
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Application of Greedy and BFS to Determine Tour

Route by Plane

Saskia Imani

Teknik Informatika, Sekolah Teknik Elektro dan Informatika

STEI, Institut Teknologi Bandung

Kota Bandung, Indonesia

13517142@std.stei.itb.ac.id

Abstract—Tour agencies are a common service used to plan

tour routes according to clients’ wishes. Usually, there are

various factors taken into account, such as the clients’ desired

destinations, the length of the tour, and the clients’ adaptability

to the resulting schedule which may or may not fulfill ever

criteria given. It is common sense to assume that the shorter

amount of time spent traveling will mean more days available for

the actual tour experience. In this paper, we use breadth-first

search algorithm to plot plane travel routes and then use greedy

algorithm to determine the best route available.

Keywords—route, greedy, breadth-first search (BFS), graph,

weight, optimum

I. INTRODUCTION

Travel agencies are a commonplace method to plan a
vacation or tour. Those using the service of a travel agency is
called a client, and are assigned to travel agents, which will
accommodate all the desires of the client regarding their
vacation or tour. There are several reasons why travel agencies
are frequently.

• It saves time. Travel agencies takes over all the
planning and preparations necessary for the
client’s travel. The client needs only to review the
suggested plan.

• It does not cost more because travel agencies
obtain special prices from the services they
include in planning. So the client pays the same
amount of price whether they book themselves, or
book through an agent.

• Travel agencies have exclusive rates for services,
which clients will probably not find on their own.
They also have partnerships with various services
that they recommend on the client’s travel plan,
which will considerabl result in ease when making
special requests or responding during the rise of an
emergency situation.

• Most travel agents are also experienced travelers
themselves, and they oftentimes understand the
details of traveling and various aspects involved
better than clients.

• Travel agencies also provide assurance and
security, because travel agents are usually required

to summarize the details of services they use in
planning the client’s travel, including important
terms and conditions clients may miss if they plan
on their own.

• Travel agencies also provide the proper insurance
required in the travel plan.

• Travel agents makes bookings for the client and
maintains reservations until the day of the trip, so
the clients do not need to do anything by
themselves before the day of the trip.

One aspect of travel planning that a travel agent may
consider the most complicated to handle is the client’s request
to travel several destinations within a number of days. In places
such as Europe, it is common for tourists to want to visit
different countries, exploiting the relatively close distance
between countries and cities. However, the more destinations
the client wants to include, the more difficult for travel agents
to plan the best route. Taking into account the amount of
budget required and shifting flight schedules, it becomes nearly
impossible for a travel agent to plan without the use of
automated algorithms.

There has been several programs and applications which
realizes this problem and offers a solution, where the client will
use the application instead of a travel agent. The application
will then keep track of the days spent traveling, the budget
required, the number of destinations, and more. But this
solution is not much different from self-planning.

In this paper, we will explore the use of two well-known
algorithms for problem solving known as the greedy algorithm
and the breadth-first search. We will determine if the use of
these algorithms to plan a tour route by plane will be feasible to
implement in a travel agency enterprise.

II. GRAPH AND THE BREADTH-FIRST SEARCH ALGORITHM

A. Graph

A graph consists of a set of vertices which are connected by
several edges. A vertex represents an object, and an edge
represents a relationship between two objects. Based on the
graph complexity, there are two types of graph:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

• Simple graph, which has no more than one edge
for each two vertices, or an edge connecting a
vertex to itself; and

• Complex graph, which contains double edges for
one or more two vertices.

Based on the directional orientation of the edges, there are
two types of graph:

• Bidirectional graph, which does not have
directional orientation on its edges; and

• Unidirectional graph, which has directional
orientation on its edges.

For the problem we are going to solve, each vertex
represents each destination (city). We use a complex and
unidirectional graph, with every edge defining a flight between
two cities.

B. Breadth-First Search

Breadth-first search (BFS) is a graph traversal algorithm
which explores each vertex systematically to produce the
solution to a problem. There are two approaches to using BFS
to solve a problem:

• Using a static graph, meaning the graph has been
constructed commencing BFS; or

• Using dynamic graph, meaning the graph is
constructed as the BFS process progresses.

