
Pathfinding Alternatives in OSPF Routing Protocol
for Determining Routes on Routers

Aidil Rezjki Suljztan Syawaludin 13517070
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia

riskisultan@yahoo.com

Abstract​—The world is currently entering a new era. Internet
(interconnected network) now has become one of the most
important things in our lives. The internet itself is a collection of
interconnected networks, that is, networks that are connected to
one another. However, to connect networks to other networks,
routers are needed. Routers need to know the routes for data to
be sent through that guarantees the data to be delivered to the
correct destination. This is where the Open Shortest Path First
(OSPF) Routing Protocol comes into play. In this paper is going
to be discussed several pathfinding methods alternatives that can
be implemented based on Open Shortest Path First protocol.

Keywords—​Networks, Router, Internet, Path

I. ​INTRODUCTION [1]-[3]
The world is currently entering a new era. Internet

(interconnected network) now has become one of the most
important things in our lives. In March 2019, the number of
internet users in the world has reached 4.3 billion users, while
the world population itself is around 7.7 billion, thus 56.3% of
the whole world population already uses internet. The number
of internet users has increased rapidly from around 360
million users back in 2000. This rapid growth is mainly caused
by technological advances, especially in information
technology. Personal computers were made available for most
people with affordable prices, causing the first major growth
of internet usage in the early 1990s. Furthermore, the
emergence of smartphones in the 2000s and 2010s boosted the
growth even more. With affordable means of accessing the
internet, the internet users grow exponentially. Another factor
for such growth is because the internet offers various things
that were not possible before. The internet allows almost
limitless information access and exchange. For example, the
internet allows for easier communication, without any
geographical concerns. Various social medias emerge thanks
to the internet. The internet helps in making our lives more
convenient and it is natural for it to grow even more. With the

internet playing a major part in civilization, it is at most
importance to ensure that the internet is functioning properly.

The internet itself is a collection of interconnected
networks, that is, networks that are connected to one another.
A network consists of two or more devices linked to one
another through several connectors, such as cables, radio
waves, and others, that are sharing exchanging information
and data or sharing resources. The internet is built of these
networks. However, to connect networks to other networks,
routers are needed. Routers serve a purpose as a gateway, that
is, a gate that forwards data to other connected networks and
receives data that are directed to the network represented by
the router.

As stated before, internet is a collection of interconnected
network, and networks are connected using routers. This
means that for data to be forwarded to the correct destination,
or to be received by the correct receiver, a protocol is needed.
Routers need to know the routes for data to be sent through
that guarantees the data to be delivered to the correct
destination. This is where the Open Shortest Path First (OSPF)
Routing Protocol comes into play.

In this paper is going to be discussed several pathfinding
methods alternatives that can be implemented based on Open
Shortest Path First protocol.

II. OPEN SHORTEST PATH FIRST PROTOCOL [4], [5]
Open Shortest Path First (OSPF) protocol is a TCP/IP

routing protocol that is an Internal Gateway Protocol, that
means OSPF works in a single Autonomous System.
Autonomous System is a collection of routers sharing routing
informations using the same routing protocol.

In OSPF protocol, a router has a link state database. This
link state database contains information of the Autonomous
System topology, meaning it contains list of connected devices

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

and networks. In this protocol, every routers need to have
exactly same link state databases. To ensure such requirements
met, this protocol makes routers do link state advertisements.
Link state advertisement is advertising or telling other routers
the informations contained in a link state database. Each router
will do a link state advertisement, until all routers in the
Autonomous System has the same information in their
corresponding link state database.

Each router then will build a tree based on the information
contained in the link state database. This tree has the router
itself as the root and contains the topology of the Autonomous
System. Thus, a graph containing devices and networks
connected in the Autonomous System is created, and the graph
represents the Autonomous System topology.

Consider the following scenario of routers connected to
each other inside an Autonomous System:

● Router A is connected directly to Router B, Router C,
and Router H. The time it takes for a packet from
Router A to reach Router B is 150ms, from Router A
to reach Router C is 65ms, and from Router A to
reach Router H is 80ms.

