
Backtracking Algorithm for Solving Star Battle
Puzzle

Ricky Fernando - 13518062
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13518062@std.stei.itb.ac.id

Abstract​—The Star Battle Puzzle is an interesting puzzle
where the main purpose of the puzzle is to put a certain number
of star in NxN grid puzzle in every row, column, dan region. This
puzzle is similar to one of the classic problems on backtracking
which is N-Queens. So the author of this paper tried to solve this
puzzle with backtracking approach.

Keywords—Star Battle Puzzle; Backtracking;

I. INTRODUCTION
Puzzle is a game for people of all ages. Puzzle games are

not just games but a way of culture that has been passed down
through generations. From the jigsaw puzzle that we all know
until some puzzle that aren’t many people know about it like
Star Battle Puzzle. Star Battle Puzzle isn’t a famous puzzle
because it is quite simple and some people say it’s not
challenging enough.

Figure 1 : Example of Star Puzzle

source: ​https://www.puzzle-star-battle.com/

Star Battle Puzzle is a logical grid puzzle where the
purpose is to put a star (1 ✷ Star Battle Puzzle) in every row,
column and Block. For a 1✷ puzzle with small grid, it is easy
to solve. What if the size became larger? For example 50x50?
Or not 1 ✷ but 2 ✷, or 3 ✷, or even 10 ✷? This will be a
hard puzzle to solve.

Because recently the author likes to play this puzzle and
found that problem, the author is eager to solve this puzzle
through algorithms. That’s why the author chose this as a topic
for this paper.

II. BASE THEORY

A. Recursion
Recursion is a process which a function calls itself directly

or indirectly. The function which does recursion is called
recursion function. Recursion can help solve many problems.
For example, Tower of Hanoi, Dynamic programming, and
DFS.

Recursion function consists of the base and recursion part.
The base is where the function is supposed to call itself, and
the recursion part is where the function calls itself.

The advantage of this process is that it can be used to solve
problems that can’t be solved by a regular loop. The drawback
of this process is it consumes a lot of memory because it calls
itself and stack it on the memory stack. This process may
cause stack overflow.

B. Backtracking Algorithm
Backtracking is an algorithm introduced in 1950 by D. H.

Lehmer. Backtracking is an algorithm to solve a problem
recursively by exploring every possible solution one by one.
Backtracking itself is an improvement from exhaustive search.
While exploring the solution, backtrack will ​remove those
solutions that fail to satisfy a certain condition at any point at
that time.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://www.puzzle-star-battle.com/

Backtracking can be categorized as 3 types, which is:
1) Decision Problem – Used to search for a feasible

solution.
2) Optimization Problem – Used to search for the best

solution.
3) Enumeration Problem – Used to find all feasible

solutions.
The general properties of backtracking is the solution of

the problem, generating function and bounding function.
Solution of the problem is defined as a vector with n-tuples.
Generating function (defined as T(k)) is used to generate a
value for x​k which is an element of Solution of the problem. Te
bounding function (defined as B(x​1 , x​2​,..., x​k​)) will return true if B(x​1
, x​2​,..., x​k​) leads to a solution and false otherwise. If the result of the
bounding function is true then backtrack will generate x​k+1 and
continue the search, otherwise B(x​1​ , x​2​,..., x​k​) will be removed.

Every possible solution from the problem is called solution space.
Solution space is represented with a tree structure and called state
space tree. Every node of the tree representing a state and every edge
representing value of x​i​.Path from root to leaves represent the
possible solution and create a solution space.

Figure 2 - Representation of state space tree

Source:
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Algo

ritma-Runut-balik-(2018).pdf

The Principle of Finding a Solution with Backtracking
method :

● Solution is searched to build a path from root to leaf
● Live node is node that has been generated
● Expand-node is node that currently expanded
● Dead node is Expand-node that doesn’t lead to

solution and killed and never be expand again
● Generate every possible child node
● Next live node become current expand-node
● Searching continue until found a goal node

Figure 3 - Representation of how Backtracking works

Source:
http://www.w3.org/2011/Talks/01-14-steven-phenotype/

Pseudocode for backtracking using recursion:

procedure​ Backtrack(​input​ k:​integer​)
{Find every solution with backtrack

(recursion)

input: k, index element of solution

vector, x[k]

output: Solution x = (x[1], x[2], …,

x[n])

}

Algorithm​:
 ​for​ every x[k] which has not been tried
in such a way

 (x[k]T(k)) ​and​ B(x[1], x[2], ...
,x[k])= ​true​ ​do
 ​if​ (x[1], x[2], ... ,x[k])is a solution
path

 ​then
 print(x)

 ​endif
 Backtrack(k+1) { generate x[k+1]}

 ​endfor

If the number of nodes in the state space tree is 2​n or n!,
then worst case scenario for backtrack algorithm will have
time complexity of O(p(n)2​n​) or O(q(n)n!), where p(n) and
q(n) is a polinom with n degree presenting every node’s
complexity time.

