
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

Backtracking Algorithm to Arrange Food to Fit

Desired Calories
Backtracking Algorithm Application

Dwiani Yulia Ariyanti/13518142

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 13518142@std.stei.itb.ac.id

Abstract—This paper described the program prototype to

find the highest value of combining ingridients of various food

using backtracking algorithm. Problem solving in this problem is

like 1/0 Integer Knapsack, and solved by the same way as 0/1

knapsack problem. This program made to help people that want

to organize their calories consumption but still get the best value

of protein.

Keywords—calories, backtracking, food, health

I. INTRODUCTION

Calories are a measure of energy(cal), and more often used
in kilogram unit, where 1 kcal equals 1000 cal . In daily life,
calories uses to maintain people’s health and adjust their
activity’s calories requirements. In special case, people try to
arrange their calorie trough food intake to maintain body
weight for perfect body proportions or just in way to recover
from diase.

Figure 1.Changes in Bodyweight and Calorie Intake

Represented in Graph

(https://www.healthline.com/nutrition/7-graphs-prove-calories-

count#section1)

Food is needed by our body to maintain energy to do any
activities. Calories that contain in food, suply our body with the

energy needed to sustain life. “Calories” written by Eva V.
Osilla and Sandeep Sharma said that each cell in our body need
energy to carry out their specific tasks, from protein
metabolism to the Krebs cycle. When we eat foods, they are
broken down to release this energy which is either used by the
body immediately or stored for later use, depending on the
body’s needs at the time. Generally, we need food to live our
life.

The problem is, as time goes by, people start doing diet
system to maintain their body weight and body proportion. But
this habbit are often unhealthy and actually endanger their
bodies itself. In this paper, we will make a simple application
that will provide a list of food from user’s input that contain
variations of food that can be combined to make a certain
number of calories. So they who does diet system will just
know how many calories in certain that they eat, not just eat
less for keep their body proportion. In addition, it will also
provide variant combination of food, so that they will not
getting bored with these low calories foods. And not for only
them who do diet, it help ordinary people to fulfill their
calories in certain too with some combination according to the
ingredients they just have.

II. THEORITICAL FRAMEWORK

A. Optimization Problem

In optimizing design, its objective need to be simply so we
can minimize the cost of production or maximize production’s
efficiency. An optimization algorithm is a procedure, executed
iteratively by comparing various solutions, untill we found the
optimum solution. Optimization has become a part of
computer-aided design activities since computers came.

There are two distinct types of optimization algorithms
widely used today, deterministic algorithm and stochastic
algorithm. In deterministic algorithm, we use specific rules for
moving one solution to other. These algorithms are in use to
suite some times and have been successfullyapplied for many
engineering design problems. While stochastic algorithms are
in nature with probabilistic translation rules. These are gaining
popularity due to certain properties which deterministic
algorithms do not have.

https://www.healthline.com/nutrition/7-graphs-prove-calories-count#section1
https://www.healthline.com/nutrition/7-graphs-prove-calories-count#section1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

According to references [4], we know that in naive
optimazing design, we use a priority problem knowledge to
comparing a few limited alternative solutions that created by it.
Feasibility of each design solution is first investigated. An
estimate of underlying objective such as cost and profit of each
solution is compared, then we adopted the best solution. It is
impossible to apply single formulation procedure for all
engineering design problems, since the objective in a design
problem and associated therefore, design parameters vary
product to product different techniques are used in different
problems. Purpose of formulation is to create a mathematical
model of the optimal design problem, which then can be solved
using an optimization algorithm.

B. 0/1 Knapsack Problem

The name "knapsack problem" dates back to the early
works of mathematician Tobias Dantzig (1884–1956), refers

to the commonplace problem of packing the most valuable or

useful items without overloading the luggage. Knapsack

problem is kind of combinatorial optimazion. There will be set

of items that given, each item has it own weight and value.

We need to find lergest value from these items collection that

less thangiven limit weight. Integer knapsack problem can be

represented by figure 2.

