
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Application of Breadth-First Search and Exhaustive
Search on “Pluszle”

Kevin Nathaniel Wijaya - 135170721

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1kevin.wijaya@students.itb.ac.id

Abstract— The paper explores the application of breadth-first
search and exhaustive search on “Pluszle”. The breadth-first
search is based on graph searching and the exhaustive search is
based on brute force algorithm. The first part of the text explains
the puzzle involved, also the algorithms used. The next part
shows the implementation of the breadth-first search and
exhaustive search to finish a puzzle created by the “Pluszle” app.

Keywords—Breadth-First Search, Pluszle, Exhaustive Search

I. INTRODUCTION
Everything in this world is a puzzle. There will always be a

problem, and people will look for the solution to solve it. That
is just a puzzle, in a nutshell, although it might not be as simple
as that. We now use the word puzzles to portray a short game
that challenges the mind, makes you think. Our brain wants to
solve problems, and this is one way we can stimulate the brain.

Puzzles come in different forms and sizes, such as the
classic jigsaw puzzles, or even chess tactics. The involvement
of math in puzzles are also no longer a mystery. Training math
usually takes in the form of puzzles, and there is one game that
does that exactly called “Pluszle”, a puzzle challenging the
arithmetic capabilities of additions.

With the advancement of computers and the computing
system, algorithms and processing powers have made it
possible to create solutions for problems as simple as
reminding us of an event, to creating neural networks for
Artificial Intelligence to make its way.

The author will explore the algorithms and the
combinations which could solve a puzzle as quick and as
efficient as possible, in this case the puzzle from the app
“Pluszle”. The author will specifically use the breadth-first
search and exhaustive search to create the algorithm capable of
finding the solution to the puzzle.

II. “PLUSZLE”
Advertised as the “fresh logic puzzle”, the game “Pluszle”

was released on 2018 by Huckleberry BV on both the iOS
platform and the Android platform. This game revolves around
the addition arithmetic method made into a puzzle. The puzzle,
shaped as a square, has sums on the right side and bottom side.
The goal is to highlight numbers which add up properly per

row and column to the corresponding sums on the right and
bottom lines. Once the squares are selectively highlighted and
equates to the proper sums, the puzzle will be considered
solved.

This game is also available in magazine form which can be
purchased in certain locations. With its interactive and
interesting design, “Pluszle” has accumulated an average rating
of 4.2 out of 5 from 628 total ratings on the Apple App Store.
[1]

Fig. 1. Screenshot of Game “Pluszle”

(Source: https://itunes.apple.com/us/app/pluszle-brain-
logic-game/id1327839430?mt=8)

As seen from Fig. 1, there is a sample of the puzzle, a 4-

by-4 matrix of numbers, which could be highlighted to be
selected as a solution. The grey rightmost row shows the sums
needed for the respective numbers on the columns, and the
grey bottommost column shows the sums needed for the
respective numbers on the rows. This puts a new twist on
simple addition puzzles.

III. EXHAUSTIVE SEARCH
Exhaustive search is a variation of the brute force

algorithm. The brute force algorithm is known as the most
straightforward algorithm, the obvious, direct, and clear way to
go. This algorithm has a wide range of application, is simple
and relatively easy to be understood, tends to be accurate, and
is usually the standard of most methods. This algorithm is used
in all sorts of sorting methods, prime number testing,

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

multiplication of 2 matrices, etc. However, this algorithm is
also known as a less efficient algorithm, is uncreative, and also
relatively slow when compared to other algorithms. [2]

A variation of the brute force algorithm, the exhaustive
search, is a solution finding technique for combinatorial
problems. It is mostly used for finding solutions involving
permutation, combinations, or subsets of a set. The exhaustive
search is used in the travelling salesperson problem, the 1/0
knapsack problem, and much more. The search method is as
follows:

1. An enumeration of all the possible combinations.

2. Evaluating each combination and keeping the best
result.

3. Returning the best combination possible.

With the results from the exhaustive search, all possibilities
are explored and evaluated to find the solution [2]. For the case
of finding solutions for the “Pluszle” game, there needs to be
some modifications done to the search. Instead of just keeping
one best result, the search needs to keep all permutations which
when added together evaluates to the sum. These permutations
will later on be the next steps used in the breadth-first search.

