
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Bidirectional Search Using BFS to Calculate Degrees

of Separation

Annisa Ayu Pramesti 13518085

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

13518085@std.stei.itb.ac.id

Abstract—People are all interconnected with each other.

Nowadays, social media is very often used and has so many users

from various parts of the world. The concept of Six Degrees of

Separation stated that for every two people in the world, they are

separated by maximum of 5 people. To calculate the degrees of

separation, we can find the shortest path possible from two

distinct nodes of a graph of world connection with people as the

nodes. This study’s aim is to calculate the degrees of separation of

two Facebook account using a dummy database. A graph will be

generated based on the database and then we will perform BDS

algorithm with two account as parameters. For every query,

there will be calculated the time requited and the average time.

Keywords—Bidirectional Search, Six Degrees of Separation,

shortest path

I. INTRODUCTION

Shortest path problem is quite famous problem that mostly
be solved using unidirectional search algorithms. The goal is to
find the smallest path from a given start state to a goal state.
Some famous algorithms are Dijkstra, BFS for undirected and
unweighted graph, or Floyd-Warshall algorithm if the goal is to
find the shortest path between all pairs of vertexes.
Bidirectional search (BDS) is an algorithm to find the path
where the search is performed simultaneously from the start
and from the goal state until the two search frontiers meet[1].
Bidirectional search replaces single search graph which is
likely to grow exponentially with two smaller subgraphs, one
starting from initial vertex and other starting from goal vertex.
Bidirectional search is complete if BFS is used in both searches
and is optimal if the graph has uniform cost.

There is a concept of “Six Degrees of Separation” that any
two given entities are no more than six steps away from each
other in some sense. Michael Gurevich conducted seminal
work in his empirical study of the structure of social networks
in his 1961 Massachusetts Institute of Technology PhD
dissertation under Ithiel de Sola Pool. Mathematician Manfred
Kochen, an Austrian who had been involved in urban design,
extrapolated these empirical results in a mathematical
manuscript, Contacts and Influences[2], concluding that in a
U.S.-sized population without social structure, "it is practically
certain that any two individuals can contact one another by
means of at most two intermediaries. In a [socially] structured
population it is less likely but still seems probable. And

perhaps for the whole world's population, probably only one
more bridging individual should be needed." There are already
so many researches on this topic with different approaches. The
concept of six degrees of separation is often represented by a
graph of relationships. Real-world applications of the theory
include power grid mapping and analysis, disease transmission
mapping and analysis, computer circuitry design and search
engine ranking. Facebook is a social networking site that
connects so many people on the internet. Facebook accounts
are interconnected by their friend list and can be represented by
undirected graph.

This study’s goal is to find the degrees of separation
between two Facebook account that is defined by smallest path
between them. To find the smallest path from two accounts, we
can traverse the list of friends on every account to find the least
number of friends it takes to navigate between any accounts.
The implementation in this study is limited to dummy
databases and can be further developed using actual Facebook
databases.

II. SIX DEGREES OF SEPARATION

Six degrees of separation is a well-known idea that any two
people on this planet can be connected via an average number
of six people[3]. The theory of six degrees of separation states
that any two random-selected people on this world can get to
know each other by no more than six steps of intermediate
friend chains. There are many experiments conducted on social
media platform such as Facebook by collecting the profile
information of volunteer members provided, they are willing to
download and install an application. The result also supported
the theory with an average of 5.73 degrees of separation. But
the homogeneous characteristics of all participants weaken the
result and cannot guarantee it is still true for a diverse range of
users with different interests and backgrounds. Furthermore,
except the few experiment studies, there has never been a
mathematical proof or analysis on the correctness of the six
degrees of separation theory in the virtual online society
world[3].

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

III. BLIND SEARCH ALGORITHMS, DEPTH FIRST SEARCH,

BREADTH FIRST SEARCH, AND BIDIRECTIONAL SEARCH

A. Blind Search Algorithms

A blind search (also called an uninformed search) is a
search that has no information about its state or search space.
The only thing that a blind search can do is distinguish a non-
goal state from a goal state.

