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Abstract​— Fourier Transform is one of the most important         
transformation in engineering. However, beside engineering and       
signal processing, Fourier Transform also provides an alternative        
divide-and-conquer approach to polynomial multiplication. The      
solution would be based on the common 2-Radix Fast Fourier          
Transform algorithm and its inverse transform. A comparison        
with the more straightforward approach will also be discussed,         
along with brief comparison with other polynomial multiplication        
algorithms known to date.  

Keywords— Fast Fourier Transform, Polynomial     
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I.  INTRODUCTION 
Fourier transform is one of the most fundamental tools in          

wave analysis. Given a wave with certain equation, one could          
decompose the wave into its sinusoidal components. The idea         
lies in the fact that every periodic function can be exactly           
approached by sum of Fourier Series.  

However, its applications are not limited to the fields         
stated previously. One interesting application found regarding       
Fourier Transform is polynomial multiplication. Previous      
algorithms, such as Karatsuba algorithm, provided a solution        
with time complexity ​O(n​log3 ​) , ​an improvement over the         
straightforward approach with ​O(n​2​) ​time complexity.      
However, Fast Fourier Transform (FFT) algorithm can       
provide a faster ​O(nlogn) ​working algorithm for polynomial        
multiplication. There are properties of FFT which can be         
exploited by evaluating the polynomials with the root of unity.          
The root of unity is periodic, therefore there are some values           
which not needed to be computed twice during the evaluation.          
The paper , thus ,will discuss the steps and several proofs           
necessary to accomplish a better polynomial multiplication       
algorithm with FFT. 

 

 

II. THEORIES 

A. Discrete Fourier Transform 
Discrete fourier transform is the discrete equivalent of        

continuous Fourier Transform (as in that there are finite data          
separated by time interval T​i​ ). 

The continuous Fourier Transform is defined by : 

(jω) (t) e dtF =  ∫
∞

−∞
f −jωt (1) 

To transform the original equation into a discrete one ( the            
type of transformation that will be primarily used in this          
paper), consider N samples ​f [0] , f [1] , f [2] … , f [N-1]                
taken from the source ​f (t) ​. Every sample can be considered as             
an impulse with area ​f [k] = f(k)T​. ​T ​corresponds to the            
interval, therefore ​dt ​can be approached with T. The         
integrands would only be defined in the sample range, that          
is[1] : 

(jω) (t) e dtF =  ∫
(N−1)T

0
f −jωt (2) 

Therefore,  

(jω)  [k] e  F = ∑
N−1

k=0
f −jωkT (3) 

Treating the data as periodic (ie. ​f[0] ​to ​f [N-1] ​is same as             
f[N] ​to ​f[2N-1]​), then DFT can be evaluated at its          
fundamental frequency (​1/(NT) ​Hz). Thus [2],  

 [n] [k]eF =  ∑
N−1

k=0
f −2πnkj/N (4) 

It is more common to write ω = ​e​2πj/N​ .  

    Eq. 4 defined as the DFT. However, it is sometimes easier 
to represent such linear equations with matrix. 

 

 

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019 
 



 

DFT is represented by a matrix : 

(5) 

Fig 1. Matrix representation of Fourier Transform  

W is defined as ​exp(-2πi/N) 

Also, stated without proof, the inverse transform, 

 [n] [k]ef =  1
N ∑

N−1

k=0
f −2πnkj/N (6) 

The inverse would play a big role in the Fast Fourier           
Transform later.  

Discrete Fourier Transform found many fields of       
applications, especially in signal processing. Computers,      
obviously, do not work with continuous data. Computers work         
with samples taken from the analyzed waves. The continuous         
transformation therefore can be approached with the discrete        
one. 

B. Divide and Conquer 
Divide and Conquer is one of the most important approach           

in solving computation problems. This idea is introduced        
mainly because approaches to find better polynomial       
multiplication algorithms have utilized this idea. The main        
idea behind the approach is to divide the problem into several           
smaller instances of the same problem, and combine the result          
of those smaller problems to obtain the original problem (the          
“conquer” part). 