The complexity of the exhaustive search that will be used in
this paper is

 O(n) = (n * n!) (2)

because there are n comparisons done and permutations
have to be done which have a complexity of n factorial.

IV. BREADTH-FIRST SEARCH
Breadth-first search (BFS) is a type of graph search, where

a graph is a set of vertices connected by edges. There are
mainly two types of edges, an ordered pair which has
directions and an unordered pair which is undirected (see Fig.
2). A graph could be represented in different forms, such as
adjacency lists which stores the neighboring vertices, implicit
graphs which uses “Zero” space, object-oriented variations in
which each object has a list of neighbors, and incidence lists
which stores the edges.

Fig. 2. Illustration of Graphs

(Source: https://ocw.mit.edu/courses/electrical-engineering-
and-computer-science/6-006-introduction-to-algorithms-fall-

2011/lecture-videos/MIT6_006F11_lec13.pdf)

A graph search uses this graph to, for example, find paths
which lead to a desired vertex from another vertex.
Applications of graph searching includes web crawling for
searching on search engines, social networking for finding
friends on social media, network broadcast routing, garbage
collection, model checking, checking mathematical
conjectures, and solving puzzles and games, which is the main
focus of this paper.

The vertex on this search could also represent a state, which
depicts the condition the program is in now or the solution
achieved momentarily. This state would then be used for either
comparison with the solution, or checking if the neighboring
states have been visited, and so on. From this point on, vertices
are going to be replaced by states for the purpose of less
confusion, and the accuracy to the method going to be used
later on in this paper.

A more specific type of a graph search is breadth-first
search. How the breadth-first search works is starting from the
start state, the next level(s) would continue to the states that are
reachable from the previous state while ignoring the states from
previous passing. [3]

The breadth-first search algorithm with the queue method
in Python 3 is as follows [4]:

Function to print a BFS of graph

 def BFS(self, s):

 # Mark all the vertices/states as not visited

 visited = [False] * (len(self.graph))

 # Create a queue for BFS

 queue = []

 # Mark the source node as visited and enqueue it

 queue.append(s)

 visited[s] = True

 while queue:

 # Dequeue a vertex from queue and print it

 s = queue.pop(0)

 print (s, end = " ")

Get all adjacent vertices/states of the dequeued
vertex/state s. If an adjacent has not been visited,
then mark it visited and enqueue it

 for i in self.graph[s]:

 if visited[i] == False:

 queue.append(i)

 visited[i] = True

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

As seen from the algorithm above, the breadth-first search
is going to first make a list of visited states initialized by the
boolean “False”, which will be changed to true once the state is
visited. Next, a queue is created, and the starting state is added.
All the neighboring states are added next and the process
repeats until the queue is empty, meaning all the states are
visited (see Fig. 3).

Fig. 3. Illustration of the Breadth-First Search Algorithm

seen by the levels
(Source: https://ocw.mit.edu/courses/electrical-engineering-

and-computer-science/6-006-introduction-to-algorithms-fall-
2011/lecture-videos/MIT6_006F11_lec13.pdf)

This kind of implementation is classified as the static graph
variation, in which the graph is previously defined and does not
change. Another variation of the graph searching is the
dynamic graph variation. In this variation, the graph is NOT
present in the beginning of the process, rather it is created
dynamically whilst executing the algorithm and finding the
solution, which is the variant used for finding the solution of
the “Pluszle” game. [5]

Before moving on, it is important to know the complexity
of the breadth-first search, which is

 O(n) = (V + E) (1)

V being the vertices and E being the edges. This will later
be used as a comparison.