C. The N-Queens Problem
The N-Queens Problem is a problem where given a

chessboard with size of N x N and N queens that we must

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Algoritma-Runut-balik-(2018).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Algoritma-Runut-balik-(2018).pdf
http://www.w3.org/2011/Talks/01-14-steven-phenotype/

place in a certain way so that no 2 queens attack each other.
Example of figure 4.

Figure 4 - Example of a N-Queens Solutions

Source
:​http://www.w3.org/2011/Talks/01-14-steven-phenotype/

This problem was originally proposed in 1848 by the
chess player Max Bezzel, and over the years, many
mathematicians, including Gauss, have worked on this puzzle
and its generalized N-queens problem. The first solutions were
provided by Franz Nauck in 1850. Nauck also extended the
puzzle to n-queens problem (on an N×N board—a chessboard
of arbitrary size).

This classic problem can be solved with many algorithms
for example with bruteforce, exhaustive search, and
backtracking. The brute force method uses the idea of placing
every possible queen in the chessboard, which is
4.426.165.368 possible solutions (C(64, 8)). And can be
improved to 16.777.216 possibility solution (8​8​) by placing
every queen in different rows.Exhaustive search used the idea
of permutation. If the solution is a 8-tuple vector (X = (x​1 , x​2 ,
... , x​8)), so the solution is a permutation of 1 to 8, the total
possible solution is P(1,8)=8!= 40.320.

The idea to solve this problem using backtrack is to place
each queen one by one in different columns, starting from the
leftmost column. When we place a queen in a column, we
check for clashes with already placed queens. In the current
column, if we find a row for which there is no clash, we mark
this row and column as part of the solution. If we do not find
such a row due to clashes then we backtrack and return false.

Figure 5 - Example of 4-Queens Solutions using backtrack

Source
:​http://www.w3.org/2011/Talks/01-14-steven-phenotype/

Figure 6 - 4-Queens state space tree

Source
:​http://www.w3.org/2011/Talks/01-14-steven-phenotype/

Figure 7 - 4-Queens backtrack generated while searching

Source
:​http://www.w3.org/2011/Talks/01-14-steven-phenotype/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

http://www.w3.org/2011/Talks/01-14-steven-phenotype/
http://www.w3.org/2011/Talks/01-14-steven-phenotype/
http://www.w3.org/2011/Talks/01-14-steven-phenotype/
http://www.w3.org/2011/Talks/01-14-steven-phenotype/

N-queen solver algorithm with backtrack :

function​ Place(​input​ k:​integer​)​boolean
{true if queen can be place in x[k],

false otherwise}

Declaration

 i : ​integer
 stop,canPlace : ​boolean
Algorithm​:
 canPlace ← ​true
 i← 1

 stop← ​false
 ​while​ (i<k) ​and ​(​not​ stop) ​do
 ​if ​(x[i]=x[k]) ​or
(ABS(x[i]-x[k])=ABS(i-k))​then
 canPlace← ​false
 stop← ​true
 ​else
 i← i+1

 ​endif
 ​endwhile
 ​return ​canPlace

procedure ​N_RATU_R(​input ​k:​integer​)
{ place queen in k-row

 prerequisite: x is an array of integer,

size 8 and initialized with 0

 input: N, total queens

 output: print every solution x = (x[1],

x[2], …, x[N]).

}

Declaration​:
 stop : boolean

Algorithm​:
 stop← false

 ​while not ​stop ​do
 x[k]← x[k]+1

 ​while ​(x[k] <= n) ​and ​(​not ​Place(k)) ​do
 x[k]← x[k]+1

 ​endwhile
 ​if ​x[k]<=N ​then
 ​if ​k=N ​then
 print(x,N)

 ​else
 N_RATU_R(k+1)

else

 stop← ​true
 x[k]← 0

 ​endif
 ​endwhile
 {stop}

D. Star Battle Puzzle
Star Battle is categorized as an object placement puzzle.

This puzzle is not so different from more common puzzles like
Sudoku and Battleships that have its own intriguing logic to
deduce. ​The objective of this puzzle is to place an object (star)
in every rows, columns, and blocks with a specific number
(example 1 and 2 stars).