     The basic algorithm is as the following : 

1. Divide the problems into smaller instances of the        
same problem 

2. For each smaller problems, obtain the answer. This        
part of the algorithm is where the recurrences are. 

3. Combine all the answers to obtain the general        
solution of the problem 

As for each recurrence, the base should be defined. The           
base for divide and conquer approach is not strictly defined, as           
long as it is beneficial for the sake of performance. One could            
define a base case of certain size, in which it could be solved             
fast with more naïve algorithms. 

Divide and algorithm approach has been applied to find          
better solutions of computational problems when compared to        

“brute force” approach, although not necessarily as such for         
several problems.  

To determine the time complexity of a divide and conquer           
solution, Master theorem is used[3]. Master theorem provides        
solution in Big-O notation for recurrence relations, notable        
feature in divide and conquer algorithms. The recurrences        
considered have the form as the following : 

(n) T (n/b) (n)T = a + f (7) 

That is, the problem is divided into a smaller problems          
with ​n/b size , and additional work of ​f (n) ​(usually for            
combining). There are three cases for ​T(n) ​, which are : 

1. If it is true that ​f (n) = Θ (n​c​) ​where​ c < log​b​a, ​then : 

(n) Θ (n ) T =  log ab (8) 

2. If it is true for some constant ​k ​> 0 ​that f (n) =               
Θ(n​c​log​k​n) ​where​ c = log​b​a , ​then 

(n) Θ (n log n)T =  c k+1 (9) 

3. If it is true that ​f (n) = Θ (n​c​) ​where​ c > log​b​a, ​then : 

(n) Θ (f (n)) T =  (10) 

 

C. 2-Radix Fast Fourier Transform 
2-Radix Fast Fourier Transform (FFT) is a part of a family            

of Fast Fourier Transform. It is the most common         
implementation of Cooley-Tukey algorithm , and can be        
explained solely from the perspective of Fourier Transform. 

The idea behind the algorithm is exploiting the symmetry          
within the definition of discrete Fourier Transform. Consider        
the following discrete Fourier Transform : 

[n]  [k] e  F = ∑
N−1

k=0
f −j2πnk/N (11) 

     To find the symmetry, ​F[n] ​can be written as : 
 

[n]  [2m] e  [2m ] e F = ∑
N /2−1

m=0
f −j2πn(2m)/N + ∑

N /2−1

m=0
f + 1 −j2πn(2m+1)/N

(12) 

The first summation is the summation of all terms with            
even indices, and the second summation is the summation of          
all terms with odd indices. The equation can be further          
arranged : 
 

[n] [2m]e [2m ]e F = ∑
N /2−1

m=0
f −j2πnm/(N /2) + e−2πjn/N ∑

N /2−1

m=0
f + 1 −j2πnm/(N /2)  

(13) 
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Notices that the first summation is the discrete Fourier          
Transformation for even terms, and the second summation is         
the discrete Fourier Transform for odd terms. 

[n] [2m]e , N /2E = ∑
N0

m=0
f −2πjmn/(N +1)0  0 = N − 1 (14) 

[n] [2m ]e , N /2O = ∑
N0

m=0
f + 1 −2πjmn/(N +1)0  0 = N − 1 (15) 

 
     Therefore : 
 

[n] E[n]  O[n]F =  + e−2πjn/N (16) 

Also, consider the case of ​n + N/2 : 

(17)[n N /2] [n /2] O[n /2]F +  = E + N + e−2πj(n+N /2)/N + N   

(18)[n /2] [2m]e , N /2E + N = ∑
N0

m=0
f −2πjm(n+N +1 )/(N +1)0  0  0 = N − 1  

[n /2] [2m]e eE + N = ∑
N0

m=0
f −2πjmn/(N +1)0 −2πjm (19) 

Due that ​e​iӨ = cos(θ) + i sin (θ) , it follows that ​e​-2πjm = 1.                 
Therefore  ​ ​= .[n /2]E + N [n]E  

Also, without proof, it is easily seen that =         [n]O    
. ​However ,​ e​-2πj(n+N/2)/N​ = -e​-2πj(n))/N​ , ​therefore :O[n /2]+ N    

,[n N /2] [n] O[n]F +  = E − e−2πjn/N   

[n] E[n]  O[n]F =  + e−2πjn/N (20) 

It can be deduced easily that by finding ​E​n ​and ​O​n ​, ​all             
values can be determined with less computation , compared to          
straightforwardly compute the summation for each ​F [k]​. 