Figure 1. Simplified map of Romania
(source =

http://www.cs.nott.ac.uk/~pszgxk/courses/g5aiai/003blindsearc
hes/blind_searches.htm)

Consider Fig 1. Assume that we are currently in Arad and
we want to get to Bucharest. If we produce a search tree, level
1 will have three states: Zerind, Sibiu and Timisoara. A blind
search will have no preference as to which node it should
explore first because it has no idea about the search space of
every node.

There are reasons to use a blind search rather than a search
with some built in intelligence. One of the reasons is that there
may not be any useful information from the graph to be
considered through the search. Some problem might just be
looking for an answer and won't know where the answer is
until it is found.

It is also useful to know the flow and process of
uninformed searches as they form the basis for some of the
intelligent searches that is going to be useful in solving more
complex problems.

There are so many type blind searches. In this paper, we are
about to consider blind searches that only differ in the order in
which we expand the nodes but, as we shall see, this can have a
dramatic effect as to how well the search performs.

B. Depth First Search

Depth First Search (DFS) is an algorithm for searching or
traversing tree or graph. This is recursive algorithm involving
exhaustive search that uses idea of backtracking. A basic DFS
generates and examines every global state that is reachable
from a given initial state[4]. The algorithm first check for the
validity of the state and its properties using bounded function.
If the state is valid, then we generate the connected states. A
recursive call to the search procedure is then made for each

state that is reachable from this state in one atomic execution
step[4]. If the state is not valid then the node is bounded. After
that we backtrack to previous node.

Figure 2. Depth First Search step by step

(source = https://medium.com/kredo-ai-engineering/search-
algorithms-part-2-uninformed-search-algorithms-1-

be5583a2f1e1)

DFS algorithm is not complete if we do not remember all
the nodes present in the path from the root to the current node.
If the nodes are stored, it might also save redundant paths.
Since DFS idea is to traverse every generated state so the
process is unsuitable to perform bidirectional search algorithm.

C. Breadth First Search

Breadth First Search (BFS) is an important building block
of many graph algorithms, and commonly used to elaborate
with other algorithm to solve many problems. It is usually used
to test for connectivity or compute the single source shortest
paths of unweighted graphs, directed or undirected[5]. Time
complexity of BFS is O(V+E) where V is number of vertices in
the graph and E is number of edges in the graph. BFS is
complete. This means that for a given graph, BFS will find the
solution if it exists.

Figure 3. Breadth First Search step by step

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

(source = https://static.packt-
cdn.com/products/9781785884504/graphics/image_07_009.jpg)

Given a distinguished graph s, Breadth-First Search (BFS)
systematically explores the graph G to discover every vertex
that is reachable from s. Let V and E refer to the vertex and
edge sets of G, whose cardinalities are n = |V| and m = |E|. We
assume that the graph is unweighted; equivalently, each edge e
∈ E is assigned a weight of unity. A path from vertex s to t is
defined as a sequence of edges <ui, ui+1> (edge directivity
assumed to be ui → ui+1 in case of directed graphs), 0 ≤ i < l,
where u0 = s and ul = t. The length of a path is the sum of the
weights of edges. We use d(s, t) to denote the distance between
vertices s and t, or the length of the shortest path connecting s
and t. BFS implies that all vertices at a distance k (or “level” k)
from vertex s should be first “visited” before vertices at
distance k + 1. The distance from s to each reachable vertex is
typically the final output. In applications based on a breadth-
first graph traversal, one might optionally perform auxiliary
computations when visiting a vertex for the first time.
Additionally, a “breadth-first spanning tree” rooted at s
containing all the reachable vertices can also be maintained[6].

