
2-Radix Fast Fourier Transform for Polynomial
Multiplication

Nur Alam Hasabie 13517096
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha No.10 Bandung 40132, Indonesia

alamhasabie165@gmail.com

Abstract​— Fourier Transform is one of the most important
transformation in engineering. However, beside engineering and
signal processing, Fourier Transform also provides an alternative
divide-and-conquer approach to polynomial multiplication. The
solution would be based on the common 2-Radix Fast Fourier
Transform algorithm and its inverse transform. A comparison
with the more straightforward approach will also be discussed,
along with brief comparison with other polynomial multiplication
algorithms known to date.

Keywords— Fast Fourier Transform, Polynomial
Multiplication, Divide and Conquer

I. INTRODUCTION
Fourier transform is one of the most fundamental tools in

wave analysis. Given a wave with certain equation, one could
decompose the wave into its sinusoidal components. The idea
lies in the fact that every periodic function can be exactly
approached by sum of Fourier Series.

However, its applications are not limited to the fields
stated previously. One interesting application found regarding
Fourier Transform is polynomial multiplication. Previous
algorithms, such as Karatsuba algorithm, provided a solution
with time complexity ​O(n​log3 ​) , ​an improvement over the
straightforward approach with ​O(n​2​) ​time complexity.
However, Fast Fourier Transform (FFT) algorithm can
provide a faster ​O(nlogn) ​working algorithm for polynomial
multiplication. There are properties of FFT which can be
exploited by evaluating the polynomials with the root of unity.
The root of unity is periodic, therefore there are some values
which not needed to be computed twice during the evaluation.
The paper , thus ,will discuss the steps and several proofs
necessary to accomplish a better polynomial multiplication
algorithm with FFT.

II. THEORIES

A. Discrete Fourier Transform
Discrete fourier transform is the discrete equivalent of

continuous Fourier Transform (as in that there are finite data
separated by time interval T​i​).

The continuous Fourier Transform is defined by :

(jω) (t) e dtF = ∫
∞

−∞
f −jωt (1)

To transform the original equation into a discrete one (the
type of transformation that will be primarily used in this
paper), consider N samples ​f [0] , f [1] , f [2] … , f [N-1]
taken from the source ​f (t) ​. Every sample can be considered as
an impulse with area ​f [k] = f(k)T​. ​T ​corresponds to the
interval, therefore ​dt ​can be approached with T. The
integrands would only be defined in the sample range, that
is[1] :

(jω) (t) e dtF = ∫
(N−1)T

0
f −jωt (2)

Therefore,

(jω) [k] e F = ∑
N−1

k=0
f −jωkT (3)

Treating the data as periodic (ie. ​f[0] ​to ​f [N-1] ​is same as
f[N] ​to ​f[2N-1]​), then DFT can be evaluated at its
fundamental frequency (​1/(NT) ​Hz). Thus [2],

 [n] [k]eF = ∑
N−1

k=0
f −2πnkj/N (4)

It is more common to write ω = ​e​2πj/N​ .

 Eq. 4 defined as the DFT. However, it is sometimes easier
to represent such linear equations with matrix.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

DFT is represented by a matrix :

(5)

Fig 1. Matrix representation of Fourier Transform

W is defined as ​exp(-2πi/N)

Also, stated without proof, the inverse transform,

 [n] [k]ef = 1
N ∑

N−1

k=0
f −2πnkj/N (6)

The inverse would play a big role in the Fast Fourier
Transform later.

Discrete Fourier Transform found many fields of
applications, especially in signal processing. Computers,
obviously, do not work with continuous data. Computers work
with samples taken from the analyzed waves. The continuous
transformation therefore can be approached with the discrete
one.

B. Divide and Conquer
Divide and Conquer is one of the most important approach

in solving computation problems. This idea is introduced
mainly because approaches to find better polynomial
multiplication algorithms have utilized this idea. The main
idea behind the approach is to divide the problem into several
smaller instances of the same problem, and combine the result
of those smaller problems to obtain the original problem (the
“conquer” part).

 The basic algorithm is as the following :

1. Divide the problems into smaller instances of the
same problem

2. For each smaller problems, obtain the answer. This
part of the algorithm is where the recurrences are.

3. Combine all the answers to obtain the general
solution of the problem

As for each recurrence, the base should be defined. The
base for divide and conquer approach is not strictly defined, as
long as it is beneficial for the sake of performance. One could
define a base case of certain size, in which it could be solved
fast with more naïve algorithms.