● Router B is connected directly to Router A and
Router C. The time for a packet from Router B to
reach Router A is 150ms and Router C is 60ms.

● Router C is connected directly to Router B, Router E,
and Router G. A packet originating from Router E
needs 60ms to reach Router B, 80ms to reach Router
E, and 140ms to reach Router G.

● Router D is connected directly to Router A, Router E,
and Router F. A packet from Router D takes 65ms to
reach Router A, 90ms to reach Router E, and 70ms to
reach Router F.

● Router E is connected directly to Router C, Router D,
and Router G. Any packet that originates from Router
E takes 80ms to reach Router C, 90ms to reach
Router D, and 70ms to reach Router G.

● Router G is connected directly to Router C and
Router E. The time needed to route packets from
Router G to Router C is 140ms and to Router E is
70ms.

● Router F is only connected directly to Router D, and
it needs 70ms to send a packet from Router F to
Router D.

In this scenario, a link state database is built by the routers
through mechanisms such as link state advertisements. After
that, the following graph is built. This graph represents the
current topology on the Autonomous System related to the
routers.

Fig. 1 A sample graph of an Autonomous System topology
built using the link state database ot the routers

Notice that Router A is actually only connected physically
to Router B and Router D. However, Router A still actually
can send packets to any other routers currently connected in
the Autonomous System. This is because router works as a
packet director. When a router receives a packet from another
router, it checks whether that packet is sent into any network
known by the router. If it is, then the router will receive the
packet and send it to the corresponding network through a
route that it thinks is the best route. If it is not, then the packet
will either be sent to the default gateway of the router (if set),
or will be dumped. This mechanism ensure that as long as the
routers are connected, be it directly or indirectly, any router is
able to send packets to any other routers in the network
topology.

The graph representing Autonomous System link state is a
weighted graph. The weight on the edge of the graph
represents the cost (usually in time needed to the selected
router). In OSPF protocol, data will be sent to the destination
through the shortest route. Thus, it is important for router to
know which route is the fastest to reach the destination.

There are several methods to determine the shortest path to
nodes in a weighted graph. In this paper, is going to be
discussed some alternatives for determining the shortest path
to nodes in a weighted graph, consisting of Greedy Best-First
Search and Dijkstra Algorithm. The example scenario
aforementioned, Fig. 1, will be used as an example throughout
this paper.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

III. GREEDY BEST FIRST [6]
Greedy Best-First search is one alternative for finding

route to a node in a weighted graph. This search algorithm has
a simple greedy strategy, that is, to choose a node that looks
like it may be the best node to go through to reach the
destination. This strategy needs a heuristic evaluation function
(f(n)). The heuristic evaluation function will be used in this
strategy to determine which node is the most promising to
expand to. The following is a basic Greedy Best-First
algorithm.

1. Start from the start node as the current node.
2. Check whether the current node is the target node or

not. If it is, stop here.
3. Add the current node to visited nodes list.
4. Check all possible path to take from the current node.

Choose a path that has the minimal (or maximal,
depends on the algorithm goal) cost, in respect to the
heuristic evaluation function f(n).

5. Return to step 2.

To further explain how Greedy Best-First search strategy
works, consider the following example. A packet from Router
A is going to be sent to Router F, in network topology
presented in Fig. 1. The time cost will be used as the heuristic
evaluation function, and also as the real cost. Then, the
strategy will work as follows.

1. Start from Router A as the current node.
2. Check whether the current node is the target node. It

is not, so the search continues.
3. There are three possible routes to choose from the

current node, that is, through Router B with the time
cost of 150ms, through Router D with the time cost
of 65ms, and through Router H with the time cost of
80ms. It is perfectly possible to send the packet to
Router H, since every router in this topology knows
how to reach all the other routers. However, this
would create a loop and cause the packet to not reach
the destination. This loop can be avoided using
another protocol, the Spanning Tree Protocol, but it
will not be discussed in this paper.