Algorithm 1 BFS algorithm.
Input: G(V, E), source vertex s.
Output: d[1..n], where d[v] gives the length of the shortest
path from s to v ∈ V.
1: for all v ∈ V do
2: d[v] ← ∞
3: d[s] ← 0, level ← 1, FS ← φ, NS ← φ
4: push s → FS
5: while FS ≠ φ do
6: for each u in FS do
7: for each neighbor v of u do
8: if d[v] = ∞ then
9: push v → NS
10: d[v] ← level
11: FS ← NS, NS ← φ, level ← level + 1

There are so many real-life problems that can be solved
using BFS. One of the examples is graph based fingerprint and
matching algorithm using coupled BFS[7].

D. Bidirectional Search

Bidirectional search (BDS) is a graph search algorithm to
find smallest path from source from goal node. The name
represents the algorithm very well because there are two
simultaneous searches[8]. The first search is forward search
from source/initial node and the second is backward search
from goal/target node. Bidirectional search can be run and
guided by heuristic estimate of remaining distance from source
to goal and vice versa. This algorithm is just modification of
many search algorithm but performed twice from initial and
target, so they are expected to meet in the middle.

Figure 4. Bidirectional search illustration

(source = https://www.javatpoint.com/ai-uninformed-
search-algorithms)

To get the optimal result of BDS, the path generated by the
graph should all have the same cost. The algorithm can be very
effective approach when the branching factor is the same in
both directions. Bidirectional search is complete if for both
searches, BFS is used.

So many cases are found to be solved faster using BDS
than regular BFS because it can reduce the amount of required
exploration/expansion of nodes. Suppose if branching factor of
a graph is b and the distance of goal node from initial node is d,
then by using BFS/DFS the searching complexity would be
O(bd). If we divide this search by two, we get searching
complexity O(bd/2) for each divided search then the total
complexity would be O(bd/2+bd/2) whish is far less than the
BFS/DFS search complexity. This also means that if the
branching factor is not the same for every node, then there is no
guarantee that BDS will be better than BFS/DFS.

We consider a generic bidirectional search in Algorithm 2.
First, it maintains open and closed lists for each direction. The
directions are f (forward) or b (backward). States originating
from the start are in the forward direction, while those
originating from the goal are in the backwards direction.
Second, it must check for solutions by finding the same state
on the opposite open list, instead of performing a goal test
against a goal state. Third, it does not always terminate
immediately upon finding a solution. The search must continue
until the best solution found thus far has been proven to be
optimal[9].

Algorithm 2 Bidirectional search algorithm
1: procedure bidirectional_search(start, goal)
2: push(start, OPENf)
3: push(goal, OPENb)
4: while OPENf and OPENb not empty do
5: remove best state s from OPENf / OPENb

6: if can terminate search then return success
7: end if
8: if s was on OPENf then
9: move s to CLOSEDf

10: for each successor si of s do

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

11: if si on OPENf then
12: update cost of si on OPENf if shorter
13: else if si not on CLOSEDf then
14: add si to OPENf

15: end if
16: if si on OPENb then // ISD
17: update best solution
18: end if
19: end for
20: else
21: // Analogous code in backwards direction
22: end if
23: end while
24: return failure
25: end procedure

A real life example of bidirectional search algorithm is in
keyword search on graph databases[10]. Relational, XML and
HTML data can be represented as graphs with entities as nodes
and relationships as edges. A central problem in this scenario is
to efficiently extract from the data graph a small number of the
“best” answer trees. A Backward Expanding search, starting at
nodes matching keywords and working up toward confluent
roots, is commonly used for predominantly text-driven queries.
But it can perform poorly if some keywords match many
nodes, or some node has very large degree. Bidirectional
Search improves on Backward Expanding search by allowing
forward search from potential roots towards leaves. To exploit
this flexibility, a novel search frontier prioritization technique
is devised based on spreading activation. In this case,
Bidirectional Search significantly outperforms Backward
Expanding search. In addition to edge weights, the ranking of
an answer may also depend on a notion of node prestige. As
with Pagerank with decay, not all nodes are equal in status[11].
A method of computing node prestige based on indegree is
defined in [12], while [13] defines global and per-keyword
node prestige scores for each node. Node prestige scores can be
assumed to be precomputed for our purpose, although they
could potentially be computed on-the-fly.