Divide and algorithm approach has been applied to find
better solutions of computational problems when compared to

“brute force” approach, although not necessarily as such for
several problems.

To determine the time complexity of a divide and conquer
solution, Master theorem is used[3]. Master theorem provides
solution in Big-O notation for recurrence relations, notable
feature in divide and conquer algorithms. The recurrences
considered have the form as the following :

(n) T (n/b) (n)T = a + f (7)

That is, the problem is divided into a smaller problems
with ​n/b size , and additional work of ​f (n) ​(usually for
combining). There are three cases for ​T(n) ​, which are :

1. If it is true that ​f (n) = Θ (n​c​) ​where​ c < log​b​a, ​then :

(n) Θ (n) T = log ab (8)

2. If it is true for some constant ​k ​> 0 ​that f (n) =
Θ(n​c​log​k​n) ​where​ c = log​b​a , ​then

(n) Θ (n log n)T = c k+1 (9)

3. If it is true that ​f (n) = Θ (n​c​) ​where​ c > log​b​a, ​then :

(n) Θ (f (n)) T = (10)

C. 2-Radix Fast Fourier Transform
2-Radix Fast Fourier Transform (FFT) is a part of a family

of Fast Fourier Transform. It is the most common
implementation of Cooley-Tukey algorithm , and can be
explained solely from the perspective of Fourier Transform.

The idea behind the algorithm is exploiting the symmetry
within the definition of discrete Fourier Transform. Consider
the following discrete Fourier Transform :

[n] [k] e F = ∑
N−1

k=0
f −j2πnk/N (11)

 To find the symmetry, ​F[n] ​can be written as :

[n] [2m] e [2m] e F = ∑
N /2−1

m=0
f −j2πn(2m)/N + ∑

N /2−1

m=0
f + 1 −j2πn(2m+1)/N

(12)

The first summation is the summation of all terms with
even indices, and the second summation is the summation of
all terms with odd indices. The equation can be further
arranged :

[n] [2m]e [2m]e F = ∑
N /2−1

m=0
f −j2πnm/(N /2) + e−2πjn/N ∑

N /2−1

m=0
f + 1 −j2πnm/(N /2)

(13)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Notices that the first summation is the discrete Fourier
Transformation for even terms, and the second summation is
the discrete Fourier Transform for odd terms.

[n] [2m]e , N /2E = ∑
N0

m=0
f −2πjmn/(N +1)0 0 = N − 1 (14)

[n] [2m]e , N /2O = ∑
N0

m=0
f + 1 −2πjmn/(N +1)0 0 = N − 1 (15)

 Therefore :

[n] E[n] O[n]F = + e−2πjn/N (16)

Also, consider the case of ​n + N/2 :

(17)[n N /2] [n /2] O[n /2]F + = E + N + e−2πj(n+N /2)/N + N

(18)[n /2] [2m]e , N /2E + N = ∑
N0

m=0
f −2πjm(n+N +1)/(N +1)0 0 0 = N − 1

[n /2] [2m]e eE + N = ∑
N0

m=0
f −2πjmn/(N +1)0 −2πjm (19)

Due that ​e​iӨ = cos(θ) + i sin (θ) , it follows that ​e​-2πjm = 1.
Therefore ​ ​= .[n /2]E + N [n]E

Also, without proof, it is easily seen that = [n]O
. ​However ,​ e​-2πj(n+N/2)/N​ = -e​-2πj(n))/N​ , ​therefore :O[n /2]+ N

,[n N /2] [n] O[n]F + = E − e−2πjn/N

[n] E[n] O[n]F = + e−2πjn/N (20)

It can be deduced easily that by finding ​E​n ​and ​O​n ​, ​all
values can be determined with less computation , compared to
straightforwardly compute the summation for each ​F [k]​.

To find the complexity, recall the recurrence form of ​T(n)
= aT(n/b) + f(n) ​. radix-2 FFT algorithm divides the problem
into 2 smaller sub-problems, each is ​N/2 ​in size. The time do
the summation will be ​f(n) = Θ (n​1​). ​Since c = 1 = ​log​b​a =
log​2 ​2 ​, therefore the complexity of radix-2 FFT algorithm will
be :

(n) Θ (nlog n) Θ (nlogn)T = 0+1 = (21)

Fig. 2. Time complexity comparison between the
straightforward algorithm and FFT algorithm. Notice the
logarithmic scale of y-axis. Source : Author’s document

However, as the paper titled, the algorithm discussed here
will be limited to radix-2 FFT algorithm (the number of
samples should be the power of 2) . A more general form for
arbitrary N samples exists, but it is out of the scope of this
paper.

