
Arbitrage Strategy using Negative Cycle Detection
Algorithm

Muhammad Rifky Indraputra Bariansyah 13517081
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517081@std.stei.itb.ac.id

Abstract—This paper will discuss the implementation of
negative cycle detection algorithm, Bellman-Ford algorithm, in
finding the best arbitrage strategy. Arbitrage is an action that
depends on the market inefficiency, where in this situation it is
possible to make profit out of buying and selling valuables at the
same moment. This opportunity is in need of fine decision
making, which asset to purchase or which asset to sell, in order to
acquire maximum profit. Here’s where we will implements
Bellman-Ford algorithm.

Keywords—Shortest path first algorithm, Dijkstra’s algorithm,
arbitrage

I. INTRODUCTION

Since the day human form of communication is originated
in the prehistory, we have been exchanging goods and services
with one another and not a single second has passed without it.
From the basic concept of people working hard in one product
and relying on trades for other resources from a place called
the market. Nowadays it has merely become a part of complex
company,j systems to maximize the profit. Trades between
nations or international trade has become the foundation that
built the economy growth.

A trader, who makes profit from price fluctuations, watches
the market and manages monetary investment for a client
company by buying and selling assets. He or she has a job to
create a strategy with the lowest of risks and highest of profit.
Sometimes fundamental anomaly happens in the market. What
happen is the condition contradicts the very definition of an
efficient market where prices of asset reflect the value of it. In
an anomaly or inefficiency market price is inbalance or
distorted.

This events then can be exploited as a trading strategy by
purchasing and selling goods profiting out of price imbalance.
Such opportunity is called arbitrage in trading. If we see from
a perspective the environment of assets, prices, and rates of
exchanging the assets are sorts of mirroring the structure of a

graph. With assets as nodes and exchange rates as lines that
connect them.
Many problems in algorithm strategy is solved by creating
algorithm around the structure of a graph as a network of
information such as graph coloring, minimum spanning tree,
shortest path finding etc. If we imagine arbitrage with the
structure of a graph, then creating strategy for such
opportunity can be done with graph problem solving
algorithm. In the addition of rising cryptocurrency which has
been around for only a decade, price inefficiencies will much
likely to occur hence a higher opportunity in arbitrage
exploitation. This correlation leads the writer to exploit an
arbitrage opportunity by solving it as a graph problem.

II. FUNDAMENTAL THEORIES

A. Arbitrage
Arbitrage is an action of purchasing and selling assets

simultaneously to profit from an imbalance in the price [1].
This can occur risk-free for the trader by selling an asset in
higher price. As an example, an asset named a is trading at
$20 on New York Stock Exchange (NYSE) but at the same
time the asset is trading at $20.05 on London Stock Exchange
(LSE). In this situation anyone can buy the asset at New York
Stock Exchange and simultaneously selling it on London
Stock Exchange then earning 5 cent as profit.

1. Triangular Arbitrage
In a more complicated form of arbitrage, triangular

arbitrage is the result of discrepancy that occurs when
rates between currencies exchange does not exactly
match[2]. This opportunity assumes low transaction
costs or expenses incurred when buying or selling.
International banks, who make markets in currencies,
exploits an inefficiency in the market where
somewhere is overvalued and somewhere else is
undervalued. Price differences from selling and
purchasing are only fractions of a cent, thus to be
profitable large amount of capital needed.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

In example, suppose a trader have a capital of $1
million. Exchange rate in the markets are:

 TABLE I Currency exchange

 EUR USD GBP

EUR 1 1.1586 0.6849

USD 0.8631 1 0.5904

GBP 1.46 1.6939 1

1. Sell dollars for euros: $1 million x 0.8631 =
€863,100

2. Sell euros for pounds: €863,100/1.4600 =
£591,164.40

3. Sell pounds for dollars: £591,164.40 x
1.6939 = $1,001,373

 To find profit subtract final amount with initial
amount of investment, $1,001,373 - $1,000,000 =
$1,373 as profit without transactional costs.

 Figure 1 Triangular arbitrage trading
Source:(https://commons.wikimedia.org/wiki/File:Triangular-

arbitrage.svg,by John Sandy)

 Such events in real life will extremely hard to
occurs in a long period of time. In the market any
imbalance will acted upon quickly by advancement in
technologies.

C. Graph
A Graph is an ordered pair G=(V,E)

1. V is a set of vertices or nodes or points

2. E ⊆ {{x, y} | (x, y) ∈ V2 ∧ x ≠ y}

A set of edges or lines or links are pairs of edges. The
edge is said to be join u and v and to be incident on u
and incident on v.

 3. Multiple edges

Two or more edges joining same pair of vertices.