4. From the three possible routes, this Greedy Best-First
strategy will choose the one that looks like the best
route. Thus, it will choose the route going to Router
D, because it has the minimal cost. Now, the current
node is Router D.

5. Check whether the current node is the target node. It
is not, so the search continues.

6. From the current node, there are two possible routes
to choose, going to Router F and going to Router E.
Note that Router A is no longer a possible route,
because it has already been visited before.

7. From the two possible routes, the minimal one will be
chosen. Thus, Router F will be chosen.

8. Check whether current node is the target node. It is
the target node, thus the search ends here.

A path from Router A to Router F is found, which is
Router A - Router D - Router F, with the cost of 135ms. Thus,
the packet will be sent to the destination through the
corresponding routes.

However, this Greedy Best-First strategy does not always
guarantee the best route. That is because in this strategy, the
current node chosen may choose the fake promising node. It
may choose a node that looks like the best route to go through,
but is actually not. This may cause a trap in local minimal. For
example, consider the following scenario. A packet from
Router C is going to be sent to Router D, in the network
topology presented in Fig. 1. Then, the strategy will work as
follows.

1. Start from Router C as the current node.
2. Check whether the current node is the target node. It

is not, so the search continues.
3. There are three possible routes to choose from,

through Router B, Router E, and Router G, with the
cost of 60ms, 80ms, 140ms respectively. The
algorithm will choose Router B, because it considers
the path through Router B more promising than the
others. Now, the current node is Router B.

4. Check whether the current node is the target node. It
is not, so the search continues.

5. There is only one possible route to choose from,
which is going through Router A. Thus, the current
node now is Router A.

6. Check whether the current node is the target node. It
is not, so the search continues.

7. There are two possible routes, going through Router
D and through Router H, with the cost of 65ms and
80ms. In this step, the path going through Router D is
chosen. Thus, the current node is now Router D.

8. Check whether the current node is the target node. It
is, thus the search ends here.

Going through the algorithm shows that the path found is
through Router C - Router B - Router A - Router D, with the
cost of 275ms. However, by looking at the graph in Fig. 1, we
can see that there is actually another route that has a lower
cost than the route gotten from the Greedy Best-First search
algorithm. That route is Router C - Router E - Router D, with
the cost of 170 ms. This shows that Greedy Best-First search
strategy does not always guarantee the best path.

IV. DIJKSTRA ALGORITHM [7], [8]
Dijkstra Algorithm is a pathfinding algorithm that is

classified as a ​single source shortest path algorithm in graph
theory, which means, this algorithm solves for all paths from a
single source or node to all the other nodes in a graph. This

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

algorithm works on both directed and undirected graphs.
However, Dijkstra Algorithm requires the graph to be
connected, that is, to have all nodes connected without any
isolated subgraphs or nodes. This algorithm also requires the
weight of the graph to be nonnegative.

Dijkstra Algorithm works by having a list of visited nodes,
list of current shortest path cost from source node to other
nodes, and the previous path to a node list. The visited nodes
are used to ensure that the algorithm does not check the same
node more than once. The list of current shortest path cost
from source node to other nodes is used to keep track of the
costs from the source node to other nodes and to determine
which node to check next. While the previous path to a node
list is used to rebuild the path that was found when the
algorithm runs.

Visited Nodes

{Node A, Node B, Node C, … }

Table 1 Example of the visited nodes list

Nodes Node A Node B Node C ...

Current
Cost

0 3 5 ...

Previous
Nodes

- A B ...

Table 2 Example of the costs and previous nodes table

The following steps are the basics of Dijkstra Algorithm.

1. Set all the current cost in the table to infinity, except
the cost to the source node, set all the previous nodes
to none, and set the visited nodes as an empty set.

2. Start from the source node as the current node.
3. For all the unvisited nodes N connected to the current

node, find the cost to node N, by adding the cost from
source node to the current node with the cost from the
current node to node N. Check the result cost with the
cost that is currently in the cost table. If the result
cost is less than the cost currently in the cost table,
update the table with the result cost and update the
previous node with the current node.