D. Polynomial Multiplication and Fast Fourier Transform
 In general , given two polynomials in coefficients
representation [4] :

(x) x , g(x) x f = ∑
N−1

i=0
ai

i = ∑
N−1

i=0
bi

i (22)

 The multiplication of both polynomials :

(x)g(x) x)(x)f = (∑
N−1

i=0
ai

i ∑
N−1

i=0
bi

i (23)

(x)g(x) b x)f = (∑
N−1

i=0
∑

M−1

j=0
ai j

i+j (24)

 Or, in terms of some ​c ​:

(x)g(x) (x) x , c bf = C = ∑
2N−1

i=0
ci

i i = ∑
i

j=0
ai i−j (25)

The sequence of ​c ​can be viewed as ​convolution ​of
polynomial ​f(x) ​and ​g(x)​. The straightforward implementation
of the algorithm has ​O(n​2​) ​time complexity.

Another idea to be presented is the point-value
representation of polynomials. Given a n degree-bound
polynomial ​A(x)​, its point-value representation is [5]:

(x ,), x ,), x ,), .., x ,)}{ 0 y0 (1 y1 (2 y2 . (n−1 yn−1 (26)

 Such that :

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

1. i = , x =∀ / j i / xj
2. k, y (x)∀ k = A k

The representation means that all pairs of point-value can
determine an unique polynomial with degree-bound n.
Moreover , Point-value representation is convenient to do
certain operations, including addition and multiplication. If the
convolution ​C(x) = A(x) B(x) ​holds, then

. This operation only has ​O(n) ​timek, (x) (x) B(x)∀ C k = A k k
complexity, much faster than the original . Therefore it is
hoped that the evaluation of ​C(x) ​can be done in this
representation. However, converting the coefficients
representation to point-value representation will have ​O(n​2​)
time complexity (using Horner’s method to evaluate the
values).

Even after ​C(x) is determined in its point-value
representation, it should be converted back to its coefficients
representation. The most common fast algorithm for this,
Lagrange's formula for the interpolation, has ​O(n​2​) ​time
complexity.

Using this approach, the algorithm to find the convolution
C(x) has ​O(n​2 ​) ​time complexity for both the straightforward
approach and the one through point-value representation.

Fig 3. Representation of states in finding the convolution C(x)
= A(x) B(x) . Notices that point-value representation does not
optimize the algorithm

However, there is still flexibility in choosing how to
evaluate the polynomial. First, consider the value w​n ​= e​2jπ/n​.
(This value is called as root unity value). Evaluate this value
to obtain the point-value presentation of ​A(x)​:

(ω)yk = A k
n

ω ω eyk = ∑
n−1

p=0
an n

kp = ∑
n−1

p=0
an n

kp = ∑
n−1

p=0
an

2πkpj/N (27)

Note that the form is equivalent to discrete Fourier
Transform in Eq. 3. Therefore, the evaluation process is

modified into FFT process, which has ​O(nlogn​) time
complexity.

In other sense, the problem is transformed from
evaluating ​A(x) ​for into evaluating [6] :, , , ..ωω0

n ω1
n ω2

n . n
n−1

 [28](x) (x) A (x)A = Aeven + x odd

The second part of the algorithm is the convolution with
point-value representation. As the convolution would only
have ​O(n) ​time complexity, until this step the algorithm has
O(nlogn) ​time complexity. The third part , converting the
point-value representation of the convolution to the
coefficients representation would be replaced by applying
inverse of the FFT. The inverse transformation can also be
applied to the recursive FFT using the conjugates of the
complex numbers.

 Fig 4. Representation of states in finding the convolution
C(x) = A(x) B(x) .

III. IMPLEMENTATION OF FAST FOURIER TRANSFORM FOR
POLYNOMIAL MULTIPLICATION

A. Implementation of 2-Radix Fast Fourier Transform

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

The pseudocode for Radix-2 FFT algorithm and its inverse
is written in following illustrations :

Fig 5. Pseudocode for 2-radix FFT. The pseudocode thus
was translated in a small C++ program.