To find the complexity, recall the recurrence form of ​T(n)          
= aT(n/b) + f(n) ​. radix-2 FFT algorithm divides the problem           
into 2 smaller sub-problems, each is ​N/2 ​in size. The time do            
the summation will be ​f(n) = Θ (n​1​). ​Since c = 1 = ​log​b​a =               
log​2 ​2 ​, therefore the complexity of radix-2 FFT algorithm will          
be : 

(n) Θ (nlog n) Θ (nlogn)T =  0+1 =  (21) 

 

Fig. 2. Time complexity comparison between the       
straightforward algorithm and FFT algorithm. Notice the       
logarithmic scale of y-axis. Source : Author’s document 

However, as the paper titled, the algorithm discussed here          
will be limited to radix-2 FFT algorithm (the number of          
samples should be the power of 2) . A more general form for             
arbitrary N samples exists, but it is out of the scope of this             
paper. 

D. Polynomial Multiplication and Fast Fourier Transform 
      In general , given two polynomials in coefficients 
representation [4] : 

(x) x   , g(x) x  f = ∑
N−1

i=0
ai

i  = ∑
N−1

i=0
bi

i (22) 

      The multiplication of both polynomials : 

(x)g(x) x )( x )f = ( ∑
N−1

i=0
ai

i ∑
N−1

i=0
bi

i (23) 

(x)g(x) b x )f = ( ∑
N−1

i=0
∑

M−1

j=0
ai j

i+j  (24) 

     Or, in terms of some ​c ​: 

(x)g(x) (x) x , c bf = C = ∑
2N−1

i=0
ci

i  i = ∑
i

j=0
ai i−j (25) 

The sequence of ​c ​can be viewed as ​convolution ​of           
polynomial ​f(x) ​and ​g(x)​. The straightforward implementation       
of the algorithm has ​O(n​2​) ​time complexity. 

Another idea to be presented is the point-value         
representation of polynomials. Given a n degree-bound       
polynomial ​A(x)​, its point-value representation is [5]: 

(x , ), x , ), x , ), .., x , )}{ 0 y0 ( 1 y1 ( 2 y2 . ( n−1 yn−1 (26) 

     Such that : 
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1. i = , x =∀ / j  i / xj  
2. k, y (x )∀  k = A k  

The representation means that all pairs of point-value can          
determine an unique polynomial with degree-bound n.       
Moreover , Point-value representation is convenient to do        
certain operations, including addition and multiplication. If the        
convolution ​C(x) = A(x) B(x) ​holds, then       

. This operation only has ​O(n) ​timek, (x ) (x ) B(x )∀ C k = A k k        
complexity, much faster than the original . Therefore it is          
hoped that the evaluation of ​C(x) ​can be done in this           
representation. However, converting the coefficients     
representation to point-value representation will have ​O(n​2​)       
time complexity (using Horner’s method to evaluate the        
values). 

Even after ​C(x) is determined in its point-value         
representation, it should be converted back to its coefficients         
representation. The most common fast algorithm for this,        
Lagrange's formula for the interpolation, has ​O(n​2​) ​time        
complexity. 

Using this approach, the algorithm to find the convolution          
C(x) has ​O(n​2 ​) ​time complexity for both the straightforward         
approach and the one through point-value representation.  

 

Fig 3. Representation of states in finding the convolution C(x)          
= A(x) B(x) . Notices that point-value representation does not          
optimize the algorithm 

However, there is still flexibility in choosing how to          
evaluate the polynomial. First, consider the value w​n ​= e​2jπ/n​.          
(This value is called as root unity value). Evaluate this value           
to obtain the point-value presentation of ​A(x)​: 

(ω )yk = A k
n  

ω ω eyk = ∑
n−1

p=0
an n

kp = ∑
n−1

p=0
an n

kp = ∑
n−1

p=0
an

2πkpj/N (27) 

  

Note that the form is equivalent to discrete Fourier         
Transform in Eq. 3. Therefore, the evaluation process is         

modified into FFT process, which has ​O(nlogn​) time        
complexity. 

