in some advantageous cases        
another piece is chosen, called 'under-promotion'.[4] 

 

B. Backtracking 
Backtracking is an algorithmic-technique for solving      

problems recursively by trying to build a solution        
incrementally, one piece at a time, removing those solutions         
that fail to satisfy the constraints of the problem at any point            
of time (by time, here, is referred to the time elapsed till            
reaching any level of the search tree).[12] 

 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 

https://simple.wikipedia.org/wiki/Chess
https://simple.wikipedia.org/wiki/Chess
https://simple.wikipedia.org/wiki/Chess


C. Depth-Limited Search 
A depth-limited search algorithm is similar to depth-first        

search with a predetermined limit. Depth-limited search can        
solve the drawback of the infinite path in the Depth-first          
search. In this algorithm, the node at the depth limit will treat            
as it has no successor nodes further.[13] 

Depth-limited search can be terminated with two       
Conditions of failure: 

1. Standard failure value: It indicates that the problem        
does not have any solution. 

2. Cutoff failure value: It defines no solution for the         
problem within a given depth limit. 

 

III. IMPLEMENTATION 

In the implementation of the algorithm, the algorithm        
receives a chess board state and a number of limited moves as            
a puzzle to solve. The algorithm is then searching for the           
moves that leads to a checkmate. The algorithm as pseudocode          
can be seen as below: 

function getAnswerMove(numberOfMoves: integer) do 
    foreach (move in all legal moves as answer move 
candidates) do 
        execute move to the board 
        answerFound <- 
isOpponentCannotEscape(numberOfMoves) 
        undo the move 
        if (answerFound) do 
            return move 
        end 
    end 
    // Move not found. Opponent's king can escape 
    return null 
end 

 

function isOpponentCannotEscape(numberOfMoves: 
integer) do 
    if (no legal move available) do 
        // Either stalemate or checkmate, return 
true if checkmate, false if stalemate 

        return is opponent move attacked 
    end else if (numberOfMoves = 1) do 
        // Opponent can escape in the given number 
of moves 

        return false 
    end 
    foreach (move in all legal moves from opponent 
pieces) do 
        execute move to the board 

        answerMove <- getAnswerMove(numberOfMoves - 
1) 
        undo the move 
        if (answerMove = null) do 
            return false 
        end 
    end 
    // Passed all possible moves, opponent cannot 
escape. 

    return true 
end 

The search searches each possible move as a candidate         
answer move and tests all the possible moves by the opponent           
after each candidate answer move. The search goes as a          
depth-limited search with the limit is defined from the number          
of moves needed to do the checkmate. The number of moves           
is occured as the answer moves count only, not including the           
opponent’s moves. 

The search will be backtracked when the candidate answer         
can create opponent moves that make it not possible to          
checkmate in the number of moves to checkmate. Therefore,         
the candidate answer can not be the answer and has to be cut             
off from the search. 

 
Fig. 8. Example of an accepted candidate move in a visualised search tree 

A candidate answer move can be proven to be the answer           
move if both of the conditions below are fulfilled: 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



1. For every possible move the opponents make, there is         
at least one answer move that can lead to a          
checkmate. 

2. Opponent is checkmated. 

For example for the number of moves is 2, as shown on            
figure 8, a candidate answer move is selected on node 2 and is             
then checked for every possible opponent counter move, those         
are node 3, 5, 7, and 10. Then, every opponent move is then             
checked if there is at least one answer move exists. Node 3 has             
an answer move node 4, node 5 has an answer move node 6,             
node 7 has an answer move node 9, and node 10 has an             
answer move node 13. So, after every opponent’s counter         
move for candidate answer move node 2 is checked that they           
all have at least one answer move, candidate answer move on           
node 2 is proven that it is an answer move. 