Figure 2. Integer Knapsack Problem Representation

(https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Knapsack.svg/
486px-Knapsack.svg.png)

For example, in figure 2, the bag only can added by item
that have total weight 15 kg. We need to find item

combination that have the most value as result. It also possible

to have more than one combination. We can use the equation

below to representing the solution:

maximizes

subject to

where:

vi represent tuple of item’s value < v1, v2,...,vn >

wi represent tuple of item’s weight < w1, w2,...,wn >

xi represent tuple from copies of each kind of item to zero

or one < x1, x2,...,xn >

For bounded knapsack problem, we removes the restriction

that there is only one of each item, but restricts the number of

xi copies of each kind of item to a maximum non-negative

integer value c:

maximizes

subject to

While in unbounded knapsack problem, we places no

upper bound on the number of copies of each kind of item, can

be formulated as above, except for restriction on xi is that it is

a non-negative integer. So the equation become:

maximizes

subject to

Integer Knapsack Problem can be solved by brute force

algorithm by try all 2n possible subsets n. But it can be

optimized using other algorithm such as divide and conquer
algorithm, dynamic programming, backtracking algorithm,

etc. In this paper, we will use backtracking algorithm to

optimizing the solution.

C. Backtracking Algorithm

Backtracking algorithm introduced in 1950s by D.H.
Lehmer. Then R.J Walker, Golomb, and Baumert represents a
general description of this algorithm. Backtracking is kind of
algorithm where just lead to solutions that explored, we do not
considered about choices that don't lead to solutions. If we
represent this by a graph, nodes that contain unconsidered
choices will be prunned. It’s the improvement of exhaustive
search by brute force algorithm that need to find all the
possibilities of subset and compare it one by one to get the best
choices.

Based on references[2], general properties of backtracking
methods can be described as follows:

- Set of solution

 The solutions are represented by vectors with m-tuple:

X = (x1, x2, ..., xm), where xi  Si.

S1 can be equals to S2 as well as Sn. For example we have
Si:

 Si = {0, 1}, so xi is whether 0 or 1.

- Generator Function for xk’s value / T(k)

T (k) generates a value for xk which is a vector
component of the solution.

https://en.wikipedia.org/wiki/Tobias_Dantzig

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

- Border function / B(x1, x2, ..., xk)

We assign B with true values if (x1, x2, ..., xk) leads to
the solution. If we get true, then continue the generation of
values for xk+1. But if false, then (x1, x2, ..., xk) discarded.

All possible solutions to the problem are called solution
space and can be represented as tree structure, which each tree
node represented states of the the problem, and the branch
represented as xi’s values. The trajectory that lines from root to
leaf of the tree represents the possible solution, and the entire
trajectory from root to leaf forms solution space. Organizing
the solution space tree referred to as state space tree.

Figure 3. Representation of Backtracking Algorithm by Tree

(http://pianetamedia.com/ppt-knapsack-problem-solving-using-backtracking-

using-state-space-tree-76/)

According to references[2], the principle of finding a
solution with backtracking method can be written is as follows:

- Solutions are searched by forming a trajectory from root to
leaf. The rules of formation are used is following the depht-
first order (DFS) rule.

- Nodes that have been generated are called live-node.

- Live-nodes that are being expanded are called node-E
(Expand-node).

- Each time the E-node is expanded, the trajectory is built by
increasing in length.

- If the path being formed does not lead to the solution, then
the E-node is “killed” / “pruned” so that it becomes a dead
node.

- Border function used to kill the E-node that not quantify the
function.

- Dead node will never be expanded again.

- If the formation of the path ends with a dead node, then
process other searching for backtrack to the node above it

- Then, continue by generating the other child node, this node
becomes the new E-node.

- It stopped when we have reached goal node.