Figure 8 - Star Battle Puzzle 5x5 grid and its solution

Source:
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-bat

tle/

Figure 9 - Star Battle Puzzle 9x9 grid

Source:
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-bat

tle/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/

Figure 10 - Solution for figure 8

Source:
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-bat

tle/

Star Battle is created by Hans Eendebak. First appeared in
the 2003 World Puzzle Championship in the Netherlands.

The rules are:

● place 1 star (or 2 stars, depend on the puzzle) on each
row, column and block.

● 2 stars cannot be adjacent horizontally, vertically or
diagonally.

III. USING BACKTRACK TO SOLVE STAR BATTLE
PUZZLE

As we can see, star battle 1 star puzzle is similar to the
N-queens problem. Where our target is to put every object in
every row and column, with addition of every block or region
containing 1 star. Thanks to this, we can solve the puzzle with
backtracking algorithm similar to N-queens’. in this paper, the
author will use a 5x5 puzzle like figure 11. We can apply the
algorithm from the left upper side and go to the right lower
side.

Figure 11 - Star Battle Puzzle 5x5

Before Applying the algorithm we must know the property
of backtrack:

1. Solution of the problem :8-tuple vector (X = (x1 , x2 ,
... , x8), i represent every row and X​i represent
which column the star is placed.

2. Generating Function : loop for every column in a row
3. Bounding Function : if to check whether there’s a star

in this column, this block or the neighbour cells (right
and left) in the previous cell. return true if available,
otherwise false

So the idea to solve this problem is, first check a cell to put
the star, for the first one we will put it at the left upper corner
(1,1). I’ll use yellow as the star and red as the not possible
cell.

Figure 12

After putting the first star, move to the second row and
pick a cell to put the second star. Before putting it, check if the
cell is available using the bounding function. If the cell is
available, then put the star and continue to the next row,
otherwise check the next column. If there’s no possible place
to put the star (figure 13). Do the backtrack and search for
other cell in previous row.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/
https://www.wired.com/2010/12/dr-sudoku-prescribes-star-battle/

Figure 13

The process is continued until it reach the goal state (figure
14) or there is no possible answer. Figure 14 is the solution
with X=(4,2,5,3,1).

Figure 14 - Solution

The State space tree that the backtrack algorithm make for
this puzzle is in the figure 15. Read it from upper-left to lower
-right order.

Figure 15 - State Space Tree for solving figure 11

Although this process takes a lot of effort and resources
(memory and time), it is effective to solve most of the puzzles.

Here the result of the implementation of this algorithm to
solve the given puzzle and other example.

figure 16

figure 17

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 18

IV. R​ESULT
Backtracking algorithm used for solving Star Battle

Puzzles could be efficient if the size of each Block is
increasing from small to big as we explore the right bottom
corner. The bigger the board, the more time is needed to
backtracking which is really inefficient.

V​IDEO​ L​INK​ ​AT​ Y​OUTUBE
Here is the Youtube link for the explanation for this paper:

https://youtu.be/immbtPIZZt4​ .

A​CKNOWLEDGMENT

The author would like to express his deepest gratitude to
God for giving the author a chance to do and finish this paper.
The author would also like to give special thanks for his
teacher who gave him the opportunity to do this project and
guidance given during this semester. Because of that the
author can understand and can implement it on a real problem.

Last, the author would also like to thank his parents and
friends who helped him by giving all the support that they can.
Without this support the author wouldn't be able to finalize
this project within the limited time frame.

.

R​EFERENCES
[1] https://www.geeksforgeeks.org/recursion/​ accessed at 26/04/2020
[2] https://www.geeksforgeeks.org/backtracking-introduction/ accessed at

26/04/2020
[3] Munir, Rinaldi. 2006. Strategi Algoritma. Bandung: Institut Teknologi

Bandung.
[4] https://krazydad.com/starbattle/​ accessed at 26/04/2020

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Jambi, 26 April 2020

Ricky Fernando/13518062

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

https://youtu.be/immbtPIZZt4
https://www.geeksforgeeks.org/recursion/
https://www.geeksforgeeks.org/backtracking-introduction/
https://krazydad.com/starbattle/