There is also BDS that is guaranteed to meet in the middle
as explained from [14]. They introduce a framework that
divides the state-space into disjoint regions and allows a careful
analysis of the behavior of the different algorithms in each of
the regions. The algorithm that they are using as search
algorithm for every starting node is A*[15].

IV. DATA STRUCTURE, QUERY, AND RESPONSE MODEL

A. Data Structure

Facebook users are connected via their friend list. To be
able to connect, Facebook users must add friend to another user
and then wait for the request to be accepted. This implies once
the request is accepted, the other user do not have to request
back to get connected. This relationship can be represented to
undirected graph because for all user, if one user is connected
to another user, the opposite applies.

We model the connections as an undirected graph in which
nodes are users and edges are relationships. For each user p in
the database that we need to represent, the data graph has a
corresponding node up. For each pair of users p1 and p2 such

that there is a connection from p1 to p2, the graph contains an
edge from up1 to up2[10].

B. Query

A query is a set of keywords consists of two terms t1 and t2.
t1 is Facebook id of the first account and t2 is the Facebook is of
the second account. We are going to find the degrees of
separation between t1 and t2. Let u1 be the node matches with t1
and u2 be the node matches with t2. The query is assumed to be
in the database graph. The next step is to apply the BDS
algorithm to the graph.

C. Response Model

A response or answer to a keyword query is one or more
shortest path between the correspondent nodes of the query. If
there are more than one path, then all the answer should be in
the same degrees. The answer will be represented in an
undirected graph that connects the two nodes from the query.
The answer also includes how many degrees/how long the path
calculated from the initial to target node.

V. FACEBOOK DEGREES OF SEPARATION

A. Building Facebook Connection Graph

Using the data structure that we have been mentioned
earlier, we generate the graph with Facebook connections as
edges and account ids as nodes. Here we are using dummy
database that consists of 100 fake accounts that are
interconnected. These accounts might be not representing the
actual data since Facebook has huge databases but the more
real accounts/nodes the better because we then can prove the
concept of “Six Degrees of Separation”.

B. Calculate the Degrees of Separation

Before we compute the degrees of separation, we first
determine the query. It is assumed that the query should be
contained in the graph. Below is the implementation of
bidirectional search between 2 ids from given query. After we
find the shortest path possible, we can calculate the degrees of
separation. For all result obtained from this procedure, we
show them if the results are in the same degrees.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Figure 5. Implementation of bidirectional search between 2 ids
(source = https://www.geeksforgeeks.org/bidirectional-search/)

C. Testing

To test the degrees of separation, the queries are obtained
from choosing random account ids from the database We
choose 20 different queries and for every query, we perform
bidirectional search from point B and basic BFS in comparison
to get the degrees of separation. From the test conducted, 100%
results from bidirectional search are the same with results from
BFS. The difference between the two algorithms are the time
complexity as we have discussed. The bidirectional search is
faster than BFS by 1.32 average ratio. This time complexity
indicate that the database’s branching factor is quite the same
for every node to be better than BFS but we did not calculate
the prediction of time required based on the comparison of time
complexity between BDS and BFS.

VI. CONCLUSION

A program has been created using Bidirectional Search
using BFS as search algorithm for each starting node. This
program is to calculate degrees of separation between two
different nodes from a given graph. The accuracy of this
program is 100% for a given database and the overall time
complexity is better than unidirectional search BFS by 1.32
average ratio.

