
KMP ALGORITHM FOR SEARCHING
TOOLS IN ANY APPLICATION

Brandon Oktavian Pardede/13518043
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): brandonpardede25@gmail.com

Abstract—Searching tools have contributed so much in
helping user to find certain words that would like to be found in a
web page or application.It also return all matching words in the
page on relatively very fast time,in fact less than a second.The
algorithm used for this tools are vary,but here explained all we
need to know about what’s behind the searching tools,especially
the KMP Algorithm.

Keywords—KMP Algorithm,Searching Tools,Technology

I. INTRODUCTION
Have you ever wonder how the searching tools work in

browser? Or do you ever wonder how can small computers
that we use in today’s life can process things so fast that even
we can’t do it as fast as they do? That’s the magic of the
technology,the way they solve problems that given to them
can even outcome our abilities to do it.

Searching tools in web browser or any other applications is
one of the example. They can process our input so fast and
return all the possible matching word in just a second. But
how do they process it? The answer is there must be an
algorithm behind it,the algorithm that is best suit for matching
characters in a big data text that contains so many words in it.

In the world of science computing,there are many
algorithm that can be used to matching strings with pattern
that we would like to match,such as Booyer-Moore Algorithm
(BM) , Brute Force Algorithm, and Knuth-Morris-Pratt
Algorithm (KMP). These three algorithm vary in method to
match strings,as well as the time complexity that have to be
taken in order to process the input until the output. They also
have their own advantages and disadvantages,and thus make
them can only be suittable for certain problem-solving that
requires or still in their own boundaries.

In this problem we discuss,we will dive in to the world of
KMP Algorithm and explains why this algorithm is used in so
many field of string matching,and why searching tools use this
algorithm to help them find the matching strings in just a blink
of a second.

II. THE KNUTH-MORRIS-PRATH ALGORITHM(KMP)

The Knuth-Morris Prath Algorithm (KMP) is an algorithm

for string matching that use lps(longest prefix suffix) as the
function boundaries. This algorithm match strings from the
left of the text,and then process the mismatch with the
algorithm as below:

whenever we detect a mismatch (after some matches), we
already know some of the characters in the text of the next
window. We take advantage of this information to avoid
matching the characters that we know will anyway match.

When processing the whole text with a pattern that we
would like to search the match,the first thing to do is find the
lps for each index of the pattern. For example:

Suppose we have a pattern that consists of “ABCDE”. We
divide this pattern to each index,so the boundaries(mark as
b(k)) would be like this:

j 0 1 2 3 4

P[j] A B C D E

k - 0 1 2 3

b(k) - 0 0 0 0

The word “j” is the index of the pattern starting from 0,the
word ”k” is the value of j substracted by 1,and b(k) is the
lps(longest prefix suffix) from the index(0...k) for the prefix
and index(1...k) for the suffix. From the word “ABCDE”, we
know that there are no prefix that also suffix,so the value of all
of the boundaries function for each index is 0.

The next step is for the searching algorithm. After we
found all of the boundaries function value of each index,we
will continue to processing all the text with the pattern we
would like to match. We use a value from b(k) to decide the
next characters to be matched. The idea is to not match a
character that we know will anyway match.How to use b(k) to
decide next positions (or to know a number of characters to be
skipped)? Here is the step by step:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

1. We start comparison of pat[j] with j = 0 with
characters of current window of text.

2. We keep matching characters txt[i] and pat[j] and

keep incrementing i and j while pat[j] and txt[i] keep

matching.

3. When we see a mismatch:

○ We know that characters pat[0..j-1] match

with txt[i-j…i-1] (Note that j starts with 0

and increment it only when there is a

match).

○ We also know (from above definition) that

lps[j-1] is count of characters of pat[0…j-1]

that are both proper prefix and suffix.

○ From above two points, we can conclude

that we do not need to match these lps[j-1]

characters with txt[i-j…i-1] because we

know that these characters will anyway

match.