We use the latter in searching the solution to our problem,
since each flight are only available for certain dates.

As its name implies, BFS determines which vertex to
explore in breath rather than in depth. It is better explained in
context to our problem using the algorithm below:

1. We start in vertex V, which is the client’s current
city.

2. We determine available flights from V to one of
the client’s desired destinations.

3. For each flight we apply a recursive search,
meaning each flight destination becomes a new
starting point.

4. For each recursive search, we note the cities that
has already been traveled. Cities that has already
been traveled cannot be traveled again in the sane
vein of search.

5. If there are no more flights available from the
current vertex (city), or there are no more flight
destinations which are untraveled, we stop the
search and calculate a score for the resulting route,
which will be elaborated in the next part for
greedy algorithm.

III. THE GREEDY ALGORITHM

The greedy algorithm is a popular method of solving
problems which require an optimum solution, which may

require a maximum or a minimum value. There are several
elements to the greedy algorithm:

• Candidate set, C, which contains several
candidates to be selected in a certain step of the
algorithm;

• Solution set, S, which contains the result of
choosing each candidate;

• Selection function, which determines the next
candidate to select in the next step of the
algorithm;

• Feasibility function, which determines whether the
result of selecting a candidate is feasible as the
solution to the problem; and

• Objective function, which determines the optimum
solution

For our problem, our greedy consists of two factors, the
route flexibility and the time flexibility. The route flexibility
denotes a percentage in which the client is willing to adjust in
terms of destination, if a resulting route of the BFS misses
several destinations. The time flexibility route denotes a
percentage in which the client is willing to adjust in terms of
duration, if the resulting route of the BFS requires more days of
travel than previously allocated. Greedy will automatically skip
BFS-generated routes which does not qualify for both of the
constraints above.

After determining feasible routes within constraints, greedy
will calculate the final score, factoring the two accuracy
percentages (respectively route- and time-based) of a BFS-
generated route. Then, greedy will pick the optimum score as
the solution to the problem.

IV. IMPLEMENTATION

A. Global Variables

In implementing BFS and greedy for our problem, there are
several data components required.

• The amount of time allocated for travel,

• The client’s current location / the starting point,

• A list of the client’s desired destinations,

• The client’s route and time flexibility, and

• A list of flights within the client’s tour period
involving cities from the list of client’s desired
destinations, including the duration of each flight.

These data components are stored each in a global variable,
represented in the algorithmic notation below:

GLOBAL VARIABLES

 time: integer

 location: integer

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

 destinations: array [1..20] of String

 routeFlex: float

 timeFlex: float

 flight: type < from: integer

 to: integer

 length: integer >

 flights: array [1..100] of flight

 solution: type < route: array [1..20] of
 integer

 routeScore: float

 timeScore: float >

 solutions: array [1..1000] of solution

B. BFS Implementation

The implementation of the BFS algorithm elaborated a
previous chapter is represented in the algorithmic notation
below:

function FindIslands (location: integer,
traveled: array [1..20] of integer, flights:
array [1..100] of flight) → array [1..20] of
integer

// this function returns array of available
next destinations

procedure CalculateScore (input traveled:
array [1..20] of integer, input/output
routeScore, timeScore: float)

// this function calculates the score of route

procedure BFS (input traveled: array [1..20]
of integer, input location: integer,
input/output solutions: array [1..1000] of
solution, input flights: array [1..100] of
flight)

 LOCAL VARIABLES

 newTraveled: array [1..20] of integer

 tempArr: array [1..20] of integer

 newSol: solution

 routeScore: float

 timeScore: float

 ALGORITHM

 newTraveled  traveled.copy()

 newTraveled.add(location)

 tempArr  FindDestinations(location,
 traveled, flights)

 if (tempArr.length = 0)

 CalculateScore(traveled, routeScore,
 timeScore)

 if ((1-routeScore) <= routeFlex) and ((1
 timeScore) <= timeFlex)

 newSol.route  traveled

 newSol.routeScore  routeScore

 newSol.timeScore  timeScore

 solutions[solutions.length]  newSol

 else

 i traversal [0..tempArr.length]