Backtracking solved three types of problems:

1. Decision Problem, which aim to search for a feasible
solution.

2. Optimization Problem, to search for the best solution.

3. Enumeration Problem, in purpose to find all feasible
solutions.

D. Food Composition

Written in “Food composition data” book by H. Greenfield
and D.A.T. Southgate, early food composition studies were
carried out to identify and determine the chemical nature of the
principles in foods that affect human health. But studies are
still required, because current knowledge of nutrition is still
incomplete, and often at an ever increasing level of
sophistication, into the composition of foods and the role of
these components and their interactions in health and disease.
Somogyi (1974) reproduced a page of the earliest known food
composition table, dated 1818. Ever since, it has been
customary to record food composition data in printed tables for
use by both specialists and non-specialists. While printed tables
will continue to be produced, computerized data systems have
replaced them in some settings because of the ease with which
data can be stored, and the facility with which the large
amounts of data can be accessed and processed. These table
will be our source data, and it will be better if we organize it
into basis data, so we can use it to compute a program that need
food composition to be their data.

Figure 4. Lebalelling Food, to Measure The Sustention

(https://www.newfoodmagazine.com/news/78337/food-labels/)

Every food contain various value of kalories, protein,
vitamin, water, and minerals. It used to fulfill our body’s need
so we can do our activity and keep our body healthy and fit.
Too much calories can bring in disease, like obesity. Too less
calory can also cause hungry edema and make our body not fit
enaugh to do activity properly. So what we need is the balance
kalories, protein, water, mineral, and various vitamin
consumed by our body.

For athlete, model, or people that need to control their
calorie consumption (it can be for treatment during illness too),
they still need carbohydrate source to gain energy for their
daily activities. But in other hands, they need to minimilize

http://pianetamedia.com/ppt-knapsack-problem-solving-using-backtracking-using-state-space-tree-76/
http://pianetamedia.com/ppt-knapsack-problem-solving-using-backtracking-using-state-space-tree-76/
https://www.newfoodmagazine.com/news/78337/food-labels/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

their kalories consumption. We can manipulated it using
protein consumption, because protein is actually also
carbohydrate source, beside it’s give our body more healthy
and most of high protein food contain low fat. It more healthy,
and help us to reduce calories consumption.

There are many food that contain low calories beside high
protein. The problem that we want to solve is, how to gain
enaugh energy but consume less calories. What kind of food,
and how to combinate it to get the highest protein contained,
while under calories limit we want.

III. IMPLEMENTATION

In this paper we will modelling the problem using 0/1
knapsack problem. The equation will be in follows:

maximizes

subject to

where:

vi represent tuple of food’s protein value < v1, v2,...,vn >

wi represent tuple of food’s calorie value < w1, w2,...,wn >

xi represent tuple from copies of each kind of item to zero

or one < x1, x2,...,xn >

The data that used in this program is from txt. It will be

better if we can use database like MySQL, but for this simple

prototype, we eill just use txt file. So, we need to extract this

data into array. We will use command as follows:

def bacaFile():

 file = open("calories_info.txt","r")

 matriks = []

 for line in file:

 row = [elt for elt in line.split(' ')

]

 matriks.append(row)

 for i in range(len(matriks)):

 matriks[i].append(False)

 file.close()

 return matriks

We saved and process the data that represented in matrix.

Matrix in column 1 saved the food type, column 2 saved the

calory value, and column 3 saved protein value.

Because backtracking implements dfs, we will

modification the algorithm for dfs as bellows:

def dfs(visited, graph, node):

 if node not in visited:

 print(node)

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

The dfs algorith will be modificated into backtracking

algorithm. The root will be an empty list. Then we will

generate the branch one by one with make 2 node where has

addition value True/False. It represented 0 and 1 value for xi.

def backtracking(limit,node, curr_food, next_

food, curr_weight, food_info):

 # node active = node saat itu, semua dimu

lai dari true

 node.pop()

 if(getFoodInfo(curr_food,food_info)[5]):

 if (curr_weight + getCalorie(curr_foo

d,food_info) > limit):

 curr_weight += getCalorie(curr_fo

od,food_info)

 take = getFoodInfo(next_food,food

_info)

 print(take)

 take[5] = True

 throw = getFoodInfo(next_food,foo

d_info)

 throw[5] = False

 node.insert(0,throw)

 node.insert(0,take)

 else:

 take = getFoodInfo(next_food,food_inf

o)

 print(take)

 take[5] = True

 throw = getFoodInfo(next_food,food_in

fo)

 throw[5] = False

 node.insert(0,throw)

 node.insert(0,take)

 return node, curr_weight

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

We will just pruned the nodes if it has over the limit. Then

we will go to its parrent and check the other child of it if it

hasn’t checked yet. The backtracking will run untill every

live-nodes and expand-node empty. Then we will get the

highest protein value from set of solution.