 4. Directed Graph

Is a graph that is its edges have a direction associated
with them.

 Figure 2 Directed Graph
Source:(https://en.wikipedia.org/wiki/File:Directed_acyclic_gr

aph_2.svg,by Johanes Rossel)

D. Shortest-Paths Problem
In a shortest-paths problem, we’re given a weighted and

directed graph G=(V,E), (V = vertices, E = Edges), with
weight function w: E →R mapping edges to real-valued
weights. The weight w(p) of path p = <v0,v1,...,vk>is the sum
of the weights of its constituent edges:

Shortest-paths weight (u,v) from u to v defined byδ

if there’s a path from u to v,
otherwise.

A shortest path from vertex u to vertex v is then defined as
any path p with weight w(p) = (u,v)[3]. Weight of edges can δ
be represented for distances, time, cost, loss or any other
quantities. In this problem, our goal is to find shortest-paths
between vertices. In a graph, edge’s weight can have the value
of negative number and called negative-weight edges.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://commons.wikimedia.org/wiki/File:Triangular-arbitrage.svg
https://commons.wikimedia.org/wiki/File:Triangular-arbitrage.svg

1. Negative-Weighted Cycle

A simple cycle or directed cycle is a sequence
consisting at least two consecutive vertices starting
and ending with the same vertex. Each edge must be
aligned from the earlier to the later vertex[4]. After
this point of this paper simple cycle will be referred
as cycle. A cycle that sum of edges weight is negative
is called negative-weighted cycle. If a
negative-weighted cycle founds in a graph, any path
that has a point on the cycle can be made cheaper in
every walk, hence, there is no shortest-paths[5].

Figure 5 Negative-Weight Cycle
Source:(https://www.dyclassroom.com/)

2→1→3→2 weight total is -1 which mean it is a
negative-weight cycle.

E. Relaxation

Relaxation methods are methods of solving partial
differential equations involving splitting the sparse matrix that
rises from finite differencing and then iterating until a solution
is found[6]. To implements relaxation we set distance to
starting vertex to 0 and set distance to every other vertices to
∞ To have an edge relaxation means edge from u to v is tested
whether the best current walk from starting vertex to v is to go
from starting vertex to u, if so, we update our distance data.

Relaxation(u, v, w)

1 if v.distanceTo > u.distanceTo + w(u,v) then

2 v.distanceTo = u.distanceTo + w(u,v)

3 v.predecessor = u

Figure 3 Relaxation algorithm
Source:(https://algs4.cs.princeton.edu/44sp/, modified)

F. Bellman-Ford Algorithm

Bellman-Ford algorithm solves shortest-paths problem in
general case whereas edge weights may be valued negative.

Given graph G=(V,E) with weight function w: E →R and
starting vertex s, the algorithms runs by relaxing edges and
progressively decrease an estimate v.distanceTo on the weight
of a shortest path from s to each v in V until shortest-path
weight is achieved.

Bellman-Ford(G, w, s)

1 Initialize-Single-Source(G,s)

2 for i = 1 to |G.V| - 1

3 for each edge (u,v) ∈ G.E

4 Relaxation(u,v,w)

5 for each edge (u,v) ∈ G.E

6 if v.distanceTo > u.distanceTo + w(u,v)

7 return FALSE

8 return TRUE

Figure 4 Bellman-Ford algorithm
Source:(Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to algorithms)

The algorithm will return false if and only if the input graph
contains negative-weight cycles that are reachable from
source[3]. As explained in the preceding part, there is no
solution exists if such cycle exists.

The algorithm passes |V| - 1 times over every edges with
each pass consist of graph relaxation. Then it passes one more
time to check if there’s still exist v.distanceTo > u.distanceTo
+ w(u,v) and if so it will return false indicating a
negative-weight cycle in the graph. Bellman-Ford algorithm
runs in time O(VE), Θ(V) for each |V| -1 passes that takes
Θ(E).

Figure 6 Bellman-Ford algorithm execution
Source:(Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to algorithms)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://www.dyclassroom.com/
https://algs4.cs.princeton.edu/44sp/

III. IMPLEMENTATION

For this paper we will use currency change as an example
for arbitrage opportunity. To exploit the discrepancies in
exchange rates, suppose we are given n number of currencies
C1, C2, C3, … , Cn. The currencies have a n ⨉ n sized matrix of
exchange rates R. With R[i,j] means currency Ci buys Cj vice
versa. To earn profit we have to exchange 1 of currency C
with other currency in a way that the exchange will return >1
value of currency C. The statement is equivalent to
multiplying rates of exchange and resulting value greater than
and can be represented as follows

R[i1,i2] . R[i2,i3] . R[i3,i4] … R[ik-1,ik] . R[ik,i1] > 1 (1)

By starting and finishing at the same currency we can call
it a cycle of exchange. We can conclude that the problem is to
find such cycle of exchange that satisfy the inequality.