VII. FUTURE RESEARCH

This research can be done better with bigger database or
real-life database. There are many researches that can be
developed based on this idea proposition such as developing
the search algorithm so it can be much faster and efficient or

implementing this algorithm to another interesting problems.
This algorithm can also be used in various researches in many
fields such as medical field, natural language processing, etc.,
if the data can be represented by undirected and unweighted
graph.

VIDEO LINK AT YOUTUBE

The video of this paper can be accessed in the following
link:https://www.youtube.com/watch?v=sKWmOgJwzgk&t=4
8s

ACKNOWLEDGMENT

The author would like to express her gratitude to God

Almighty for his guidance, to her parents for their eternal

support, love and education, and to the Mrs. Masayu Leyla

Khodra for her teachings of Algorithm Strategies in Class K1

to complete this paper.

REFERENCES

[1] C. Moldenhauer, A. Felner, N. Sturtevant, and J.

Schaeffer, “Single-frontier bidirectional search,” Proc.

3rd Annu. Symp. Comb. Search, SoCS 2010, pp. 151–

152, 2010.

[2] I. De Sola Pool and M. Kochen, “Contacts and

influence,” in The Structure and Dynamics of

Networks, 2011.

[3] L. Zhang and W. Tu, “Six Degrees of Separation in

Online Society,” Journal.Webscience.Org, pp. 1–5,

2009.

[4] G. Holzmann, D. Peled, and M. Yannakakis, “On

nested depth first search,” vol. 32, pp. 23–31, 1997.

[5] S. Beamer, K. Asanović, and D. Patterson, “Direction-

optimizing breadth-first search,” Sci. Program., vol.

21, no. 3–4, pp. 137–148, 2013.

[6] A. Buluç and K. Madduri, “Parallel breadth-first

search on distributed memory systems,” Proc. 2011

SC - Int. Conf. High Perform. Comput. Networking,

Storage Anal., 2011.

[7] S. Chikkerur, A. N. Cartwright, and V. Govindaraju,

“K-plet and coupled BFS: A graph based fingerprint

representation and matching algorithm,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 3832 LNCS,

pp. 309–315, 2006.

[8] A. Bundy and L. Wallen, “Bidirectional Search,” in

Catalogue of Artificial Intelligence Tools, 1984.

[9] N. R. Sturtevant and J. Chen, “External memory

bidirectional search,” IJCAI Int. Jt. Conf. Artif. Intell.,

vol. 2016-Janua, pp. 676–682, 2016.

[10] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,

R. Desai, and H. Karambelkar, “Bidirectional

expansion for keyword search on graph databases,”

VLDB 2005 - Proc. 31st Int. Conf. Very Large Data

Bases, vol. 2, pp. 505–516, 2005.

https://www.youtube.com/watch?v=sKWmOgJwzgk&t=48s
https://www.youtube.com/watch?v=sKWmOgJwzgk&t=48s

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

[11] P. Lofgren, S. Banerjee, and A. Goel, “Personalized

PageRank estimation and search: A bidirectional

approach,” in WSDM 2016 - Proceedings of the 9th

ACM International Conference on Web Search and

Data Mining, 2016.

[12] A. Balmin, S. Diego, and L. Jolla, “ObjectRank :

Authority-Based Keyword Search in Databases ∗

Computer Science,” Science (80-.)., pp. 564–575,

2004.

[13] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S. Sudarshan, “Keyword searching and browsing in

databases using BANKS,” Proc. - Int. Conf. Data

Eng., 2002.

[14] R. C. Holte, A. Felner, G. Sharon, N. R. Sturtevant,

and J. Chen, “MM: A bidirectional search algorithm

that is guaranteed to meet in the middle,” Artif. Intell.,

vol. 252, pp. 232–266, 2017.

[15] Z. Zhang, N. R. Sturtevant, R. Holte, J. Schaeffer, and

A. Felner, “A* search with inconsistent heuristics,” in

IJCAI International Joint Conference on Artificial

Intelligence, 2009.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Mei 2020

Annisa Ayu Pramesti

13518085