Here below is shown the implementation of KMP

Algorithm (source code) of the algorithm in Java,this source

code is taken from geeksforgeeks.com and contributed by

Amit Khandewall.

void computeLPSArray(char* pat, int M, int* lps);

// Prints occurrences of txt[] in pat[]
void KMPSearch(char* pat, char* txt)
{
 int M = strlen(pat);
 int N = strlen(txt);

 // create lps[] that will hold the longest prefix suffix
 // values for pattern
 int lps[M];

 // Preprocess the pattern (calculate lps[] array)
 computeLPSArray(pat, M, lps);

 int i = 0; // index for txt[]
 int j = 0; // index for pat[]
 while (i < N) {
 if (pat[j] == txt[i]) {
 j++;
 i++;
 }

 if (j == M) {
 printf("Found pattern at index %d ", i - j);
 j = lps[j - 1];
 }

 // mismatch after j matches
 else if (i < N && pat[j] != txt[i]) {
 // Do not match lps[0..lps[j-1]] characters,
 // they will match anyway
 if (j != 0)
 j = lps[j - 1];
 else
 i = i + 1;
 }
 }
}

// Fills lps[] for given patttern pat[0..M-1]
void computeLPSArray(char* pat, int M, int* lps)
{
 // length of the previous longest prefix suffix
 int len = 0;

 lps[0] = 0; // lps[0] is always 0

 // the loop calculates lps[i] for i = 1 to M-1
 int i = 1;
 while (i < M) {
 if (pat[i] == pat[len]) {
 len++;
 lps[i] = len;
 i++;
 }
 else // (pat[i] != pat[len])
 {
 // This is tricky. Consider the example.
 // AAACAAAA and i = 7. The idea is similar
 // to search step.
 if (len != 0) {
 len = lps[len - 1];

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

 // Also, note that we do not increment
 // i here
 }
 else // if (len == 0)
 {
 lps[i] = 0;
 i++;
 }
 }
 }
}

// Driver program to test above function
int main()
{
 char txt[] = "ABABDABACDABABCABAB";
 char pat[] = "ABABCABAB";
 KMPSearch(pat, txt);
 return 0;
}

The function “computeLPSArray” is used to defined the

boundaries function of each index of the pattern. It is the same

as b(k) function that writer have explained before. So assume

we have array of LPS that contains [0,0,0,1],so the boundaries

function(b(k)) of each index(starting from 0) is respectively

0,0,0,1.

Example of Knuth-Morris-Pratt(KMP) Algorithm using

simple text:

The first step is we have to find the boundaries function of

each index of the pattern. The pattern that we would like to

search in this case is “abacab”. From the left-down side of the

picture above,we can see the boundaries function of the

pattern. Here is the step by step to determine the boundaries

function(b(k)):

At pattern index 0, the boundaries function is not defined since

there are no k value that is -1,thus the b(k) is not defined and

we can apply the Brute-Force algorithm when we found the

mismatch at pattern index 0.

Next,at pattern index 1,the boundaries function for k == 0 is 0

because there are no longest prefix suffix between “a” (prefix)

and not defined suffix.

At pattern index 2,the boundaries function for k == 1 is 0 since

there are no longest prefix suffix between “ab” and “b”.

At pattern index 3,the boundaries function for k == 2 is 1 since

the longest prefix suffix between “aba” and “ba” is “a” where

the length is 1.

At pattern index 4,the boundaries function for k == 3 is 0 since

there are no longest prefix suffix between “abac” and “bac”.

Last but not least,at pattern index 5,the boundaries function for

k == 4 is 1 since the longest prefix suffix between “abaca” and

“baca” is 1.

After we found the boundaries function for each index of the

pattern,now we process to the searching.

The first mismatch occurs at pattern index 5,where the

boundaries function is 1. So,we start the next comparison from

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

pattern index 1,which means we do not have to check the

pattern index 0 again(see the picture above).

The mismatch occurs again when we comparing the pattern[1]

with the text index before. Because the value of boundaries

function of k == 0 is 0,so we proceed to compare the pattern

index 0.

The mismatch occurs again at pattern[4],so we check the b(k)

which is 0. We compare the pattern[0],but the mismatch

immidiately occurs,it means we can apply the Brute Force

Algorithm because the mismatch occurs and boundaries

function is not defined.

Finally,all the words is matching so we can get the

result,where the match occurs from index 10.

The time complexity for Knuth-Morris-Pratt(KMP) Algorithm

is O(n) where n is the text size.

III. SEARCHING TOOLS APPLICATION

Jumping to the real problem,now we try to apply these
algorithm to find the matching string with the pattern we
would like to put. To be noted, the application of this problem
may vary in many ways,because there a many words that can
be put as a pattern,as well as there are also many source text
that can be used for the test case,so we just explain one of the
example regarding this.