inp = input()

food_desired.append(inp)

while (inp != "."):

 inp = input()

 if (input != "."):

 food_desired.append(inp)

curr_weight = 0

for i in range(len(food_desired)-1):

 (node, curr_weight) = backtracking(desire

d_calories,node,food_desired[i],food_desired[

i+1],curr_weight,food_info)

(node, curr_weight) = backtracking(desired_ca

lories,node,food_desired[len(food_desired)-

1],food_desired[len(food_desired)],curr_weigh

t,food_info)

For the input user will input the food ingridients that also

wil be showed before. And end it with write dot (.). Then user

will input the limit of calories that they want. We will

compute every desired food that written by user one by one

using backtracking function and wait for the result.

IV. CASE STUDIES

For case studies we use data as follows:

Food Calorie Protein Weight(gram)

Wortel 41 0.93 100

Tomat 18 0.88 100

Nasi 129 2.66 100

Roti 266 7.64 100

Putih telur 52 10.9 100

Alpukat 160 2 100

Kentang 70 1.68 100

Selada 14 0.9 100

Timun 12 0.59 100

Almond 578 21.26 100

Susu 50 3.29 100

1) We will try to insert some ingridients for example: wortel,

nasi, tomat, almond, susu. Then let 50 being the calorie limit.

Then we will search the highest protein contained in food

combination. For this cas, we got susu as the result.

Figure 5. Case Studie 1

2) We will try to insert some other ingridients: nasi, susu,

kentang, selada, alpukat, almond, tomat, and wortel. Then let

100 being the calorie limit. Then we will search the highest

protein contained in food combination. For this cas, we got

susu, selada, and tomat as the result.

Figure 6. Case Studie 2

V. CONCLUSION

0/1 Knapsack Integer Problem can be applicated in many

domain. For this paper we use it to find the highest protein that

can be contained in food combination with the calorie limit

that we want. Backtracking algorithm will pruned the node

that not lead into solution, so it make this program faster than

compute it using exhaustive search.

VIDEO LINK AT YOUTUBE

https://youtu.be/MdpULnfTXZk

ACKNOWLEDGMENT

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

The author would like to thank God for all the grace and
blessings. The author would also thank Dr. Masayu Leylia
Khodra, Dr. Ir. Rinaldi, M.T., and Dr. Nur Ulfa Maulidevi as
the lecturer of algorithmic strategy (IF2211) for all the
knowledge given. The author also express gratitude to family
and friends for their support in process of making this paper.

REFERENCES

[1] Eva V. Osilla, Sandeep Sharma, “Calories”, 2018, StatPearls

Publishing LLC.

[2] R. Munir, “Algoritma-Runut-balik (Backtracking)”, 2020,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-

2020/Algoritma-Runut-balik-(2020).pdf

[3] Lecture 13: “The knapsack problem”,

http://www.es.ele.tue.nl/education/5MC10/Solutions/knapsack.pdf

[4] “Optimization methods”, https://mech.iitm.ac.in/nspch52.pdf

[5] H. Greenfield and D.A.T. Southgate, 2003, “Food composition data”,

2nd ed, Food and Agriculture Organization of the United Nations Rome

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2020

Dwiani Yulia Ariyanti - 13518142

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-2020/Algoritma-Runut-balik-(2020).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2019-2020/Algoritma-Runut-balik-(2020).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2019/2020

	I. Introduction
	II. Theoritical Framework
	A. Optimization Problem
	B. 0/1 Knapsack Problem
	C. Backtracking Algorithm
	D. Food Composition

	III. Implementation
	IV. Case Studies
	V. Conclusion
	Video Link at Youtube
	Acknowledgment
	References