 

 
Fig. 9.  Example of a failed candidate move in a visualised search tree 

Example of a failed candidate answer move is shown on          
figure 9. Like before, a candidate answer move is selected on           
node 2 and is then checked for every possible opponent          
counter move, those are node 3, 5, 7, and 10. Then, every            
opponent move is then checked if there is at least one answer            
move exists. Node 3 has an answer move node 4, node 5 has             
an answer move node 6, node 7 has an answer move node 9,             
but node 10 doesn’t have any move that leads to a checkmate.            
That means the selected candidate answer move is failed to          
checkmate the opponent since the opponent can escape from a          
checkmate through certain moves. The algorithm then has to         
find another candidate answer move and check if it is a valid            
answer move. If every possible candidate answer move is not          

valid, then it is not possible to checkmate the opponent on the            
given chess state and number of moves. 

 

IV. USE CASES 

For testing the chess puzzle, I implemented the algorithm         
using Java programming language version 13.0.1 and a java         
chess library by bhlangonijr called chesslib. The       
implementation of the algorithm in java source code is shown          
below: 
 
con.nafkhanzam.checkmatefinder.Answer 

package com.nafkhanzam.checkmatefinder; 
 

import java.util.HashMap; 
import java.util.Map; 
 

import 

com.github.bhlangonijr.chesslib.move.Move; 

 

public class Answer { 
    private Move answerMove; 
    private Map<Move, Answer> nextAnswer; 
 

    public Answer() { 
        nextAnswer = new HashMap<>(); 
    } 

 

    public Move getAnswerMove() { 
        return this.answerMove; 
    } 

 

    public void setAnswerMove(Move move) { 
        this.answerMove = move; 
    } 

 

    public void setNextAnswer(Map<Move, Answer> 
nextAnswer) { 

        this.nextAnswer = nextAnswer; 
    } 

 

    public Map<Move, Answer> getAnswers() { 
        return nextAnswer; 
    } 

 

    public void putAnswer(Move move, Answer 
answer) { 

        nextAnswer.put(move, answer); 

    } 

 

    public Answer getNextAnswer(Move move) { 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



        return nextAnswer.get(move); 
    } 

 

    public boolean end() { 
        return nextAnswer.isEmpty(); 
    } 

 

} 

 
con.nafkhanzam.checkmatefinder.CheckmateFinder 

package com.nafkhanzam.checkmatefinder; 
 

import com.github.bhlangonijr.chesslib.Board; 
import 

com.github.bhlangonijr.chesslib.move.Move; 

import 

com.github.bhlangonijr.chesslib.move.MoveGenerat

or; 

import 

com.github.bhlangonijr.chesslib.move.MoveGenerat

orException; 

import 

com.github.bhlangonijr.chesslib.move.MoveList; 

 

public class CheckmateFinder { 
    private Board board; 
 

    public CheckmateFinder(Board board) { 
        this.board = board; 
    } 

 

    public Answer findAnswer(int depth) throws 
MoveGeneratorException { 

        Answer answer = new Answer(); 
        _answerMove(answer, depth); 

        return answer; 
    } 

 

    private boolean _answerMove(Answer answer, 
int depth) throws MoveGeneratorException { 
        for (Move move : 
MoveGenerator.generateLegalMoves(board)) { 

            board.doMove(move); 

            boolean found = 
_opponentMove(answer, depth); 

            board.undoMove(); 

            if (found) { 
                answer.setAnswerMove(move); 

                return true; 
            } 

        } 

        return false; 
    } 

 

    private boolean _opponentMove(Answer answer, 
int depth) throws MoveGeneratorException { 
        MoveList availableMoves = 

MoveGenerator.generateLegalMoves(board); 

        if (availableMoves.size() == 0) { 
            return board.isKingAttacked(); 
        } else if (depth == 1) { 
            return false; 
        } 

        for (Move move : availableMoves) { 
            board.doMove(move); 

            Answer next = new Answer(); 
            boolean found = _answerMove(next, 
depth - 1); 

            board.undoMove(); 

            if (!found) { 
                return false; 
            } 

            answer.putAnswer(move, next); 

        } 

        return true; 
    } 

 

} 

 
And for testing the puzzle, I created a simple main console           

app program for input and output the moves. The program          
receives a number of moves needed to search and the chess           
board state in Forsyth–Edwards Notation. 

I tested the puzzles from a user named TripleXDooM on          
chess.com forum. I downloaded the board state as a         
Forsyth–Edwards Notation. 