1. Problem Identification

In order to solve the problem we can model it as a
graph, the currencies as vertices and the rates of
exchange as edges. We know by definition a
sequence starting and ending in the same vertex, in
this case representing rates of exchange, is a cycle.
Using this approach means we will have to find a
cycle on the graph that multiplies to a number that is
greater than one.

We can solve this problem by using the brute force
approach by creating every possible cycle in the
graph and finally find a cycle with an arbitrage
opportunity. From the second chapter we know an
arbitrage event occurs only in a short moment of
time. Time is a key component of success in this
trading and that is why a faster algorithm is needed.
From inequality (1) we observe that it satisfies if and
only if

(1/R[i1,i2]) . (1/R[i2,i3]) … (1/R[ik-1,ik]) .(1/R[ik,i1]) < 1 (2)

and by taking logs of both sides

log(1/R[i1,i2]) + log(1/R[i2,i3]) + … + log(1/R[ik-1,ik]) +
log(1/R[ik,i1]) < 0(3)

From inequality (3), rather than using R[i,j] as the
weight of edges, we define the weight of Ci →Cj as

w(Ci ,Cj) = log(1/R[i,j]) = -log(R[i,j])

referring the weight definition and inequality (3) we
will have to find a cycle with negative sum of edges.

2. Bellman-Ford algorithm implementation

We can determine if a negative-weight cycle exists
within a graph using Bellman-Ford algorithm, this
means we can find the existence of arbitrage
opportunity within exchange rates. At the stage of

preparation, using the Bellman-Ford algorithm in
chapter 2, if a negative cycle exists it will return
false. For the purpose of the implementation we will
have to make some modification to the algorithm :

1. At line 8, rather than returning True it will
return null indicating arbitrage opportunity
does not exist.

2. At line 7, rather than returning False at this
point we will have to retract every vertices
that is on the negative-weight cycle in order
to show every exchange in the arbitrage
opportunity.

Secondly, after modifying the Bellman-Ford
algorithm, we will then have to initialize the graph. In
this implementation with n currencies we’ll represent
the graph as a two dimensional n ⨉ n array.
Graph[i][j] structure signify i as from-currency and j
as to-currency with its value as negative logarithm of
exchange rate.

After we have the graph, n sized array of distance and
array of predecessor will be initialized at the first step
of Bellman-Ford algorithm. Array of distance, d, will
firstly all be filled by infinity and the array of
predecessor, p, will all be filled by Null. The
relaxation algorithm will also be modified. At the last
part of relaxation we will assign p[j] with i.

Lastly, biggest different from the basic Bellman-Ford
algorithm we will add an algorithm to save the
negative-weighted cycle. We will name it
Negative-Retracing. we will name starting vertes as s.

Negative-Retracing(p, s)

1 aCycle = [s]

2 next =s

3 while TRUE

4 next ←p[next]

5 if next in aCycle

6 insert next into aCycle

7 aCycle = aCycle[from index of next]

8 return aCycle

9 else

10 insert next into aCycle

Figure 7 Negative-Retracting algorithm
Source:(Writer’s documentation)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Negative-Retracting algorithm uses the array of predecessors
to return an array that describes the negative-weight cycle.

IV. CASE STUDIES

For this paper we will implement the algorithm using
python programming language with additional math library.
To best represent the problem solving we will have a case
studies using a small set of currencies example.

TABLE II Set of Currencies example, case 1
(source:https://fx.priceonomics.com/v1/rates/)

 JPY EUR USD

JPY 1 0.0083286 0.0107064

EUR 144.9169585 1 1.414403

USD 92.4489261 0.7019005 1

1. Program Implementation and Output

Using math library, table below will represent in the
form of negative logarithm with base e (e =
2.718281828459045).

TABLE III Set of -elog(Currencies), case 1

 JPY EUR USD

JPY 0 4.788059904
155156

4.536913585
482109

EUR -4.97616087
836529

0 -0.34670753
39397166

USD -4.52665634
1757014

0.353963622
893828

0

Figure 8 Graph representation, case 1
Source:(Writer’s documentation)

Consequently we will do three iteration for each
currency, the first two is to find the shortest path and
the third will be used to find negative-weighted cycle
in the graph. We will start with 100 unit of JPY and
initialize array of distance [JPY, EUR, USD] with
infinity, except the source as we will be setting it to
zero , and array of predecessor with zero. :

d =[0,∞,∞] p=[0,0,0]

In the first iteration, relaxation will change
d[EUR] to w(JPY, EUR) and d[USD] to w(JPY,
USD).