4. Add the current node to the list of visited nodes.
5. Select a new current node, that is, by selecting from

the unvisited nodes that has the lowest current cost in
the table. If none exists, then the algorithm stops
here.

6. Return to step 2.

To further understand how Dijkstra Algorithm works,
consider the following example. A packet is going to be sent
from Router C to Router D, in the network topology presented
in Fig. 1. The Dijkstra Algorithm works as follows.

Set all the current cost in the table to infinity, except the
cost to the source node, in this case is Router A, then set all
the previous nodes to none, and set the visited nodes as an
empty set.

Visited Nodes

{}

Table 3 Initial visited nodes list

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 ~ ~ ~ ~ ~ ~ ~

Previous
Nodes

- - - - - - - -

Table 4 Initial costs and previous nodes table

Start from Router C as the current node. Router C is
connected directly to three unvisited nodes, which are Router
B, Router E, and Router G. Each connected node will be
examined. The cost from the source node, which is Router C,
to the current node, which is also Router C, is 0. Examining
Router B, the cost from the current node to Router B is 60ms.
Comparing the cost from source to Router B with the current
cost to Router B in the costs table, it costs 60ms, comes from
60ms + 0ms, which is less than infinity, thus the table is
updated. Onto the next, Router E costs 80ms from the current
node, and costs 80ms from the source node, which is less than
infinity, thus the table is updated. Now, Router G costs 140ms
from the current node, and costs 140ms from the source node,
thus the table is updated. After all the nodes connected directly
to the current node has been examined, the current node is
added to the list of visited nodes. The tables are updated as
follows.

Visited Nodes

{Router C}

Table 3 Visited nodes list after checking on Router C as the
current node

Nodes Router Router Router Router Router Router Router Router

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

C A B D E F G H

Current
Cost

0 ~ 60 ~ 80 ~ 140 ~

Previous
Nodes

- - C - C - C -

Table 4 Costs and previous nodes table after checking on
Router C as the current node

Now, another node needs to be checked as the current
node. The next current node needs to be an unvisited node
with the least known cost. The possible nodes are Router B,
Router E, and Router G. Router B is selected as the next
current node, as it have the minimal known cost and is
unvisited.

The current node, which is Router B, is connected to only
unvisited node Router A. Router C is ignored because it is
already visited before. The cost from the source node to the
current node is 60ms. Examining Router A, the cost from the
current node to Router A is 150ms, which means that it adds
up to 210ms as the cost from source node to Router A.
Comparing the result to the current known cost from source
node to Router A, which is infinity, 210ms is less. Thus the
table is updated. All unvisited nodes that are connected to the
current node has already been examined, now the current node
is added to the visited nodes list. The updated tables are as
follows.

Visited Nodes

{Router C, Router B}

Table 5 Visited nodes list after checking on Router B as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 ~ 80 ~ 140 ~

Previous
Nodes

- B C - C - C -

Table 6 Costs and previous nodes table after checking on
Router B as the current node

Router E is the selected next current node, because it has
the least known cost and is unvisited.

The current node, which is Router E, has connections to
two unvisited nodes, which are Router D and Router G. The
cost from the source node to the current node is 80ms. From
the current node to Router D costs 90ms, and as total adds up
to 170ms from the source node to Router D. Comparing that to

the current known cost, which is infinite, 170ms costs less,
and the table is updated. From the current node to Router G
costs 70ms, and as total adds up to 150ms from the source
node to Router G. Comparing that to the current known cost,
which is 140ms, it is not better. And the table is not updated
for Router G. All the unvisited connected nodes have been
examined, thus the current node is added to the visited list
node. The table after this iteration is as follows.

Visited Nodes

{Router C, Router B, Router E}

Table 7 Visited nodes list after checking on Router E as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 170 80 ~ 140 ~

Previous
Nodes

- B C E C - C -

Table 8 Costs and previous nodes table after checking on
Router E as the current node

Router G is selected as the next current node. However, the
current node, which is Router G, has no unvisited nodes
connected directly. Thus, the table is not updated, but Router
G is still added to the visited nodes list.