Fig 6. Pseudo Code for FFT multiplication

The program should be tested with several study cases.
Two small test cases are given :

1. First, case of two 1-degree polynomials. The
polynomials tested are ​f(x) = 3 + x ​and ​g(x) ​= ​2 + x.
The program then prints then coefficients of ​g(x) =
f(x) g(x) ​, both of its imaginary and real part. The
expected output is (0,0,0) for its imaginary parts and
(6,5,1) for its real part. The answer provided by
program is (6,5,1,0) for the real part and (-0,
1.53081e-16 , - 0, -1.53081e-16) . There seems to be
an inaccuracy in the imaginary part, with most
probable cause is number round off by program

2. The second case will be two identical polynomials
(x+1)​4 . ​The expected answer is expected to be ​(x+1)​8
, which can be verified easily by Pascal Triangle.
Moreover, the imaginary part of all terms should be
0. However, the result printed by program is :

Re = {1,8,28,56,70,56,28,8,1}

Im = {2.99e-15, -1.33e-15, -3.85e-32, -1.78e-15,
-7.45e-15, -5.33e-15, -2.65e-15, 2.00e-15, 2.99e-15}

There seems to be an increase of error in the
imaginary part of each terms, however the real part of
the terms are verified to be correct.

 It cannot be deduced, however, that the program would
always produce correct answer, as 2 sample cases is
insufficient to determine such claim. However, under the
assumption that the program does give the correct result, the
performance test can be conducted.

C. Comparing with Straightforward Implementation of
Polynomial Multiplication

After implementing the algorithm, a comparison with the
straightforward algorithm should be conducted briefly. The
easiest way write such algorithm is by employing Eq. 24. As
discussed previously, the algorithm theoretically would have
O(n​2​) ​time complexity.

A small test is ran on a computer (specification : x86_64
computer with 4 GB RAM and Intel​(R) Core​(TM) i5-7200U CPU
@ 2.50GHz) to compare between the two algorithm. The
result shows that FFT algorithm is indeed much faster for
large polynomials (for polynomial with degree of thousands),
but the straightforward approach seems to run faster for
smaller instances of the problem. There is a limit where divide
and conquer approach would be a little bit inefficient,
hypothetically due to recurrent function calling.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Fig 4. Comparison charts of execution-time between FFT
multiplication and the more “brutish” algorithm. Note that
FFT is still slower than brute-force until a certain size of
instance. Source : Author’s document

IV. OTHER POLYNOMIAL MULTIPLICATION ALGORITHMS

 This section provides other alternatives of polynomial
multiplication algorithm, as to not limit the options to solve
the problem.

 Since only 2-radix FFT algorithm is discussed here, several
generalizations should be introduced briefly. Some variations
and generalizations including Cooley-Tukey algorithm for
arbitrary size and split-radix FFT.

 Another divide and conquer approach algorithm is the
modification of Karatsuba’s multiplication algorithm to be
applied on polynomial. Weimerskirch and Paar [2006] has
demonstrated a generalization of Karatsuba algorithm for
arbitrary sized polynomials [7] .

ACKNOWLEDGMENT

Firstly, I would like to send my praise and my gratitude to
the Gracious God, whose guidance and blessings and love has
descended to the world , especially with Math. Mathematics,
is indeed, the language and song of the universe.

Second, my gratitude to my parents, for keeping their love
and support for me . I also want to express my gratitude to
Mrs. Patria, my homeroom teacher in high school , for her
steady support during my study.

I would also give my sincere gratitude to my beloved
lecturer, Mr. Rinaldi. I’ve truly enjoyed the lectures, and give
his students to explore things beyond what is taught.

Last but not least to the scientists and passionate people
whose work I have referenced or seen. I’ve always intrigued
by how complicated things are, yet some of you do explain it
in a very flowing manner. I feel so satisfied after working on
this paper.

REFERENCES
[1] “Lecture 7 - The Discrete Fourier Transform” . No date or any other

publishing information found. file available online at :
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf

[2] S, Hagit, “The Fourier Transform - A Primer”, Department of Computer
Science, Brown University. November 1995. file available at :
ftp://​ftp.cs.brown.edu/pub/techreports/95/cs95-37.pdf

[3] Cormen, T.H., , Leiserson, C.E., Rivest, R.L, and C. Stein . Introduction
to Algorithms, Third Edition . MIT Press. 2009. p94-97.

[4] Cormen, p. 898.
[5] Cormen, p. 901
[6] Cormen, p. 910
[7] W, Andre and P, Christof. “Generalizations of the Karatsuba Algorithm

for Efficient Implementations”. Cryptology ePrint Archive, Report
2006/224. 2006. file : https://eprint.iacr.org/2006/224.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2012

Nur Alam Hasabie 13517096

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

http://ftp.cs.brown.edu/pub/techreports/95/cs95-37.pdf