 d =[0,4.788059,4.536913] p=[0,JPY,JPY]

d[USD] will change to d[EUR] + w(EUR, USD)
and d[JPY] will change to d[EUR] + w(EUR, JPY).

 d =[−0,1881,4.788,4.441] p=[EUR,JPY,EUR]

In the second iteration, relaxation will change
d[USD] to d[JPY] + w(JPY, USD), d[EUR] to
d[JPY] + w(JPY, EUR), d[USD] to d[EUR] +
w(EUR, USD), and d[JPY] to d[EUR] + w(EUR,
JPY).

 d =[−0,376,4,599,4,252] p=[EUR,JPY,EUR]

In the last part of third iteration, relaxation still
changes d[JPY] to d[EUR] + w(EUR, JPY) this
indicates an existence of a negative-weighted cycle.
By using Negative-Retracting algorithm, it will return
an output below:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://fx.priceonomics.com/v1/rates/

Figure 9 Program output 1, case 1
Source:(Writer’s documentation)

The algorithm will continue running with
different starts at EUR and USD, there is also an
arbitrage opportunity by starting with EUR. This
concludes a profit of 20.697%

Figure 10 Program output 2, case 1
Source:(Writer’s documentation)

Using the program, here are some other example case studies.

TABLE IV Set of Currencies example, case 2

 USD CAD EUR

USD 1 1.12 0.72

CAD 0.90 1 0.64

EUR 1.38 1.56 1

Figure 11 Program output, case 2
Source:(Writer’s documentation)

This concludes a profit of 0.8%

TABLE V Set of Currencies example, case 3

 USD EUR GBP CAD

USD 1 0.741 0.657 1.005

EUR 1.349 1 0.888 1.366

GBP 1.521 1.126 1 1.538

CAD 0.995 0.732 0.65 1

Figure 12 Program output, case 3
Source:(Writer’s documentation)

This concludes a profit of 0.71449%

V. CONCLUSION AND OPINION

In the market arbitrage opportunity is a very time-sensitive
events that could appear in one second and be gone in another.
This condition made the algorithm that is being used is a key
component of success. In this paper it has been proven
Negative-weight cycle detection algorithm can be used to
detect an arbitrage opportunity rather than using brute force
and generating every possible cycle. But, in line with the
improvement of technologies that keeps the market effective
and prices in balance there’s also have to be a vigorous
furtherance in making a faster algorithm that could detect
these ineffectiveness going on.

After implementing the algorithm, using a case that is
close to real world condition, this strategy only returns a very
small percentage amount of profit. Regardless, being a
risk-less strategy is still valuable for company or entity with a
large amount of capital. Since there is always a relation
between profit and risks in making a strategy, this strategy is
the one where the main goal is not losing any money, that is
why this strategy promise a slow growth and might not be
suitable for a small capital trader

In conclusion, Bellman-Ford algorithm works for
negative-weight cycle detection for arbitrage. Few points that
could raise the impact of this trading strategy is improvement
of algorithm and starting with a large capital.

ACKNOWLEDGMENT

First and foremost, I am grateful Allah swt. has given me
strength to finish this piece of work in time. I would like to
express my very great appreciation to M.T., Dr. Nur Ulfa
Maulidevi, S.T., M.T., Dr. Masayu Leylia Khodra, S.T and
Pak Dr. Ir. Rinaldi Munir for your guidance and appreciation
towards my work through the semester. I’d like to mention
that you have been a big part of inspiration in writing this
paper. During the last parts of doing this paper, it has made me
realize how this semester goes really fast and I might have
taken these times for granted. For closure, I genuinely want to
thank my friends for getting me to survive the semester, I wish
there was a way to know you're in the good old days before
you've actually left them.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

REFERENCES
[1] Chen, James. Arbitrage

(https://www.investopedia.com/terms/a/arbitrage.asp)
[2] Chen, James. Triangular Arbitrage

(https://www.investopedia.com/terms/t/triangulararbitrage.asp)
[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to algorithms. The MIT Press.
[4] Balakrishnan, V.K. (2005). Schaum's outline of theory and problems of

graph theory ([Nachdr.]. ed.). McGraw–Hill.
[5] Kleinberg, Jon; Tardos, Éva (2006). Algorithm Design. Pearson

Education, Inc.
[6] Jeffreys, H. and Jeffreys, B. S.(1988). Methods of Mathematical Physics,

3rd ed. Cambridge, England: Cambridge University Press.
[7] Bender, Edward A.; Williamson, S. Gill (2010). Lists, Decisions and

Graphs. With an Introduction to Probability.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 25 April 2019

M. Rifky I. Bariansyah
 13517081

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://www.investopedia.com/terms/t/triangulararbitrage.asp