1. Test-Case 1 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 



Fig. 10. A mate in 2 chess puzzle test-case 1 the starting state. 
(source: 
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puz
zles-1---50) 
 

In test-case 1, the Forsyth–Edwards Notation is as below: 

3qr2k/pbpp2pp/1p5N/3Q2b1/2P1P3/P7/1PP2PPP/R4RK1 
w - - 0 1 

 
The input and output according to the opponent’s move on 

chess.com is as below: 

 
Fig. 11. Input/output for test-case 1. 
 

The final move resulted in a checkmate as shown below: 

 
Fig. 12. A mate in 2 chess puzzle test-case 1 the final state. 
(source: 
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puz
zles-1---50) 
 

2. Test-Case 2 

 
Fig. 13. A mate in 2 chess puzzle test-case 2 the starting state. 
(source: 
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puz
zles-1---50) 
 

In test-case 2, the Forsyth–Edwards Notation is as below: 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 

https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50


r1bq2k1/ppp2r1p/2np1pNQ/2bNpp2/2B1P3/3P4/PPP2PPP/
R3K2R w KQ - 0 1 

 
The input and output according to opponent’s move on         

chess.com is as below: 

 
Fig. 14. Input/output for test-case 2. 
 

 
Fig. 15. A mate in 2 chess puzzle test-case 2 the final state . 
(source: 
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puz
zles-1---50) 

V. CONCLUSION 

Chess is a game that needs a lot of depth in thinking on             
which move is not a blunder or inaccurate. With the great           
evolution of technology, machines can defeat humans in the         
decision of making a move in chess games. Finding a possible           
checkmate in a fast amount of time in a complex chess game            
state is something a machine can do with correct algorithms.          
Backtracking and depth-limited search is one of the        
alternatives algorithms. 
 

VIDEO LINK AT YOUTUBE 
https://youtu.be/Q7R9EY7lpFs 

 

ACKNOWLEDGMENT 
I would like to thank Mr. Rinaldi Munir for their guidance           

in teaching algorithm strategies course in his lecture so that          
I’m able to understand many new algorithms including        
backtracking and depth-limited search. 

 

REFERENCES 
[1] Abate, Frank R. (ed) 1997. The Oxford desk dictionary and thesaurus.           

ISBN 0-19-511214-8 
[2] Costello, Robert E. et al. (eds) 2001. Macmillan dictionary for children.           

Simon & Schuster, New York. ISBN 0-689-84323-2Costello, Robert E.         
et al. (eds) 2001. Macmillan dictionary for children. Simon & Schuster,           
New York. ISBN 0-689-84323-2 

[3] Paton, John et al. (eds)1992. The Kingfisher children's encyclopedia.         
Kingfisher Books, New York. ISBN 1-85697-800-1 

[4] "Laws of Chess". FIDE. Retrieved 2008-11-26. 
[5] Chessgames "Chess Opening Explorer". Chessgames.com. Retrieved      

2010-05-25. 
[6] Rowson, Jonathan (2005). Chess for Zebras: thinking differently about         

black and white. Gambit Publications. p. 193. ISBN 1-901983-85-4. 
[7] "Chess Moves - How chess pieces move - chess piece movements".           

gamesinfodepot.com. Retrieved 1 April 2010. 
[8] "Chess [[wikt:basic|Basics]]". chesslab.com. Retrieved 1 April 2010. 
[9] "Castling, by Chess Corner". chesscorner.com. chess corner. Retrieved 1         

April 2010. 
[10] Reuben, Stewart 2005. The chess organiser's handbook. 3rd ed,         

incorporating the FIDE Laws of Chess. Harding Simpole, Devon. 
[11] Robert Harrison. "Chess tips: How to promote a pawn". helium.com.          

Retrieved 25 May 2010. 
[12] https://www.geeksforgeeks.org/backtracking-introduction/ 
[13] https://www.javatpoint.com/ai-uninformed-search-algorithms 

 
 

STATEMENT 
With this, I hereby state that this paper is my own writing, not 
a translation and not a plagiarization of someone else. 
 

Bandung, 3rd May 2020 

 
Moch. Nafkhan Alzamzami 13518132 

  

 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020 
 

https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
https://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50