 BFS(newTraveled, tempArr[i], solutions,
 flights)

C. Greedy Implementation

The implementation of the greedy algorithm elaborated in

a previous chapter is presented by the algorithmic notation

below:

function FindMaxScore(solutions: array
[1..1000] of solution) → array [1..20] of
integer

 LOCAL VARIABLES

 totalScore: float

 maxScore: float

 maxIdx: integer

 ALGORITHM

 totalScore  (solution[0].routeScore +
 solution[0].timeScore) / 2

 maxScore  totalScore

 maxIdx  0

 i traversal [1..solutions.length]

 totalScore  (solution[i].routeScore +
 solution[i].timeScore) / 2

 if (totalScore > maxScore)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

 maxScore  totalScore

 maxIdx  i

 → solutions[maxIdx]

D. Main Program

The algorithmic notation below serves a description of

how the program as a whole will look like:

GLOBAL VARIABLES

 // global variables required as defined in
 part A of this chapter, plus the status
 variable below

 traveled: array [1..20] of integer

 ultSolution: solution

FUNCTIONS

 function FindDestinations (location: integer,
 traveled: array [1..20] of integer, flights:
 array [1..100] of flight) → array [1..20] of
 integer

 // this function returns array of available
 next destinations

 function FindMaxScore(solutions: array
 [1..1000] of solution) → array [1..20] of
 integer

 // this function calculates the scores of all
 solutions and returns the optimum route as
 defined in part C of this chapter

PROCEDURES

 procedure CalculateScore (input traveled:
 array [1..20] of integer, input/output
 routeScore, timeScore: float)

 // this function calculates the score of
 route

 procedure BFS (input traveled: array [1..20]
 of integer, input location: integer,
 input/output solutions: array [1..1000] of
 solution, input flights: array [1..100] of
 flight)

 // this function recursively searches for a
 solution using BFS and adds feasible
 solutions to the solution array as defined in
 part B of this chapter

ALGORITHM

 // by any preferred method, initialize the
 following variables

 time  time

 location  location

 destinations  destinations

 routeFlex  routeFlex

 timeFlex  timeFlex

 flights  flights

 // initialize status variable with null
 values

 traveled  []

 ultSolution  ultSolution

 // commence BFS

 BFS(traveled, location, solutions, flights)

 // commence Greedy

 ultSolution  FindMaxScore(solutions)

V. ALGORITHM COMPLEXITY

The criteria of a good algorithm can be viewed from the
following aspects:

• Completeness, which is whether a solution is
guaranteed to be reached if it exists;

• Optimality, which is whether the method ensures
an optimal solutions;

• Time complexity, which is the time required to
reach the solution; and

• Space complexity, which is the memory required
to implement the algorithm.

Whereas the time and space complexity can be measured
using the following terms:

• b: (branching factor) maximum branching from a
certain vertex

• d: (depth) depth of the optimum solution

• m: maximum depth of the status space (may be
indefinite)

For required values to be determined in each case, we use
these variables:

• n: number of cities

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

• f: number of flights

A. Completeness

The completeness of the algorithm above depends on the

amount of time allocated by the client for travel. In most

cases, a solution is likely to be reached. However, due to the

use of the greedy algorithm, we have eliminated the possibility

of visiting the same destination twice, assuming that it will

only waste more time. In reality, visiting the same destination

twice may serve as the shortest amount of time from an

untraveled destination to another in a certain case. On the

contrary, allowing the visitation of the same destination twice

will defeat the purpose of using BFS, since the resulting route

will be infinite.

B. Optimality

Similar to the argument made in the previous section A for
the completeness of the algorithm, the optimality of the
algorithm also cannot be ensured. In most cases, an optimum
solution is likely to be reached. However, due to eliminating
the possibility of visiting the same destination twice may very
well result in eliminating the optimum solution for a certain
case.

C. Time Complexity

The time complexity of the algorithm can be observed from
the functions and procedures used. We ignore the complexity
of initializing the global and status variables.

• The BFS procedure produces a complexity equal
to the permutation of destination cities, so

T(n) = O(n!)