Visited Nodes

{Router C, Router B, Router E, Router G}

Table 9 Visited nodes list after checking on Router G as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 170 80 ~ 140 ~

Previous
Nodes

- B C E C - C -

Table 10 Costs and previous nodes table after checking on
Router G as the current node

Now, Router D is selected as the next current node.

Router D as the current node neighbors Router A and
Router F directly. The cost from the source node to the current

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

node is 170ms. Checking on Router A as a neighbor, it costs
65ms from the current node, and adds up to 235ms as total
from the source node. It is no less than 210ms, the current
known cost, so the table is not updated for Router A. Checking
on Router F as a neighbor, it costs 70ms from the current
node, and adds up to 240ms from the source node. It is less
than infinity, the current known cost, so the table is updated
for Router F. All the unvisited neighbors of the current node is
already checked and the current node is added to the visited
nodes list. The table becomes as follows.

Visited Nodes

{Router C, Router B, Router E, Router G, Router D}

Table 11 Visited nodes list after checking on Router D as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 170 80 240 140 ~

Previous
Nodes

- B C E C D C -

Table 12 Costs and previous nodes table after checking on
Router A as the current node

Now, Router A is selected as the next current node.

Router A, the current node, has only Router H as unvisited
neighbors. From the source node to the current node costs
210ms. Checking on Router H as a connected neighbor, it
costs 80ms from the current node. It totals to 290ms from the
source node to Router H. Comparing that result to the current
known cost, which is infinite, it is certainly less, thus the table
is updated. All the unvisited neighbors of the current node is
already checked, thus the current node is added to the visited
node list. Now, the tables look as follows.

Visited Nodes

{Router C, Router B, Router E, Router G, Router D, Router
A}

Table 13 Visited nodes list after checking on Router D as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current 0 210 60 170 80 240 140 290

Cost

Previous
Nodes

- B C E C D C A

Table 14 Costs and previous nodes table after checking on
Router A as the current node

Now, Router F becomes the current node. Router F, only
neighbors Router D, and that node is already visited, thus the
neighbor check is skipped and the costs and previous nodes
table is unchanged. However, Router F is still added to the
visited nodes lists. The tables becomes as follows.

Visited Nodes

{Router C, Router B, Router E, Router G, Router D, Router A,
Router F}

Table 15 Visited nodes list after checking on Router F as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 170 80 240 140 290

Previous
Nodes

- B C E C D C A

Table 16 Costs and previous nodes table after checking on
Router F as the current node

The only unvisited node now is Router H, and now
becomes the next current node. However, the current node,
Router H, only neighbors Router A, and it is already visited
before, thus there are no checkings in this iteration, but Router
H is still added to the visited nodes list.

Visited Nodes

{Router C, Router B, Router E, Router G, Router D, Router A,
Router F, Router H}

Table 17 Visited nodes list after checking on Router H as the
current node

Nodes Router
C

Router
A

Router
B

Router
D

Router
E

Router
F

Router
G

Router
H

Current
Cost

0 210 60 170 80 240 140 290

Previous
Nodes

- B C E C D C A

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Table 18 Costs and previous nodes table after checking on
Router H as the current node

Now, all the nodes in the graph has already been visited,
and the algorithm stops here. From the table built by running
through the Dijkstra Algorithm, the shortest path from a single
source, Router C, to any other nodes in the graph is found,
with the respective cost.

Back to the example problem before, the shortest path for a
packet originating from Router C to Router D is now found,
with the cost of 170ms. However, the information here is only
about the cost of the path and the previous nodes to reach a
node. Thus, a path needs to be rebuilt from the information.

In rebuilding the path, a stack data structure may be used.
The path is rebuilt by traversing backward, that is, traversing
from the goal node, Router D, back to the source node, Router
C. First, push the node Router C to an empty stack. Then,
check the previous node, which is Router E. Push that Router
E node to the stack, and check the previous node again, which
is Router C. Push that Router C node to the stack. Now,
because node Router C is the source node, the path is found.
The stack looks like as follows.