In other sense, the problem is transformed from        
evaluating ​A(x) ​for into evaluating [6] :, , , ..ωω0

n ω1
n ω2

n . n
n−1  

      [28](x) (x) A (x)A = Aeven + x odd  

The second part of the algorithm is the convolution with           
point-value representation. As the convolution would only       
have ​O(n) ​time complexity, until this step the algorithm has          
O(nlogn) ​time complexity. The third part , converting the         
point-value representation of the convolution to the       
coefficients representation would be replaced by applying       
inverse of the FFT. The inverse transformation can also be          
applied to the recursive FFT using the conjugates of the          
complex numbers. 

 

     Fig 4. Representation of states in finding the convolution 
C(x) = A(x) B(x) .  

 

III. IMPLEMENTATION OF FAST FOURIER TRANSFORM FOR 
POLYNOMIAL MULTIPLICATION 

 
A. Implementation of 2-Radix Fast Fourier Transform  
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The pseudocode for Radix-2 FFT algorithm and its inverse 
is written in following illustrations : 

 

Fig 5. Pseudocode for 2-radix FFT. The pseudocode thus 
was translated in a small C++ program. 

 

 

 

Fig 6. Pseudo Code for FFT multiplication 

The program should be tested with several study cases.          
Two small test cases are given : 

1. First, case of two 1-degree polynomials. The       
polynomials tested are ​f(x) = 3 + x ​and ​g(x) ​= ​2 + x.              
The program then prints then coefficients of ​g(x) =         
f(x) g(x) ​, both of its imaginary and real part. The           
expected output is (0,0,0) for its imaginary parts and         
(6,5,1) for its real part. The answer provided by         
program is (6,5,1,0) for the real part and (-0,         
1.53081e-16 , - 0, -1.53081e-16) . There seems to be          
an inaccuracy in the imaginary part, with most        
probable cause is number round off by program 

2. The second case will be two identical polynomials 
(x+1)​4 . ​The expected answer is expected to be ​(x+1)​8          
, which can be verified easily by Pascal Triangle.         
Moreover, the imaginary part of all terms should be         
0. However, the result printed by program is : 

Re = {1,8,28,56,70,56,28,8,1} 

Im = {2.99e-15, -1.33e-15, -3.85e-32, -1.78e-15, 
-7.45e-15, -5.33e-15, -2.65e-15, 2.00e-15, 2.99e-15} 

There seems to be an increase of error in the          
imaginary part of each terms, however the real part of          
the terms are verified to be correct. 

 It cannot be deduced, however, that the program would          
always produce correct answer, as 2 sample cases is         
insufficient to determine such claim. However, under the        
assumption that the program does give the correct result, the          
performance test can be conducted. 

 

C. Comparing with Straightforward Implementation of      
Polynomial Multiplication 

After implementing the algorithm, a comparison with the         
straightforward algorithm should be conducted briefly. The       
easiest way write such algorithm is by employing Eq. 24. As           
discussed previously, the algorithm theoretically would have       
O(n​2​) ​time complexity.  

A small test is ran on a computer (specification : x86_64           
computer with 4 GB RAM and Intel​(R) Core​(TM) i5-7200U CPU          
@ 2.50GHz ) to compare between the two algorithm. The          
result shows that FFT algorithm is indeed much faster for          
large polynomials (for polynomial with degree of thousands),        
but the straightforward approach seems to run faster for         
smaller instances of the problem. There is a limit where divide           
and conquer approach would be a little bit inefficient,         
hypothetically  due to recurrent function calling.  
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Fig 4. Comparison charts of execution-time between FFT 
multiplication and the more “brutish” algorithm. Note that 
FFT is still slower than brute-force until a certain size of 
instance. Source : Author’s document 

IV. OTHER POLYNOMIAL MULTIPLICATION ALGORITHMS 
 

     This section provides other alternatives of polynomial 
multiplication algorithm, as to not limit the options to solve 
the problem. 

 Since only 2-radix FFT algorithm is discussed here, several 
generalizations should be introduced briefly. Some variations 
and generalizations including Cooley-Tukey algorithm for 
arbitrary size and split-radix FFT. 

     Another divide and conquer approach algorithm is the 
modification of Karatsuba’s multiplication algorithm to be 
applied on polynomial. Weimerskirch and Paar [2006] has 
demonstrated a generalization of Karatsuba algorithm for 
arbitrary sized polynomials [7] . 
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