Suppose we have a window that consists of large text. Now
we have an input of pattern that we would like to match with
the whole text in the window. In this example, the application
used would be TextEditor in MacOS.

The picture above is the text that we would like to match with
the pattern. As shown above,the pattern is not yet to input,so
there will be no return match. If we try to input something to
the “find” table in the TextEdit, the TextEditor will bold
certain words that match with the input we put in the “find”
table. Here is the example:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

When words “pemerintah” is put in the “find” table,the
TextEditor application will bold certain words that match the
input text we put in the “find” table before. This apply the
KMP Algorithm that have explained before,where the
apllication check all the words in the file,then return words or
index that match with the input string.

Now,we try to break it down from the beginning.Using the
KMP Algorithm,we create a boundaries function for the
pattern we input,in this case is “pemerintah”

j 0 1 2 3 4 5 6 7 8 9
P[j] p e m e r i n t a h
k - 0 1 2 3 4 5 6 7 8
b(k) - 0 0 0 0 0 0 0 0 0

We can see that the boundaries function of each index of the
pattern is 0,so when we proceed to the next searching
step,when we found a mismatch in the text,it will only
continue to the next index of text where the mismatch
occurs.Example:

In the index 0 where the text[0] is “J” and pattern[0] is “p”,the
mismatch occurs,because the mismatch occurs at pattern index
0,the boundaries function is not defined,so we use the
brute-force algorithm-like for processing the next word.Now
we compare text[1] with pattern[0], the mismatch occurs again
at index 0 in the pattern,so we check again the boundaries
function(which is not defined for -1),we apply like the
previous way. We process to the next index until we found “p”
at text index 36(in word “diterapkan”),the mismatch don’t
occur,so we check next text index which is 37(“k”),and
compare to pattern[1],where mismatch occurs. Because the
mismatch occurs,so we start again from index 37,and so on
until we find the matching words in index 41. The KMP
Algorithm also search for the next words even after the
matching patterns occur,basically saying that they check all
the index in the whole text,so the return result can be more
than 1 matching words.

When we found boundaries function of a pattern where the
boundaries function of each index is not 0 at all,so we can
easily apply this algorithm more effectively,because the
algorithm do not check again the word that do not need to be
checked. Example when we have pattern “abaaba”,the b(k)
when k == 4 is 2. So when the mismatch occurs at pattern[5]
which the value of k is 4,we start again the next comparison
from pattern index 2(the value of boundaries function),this

means the words before pattern[2] do not need to be check
again because it must be the same words.

IV. CONCLUSION

The Knuth-Morris-Pratt Algorithm is very effective in
processing string-matching problems.

The pre-processing(finding boundaries function) have time
complexity of O(n) and the searching time complexity of
O(m) where n is the pattern size and m is the text size.

When using KMP Algorithm,we do not have to be worry
because of the text size which can be very large and big. This
algorithm have guaranteed that the worst case is also efficient
(O(m) also),compared to other algorithm(Brute
Force,Booyer-Moore,and Rabin-Karp) where it takes O(mn)
to process in the worst case.

VIDEO LINK AT YOUTUBE (Heading 5)
https://www.youtube.com/watch?v=7VsX4AQYJSs

ACKNOWLEDGMENT
The author would like first to give thanks to God because

without Him,author would not even be able to finish this
project and also have the chance to still live.Author would also
like to give the biggest appreciation and respect to all of the
people who contributed from the beginning of the Strategi
Algoritma study progress until now.To Dr. Ir. Rinaldi Munir,
MT and Dr. Masayu Leylia Khodra,author would like to give
the biggest appreciation and respect because Mr.Rinaldi have
been a good and caring teacher,which makes author enjoy the
studying progress and learn so much from their teaching.
Author also would like to thank his parents,that have provided
the best life and support while doing his academic progress in
Bandung Institute of Technology.

REFERENCES
[1] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Pencoco

kan-String-(2018).pdf
[2] https://oto.detik.com/berita/d-4999554/jasa-antar-mudik-via-medsos-gun

akan-mobil-pelat-hitam-sudah-berlangsung-lama?tag_from=wp_beritaut
ama&_ga=2.151850105.1722798357.1588406165-865129897.1587489
839

[3] https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bekasi, 2 Mei 2020

Brandon Oktavian Pardede

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