Fig. 2 Stack for the path rebuilt from Router D to Router C

The stack now represents the path that should be taken to

send a packet originating from Router C to Router D. The path
can be taken by popping the path stack, until the stack is
empty.

With the Dijkstra Algorithm, the shortest path is
guaranteed to be found. This algorithm does not only find a
path from a single source to a single goal node, but also finds
all the path from that single source to any other nodes in the
graph. Thus, now Router C knows exactly to what route to
send any packets to.

V. COMPARISON AND CONCLUSION
The Greedy Best-First search strategy does not need so

much computations to run. However, this strategy does not
have any guarantee that the result will be the optimal result.

As seen in this paper, this strategy may not produce the most
optimal result, as it can get trapped into a local minimal.

The Dijkstra Algorithm on the other hand needs more
computation, since it loops through the nodes of a graph and
the neighbors of each. However, this algorithm ensures that
the result produced is already the optimal result. This
algorithm also produces all the optimal routes from a single
source node to any other nodes in the graph just by running it
once. Though, if the graph changes, it needs to be run again,
but the re-run may not be as heavy as the first run if the
algorithm is modified.

Pathfinding in routers needs to be as accurate as it can,
while having moderate computations is not necessarily a
problem. This means that even though Greedy Best-First
strategy may be used in routers pathfinding, it is best to avoid
because the result is not always optimal. However, the
Dijkstra Algorithm that ensures optimal result is suited to the
task, and to compensate the computation process, this
algorithm is only needed to be run when the network topology
is changed. Thus, no constant computation is needed. Also,
Dijkstra Algorithm finds all routes, instead of one routes, from
a single source. This is suited for the nature of routers routes,
where all routes are needed to be known by routers. Thus, the
Dijkstra Algorithm is well-suited for pathfinding in routers.

VI. ACKNOWLEDGEMENT
The author of this paper thanks the lecturer of the authors

class of Algorithm Strategy, Dr. Nur Ulva Maulidevi ST,
M.Sc, for the knowledge shared and taught in the class and
also the guidance that allows the author to finish this paper.
The author also thanks all the authors of the references, also to
others that may have helped the making of this paper directly
and indirectly.

REFERENCES
[1] World Internet Users and 2019 Population Stats. Retrieved on 24 April

2019 from ​https://www.internetworldstats.com/stats.htm
[2] Internet Growth in 2000 to 2005 in the World. Retrieved on 24 April

2019 from ​https://www.internetworldstats.com/emarketing.htm
[3] Internet Growth Statistics 1995 to 2019. Retrieved on 24 April 2019

from ​https://www.internetworldstats.com/emarketing.htm
[4] What is a Network?. Retrieved on 25 April 2019 from

https://fcit.usf.edu/network/chap1/chap1.htm
[5] RFC2328 - OSPF Version 2. Retrieved on 25 April 2019 from

https://tools.ietf.org/html/rfc2328#section-1
[6] Munir, R. (2019). Route/Path Planning. Retrieved on 25 April 2019 from

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/A-Star-
Best-FS-dan-UCS-(2018).pdf

[7] Munir, R. (2019). Algoritma Greedy. Retrieved on 25 April 2019 from
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2018-2019/Algorit
ma-Greedy-(2019).pdf

[8] Cormen, Thomas H.​; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford (2001). "Section 24.3: Dijkstra's algorithm". ​Introduction to

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/emarketing.htm
https://www.internetworldstats.com/emarketing.htm
https://fcit.usf.edu/network/chap1/chap1.htm
https://tools.ietf.org/html/rfc2328#section-1
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/A-Star-Best-FS-dan-UCS-(2018).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/A-Star-Best-FS-dan-UCS-(2018).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2018-2019/Algoritma-Greedy-(2019).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2018-2019/Algoritma-Greedy-(2019).pdf

Algorithms (Second ed.). MIT Press and McGraw–Hill. pp. 595–601.
ISBN 0-262-03293-7.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Aidil Rejzki Suljztan Syawaludin

13517070

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