• The function FindDestinations traverses through
the list of flights and compares the flight’s
destinations to the array of traveled cities.
Assuming the best case scenario, no flights are
available from the current destination, which
results in

T(f) = O(f)

Otherwise, in the worst case scenario, all flights’
destination is the last element of the traveled
cities, which (assuming the traveled cities number
t) results in

T(f) = f + fn = O(2f)

Thus, the average time complexity for this
procedure is

T(f) = f + f + fn = O(1.5f)

• The CalculateScore procedure detects the number
of cities traveled and the amount of time taken to
travel. Then it produces the percentage of

similarity with the time allocation given by the
client and the maximum number of cities. In the
worst case scenario, the resulting route ends
without a single flight. So

T(n) = 1

Whereas the worst case scenario is all cities have
been traveled. The variable f’ denotes the
comparisons made to the list of flights to
determine the length of travel between one city to
another.

T(n) = (n-1) + (n-1)f’= O(2n)

Thus, the average time complexity of this
procedure is

T(n) = (1 + (n-1) + (n-1)f’) / 2 = O(n)

• The greedy algorithm traverses the list of solutions
once and determines the best solution. In the best
case scenario, there is no solution, so

T(n) = 0

Whereas in the worst case scenario the solutions
consist of combinations of destinations. This
results in

T(n) = nn = O(nn)

Thus, the average time complexity of this
algorithm is

T(n) = nn / 2 = O(0.5nn)

By calculating these different components, we get the time
complexity

T(n, f) = n! + 1.5f + n +0.5nn = O(nn, f)

D. Space Complexity

The space complexity of the algorithm can be observed
from the variables used previously. We ignore the space used
by variables outside of those required by the algorithms. The
total space complexity is the total size allocated to implement
the algorithm, which is

S(n, f) = n + f + nn

VI. CONCLUSION

The usage of greedy and the BFS algorithm to plan the
perfect tour route is theoretically guaranteed to work, since the
use of BFS ensures that a solution is reachable if it exists. The
optimality of this algorithm, however, relies on the use case. In
most cases, an optimum solution is likely acquired. In other
cases, however, characteristics of the BFS may prove to
prevent the algorithm from finding the optimum solution. In

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

addition, the amount of resource required to implement the
algorithm poses another problem. The complexity is
exponential, and as such, there needs to be a limitation of how
many destinations the client may request. Otherwise, the
resource required are likely to be unaffordable by many travel
agency enterprises.

VII. ACKNOWLEDGEMENTS

The author would like to express her gratitude to God

Almighty, for only because of His amazing grace the author is

able to find the inspiration to begin this paper, and the ability

to finish it. The author is also thankful to to Dr. Ir. Rinaldi

Munir, M.T., as the beloved lecturer of IF2120 Discrete

Mathematics of Class 01, for his dedication and enthusiasm,

and unique little quirks in lecturing his students for this

semester. The author also wishes to express gratitude to her

parents, her sister and brother, and her friends for all their

support and help during the writing process of this paper. The

author also remembers the teamwork her class has shown in

making sure that every student’s paper will be unique and

considerably different from each other’s. The efforts of the

people involved in making the database of paper titles is

highly appreciated.

REFERENCES

The following are references used in making the
introduction and definition of terms in this paper.

[1] Black, Sally. 2017. How a Travel Agent Works. Accessed at
https://www.huffpost.com/entry/how-a-travel-agent-works_n_7903072
on Friday, April 26 2019

[2] Munir, Rinaldi. 2017. Diktat Strategi Algoritma. Bandung: Insitut
Teknologi Bandung

[3] RoutePerfect: explore the world your way. Tour Planner. Accessed at
https://www.routeperfect.com/trip-planner on Friday, April 26 2019

[4] MapQuest. Multi-Stop Route Planning and Optimization Tools.
Accessed at https://www.mapquest.com/routeplanneri on Friday, April
26 2019

PERNYATAAN

I hereby state that the paper I have written is my own writing,

not a copy, or a translation of another person’s work, and is

not a result of plagiarism.

Bandung, 29 April 2012

Saskia Imani, 13517142