V. BREADTH-FIRST SEARCH WITH EXHAUSTIVE SEARCH
As mentioned before, the breadth-first search will be used

with the dynamic graph variation, in which the graph to be
searched is not given. Like the puzzle, the only thing given is
the problem, and it is up to us to solve it. Here is where the
exhaustive search comes in handy. The beginning state of the
breadth-first search will be the problem itself. The depth of this
search will be as much as the rows of the square matrix. The
neighboring states of the previous state will be determined and
created by the exhaustive search method, which will give a list
of permutations that when each single number in each
permutation is added, will result to the sum on the rightmost
side outside of the matrix, which is the targeted sum. These
solutions will be highlighted, and each solution will be added
to the queue in which the breadth-first search will continue to
do. This will keep on going until each column’s highlighted
sum is equal to the rightmost row outside of the matrix. If that

condition is fulfilled, the breadth-first search will check if the
highlighted numbers or squares for each row when added is
equal to the lowest column which has the targeted sum for each
row. If this condition isn’t met, then the state is not the solution
and is discarded and no longer continued. However, if the
condition is met, the search will stop as it has found the
solution.

At every state, there will also be a checking of the sums of
each column, which has to be lower than or equal to the
targeted sum. If this is not fulfilled, the state would be
immediately discarded because is considered no longer viable
as a solution.

Fig. 4. Screenshot of “Pluszle” App on iOS

(Source: Screenshot on 26 April 2019)

For example, as seen on Fig. 4, we have a 5 by 5 matrix
with the number 0-9 on each blue square, and an expected sum
for each row and column on the right and lower side. This
would be the beginning state or state of the breadth-first
search helped by the exhaustive search.

The first level would be decided by the result of the
exhaustive search done on the first row, with the target sum
being 17. Coincidentally, the only permutation available for
this [1, 1, 0, 1, 0], 1 being the highlighted squares and 0 being
the unhighlighted squares, the content of the first index of the
array being the number “9”, the content of the second index
being “2”, and so forth. When the highlighted squares are
added up, it results to 9 + 2 + 6 = 17, which is the targeted
sum. All other permutations are of course checked, such as 9 +
2 + 4 + 3 = 18, but does not result in the targeted sum and
therefore is not chosen as a candidate for the solution.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

The breadth-first search adds this candidate to the queue,
[[1, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0,
0, 0, 0]], as only the first square has highlights. This is one
example of the dynamic graph, as the states are dynamically
added as the process continues. The next state is now popped
from the queue and is processed (see Fig 5).

Fig. 5. Screenshot of “Pluszle” App on iOS after

Row 1 Highlights
(Source: Screenshot on 26 April 2019)

This is now the current state as popped from the queue
previously. Now the second row is processed by the exhaustive
search, and this coincidentally is also the case of only 1
solution possible, that is 9 + 2 = 11, or [0, 0, 0, 1, 1]. This will
now replace the second row for the state, making the current
state [[1, 1, 0, 1, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]] (see Fig. 6). This state will then be pushed into
the queue for continuation.

Fig. 6. Screenshot of “Pluszle” App on iOS after

Row 1, 2 Highlights
(Source: Screenshot on 26 April 2019)

The state for processing will be popped and then be
processed by the breadth-first search with the exhaustive
search. On this third row, the exhaustive search found 3
possible solutions which fit, 2 + 1 + 7 = 1 + 6 + 3 = 7 + 3 = 10.
Because of this, all 3 possible permutations are going to be
pushed into the queue for further processing, with the queue
having (left being the head):

[[1, 1, 0, 1, 0],

[0, 0, 0, 1, 1],

[1, 1, 0, 1, 0],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0]]

[[1, 1, 0, 1, 0],

[0, 0, 0, 1, 1],

[0, 1, 1, 0, 1],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0]]

[[1, 1, 0, 1, 0],

[0, 0, 0, 1, 1],

[0, 0, 0, 1, 1],

[0, 0, 0, 0, 0],

[0, 0, 0, 0, 0]]

Fig. 7, 8, 9. Screenshot of “Pluszle” App on iOS after

Row 1, 2, 3 Highlights
(Source: Screenshot on 26 April 2019)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

As the search continues, popping the state from the queue,
in this case [[1, 1, 0, 1, 0], [0, 0, 0, 1, 1], [1, 1, 0, 1, 0], [0, 0, 0,
0, 0], [0, 0, 0, 0, 0]] (Fig. 7), the fourth row’s is not either
lower or equal to the targeted sum, which makes this state no
longer viable and is discontinued. The search proceeds to the
next state popped from the queue, [[1, 1, 0, 1, 0], [0, 0, 0, 1, 1],
[0, 1, 1, 0, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] (Fig. 8). As the
rows’ sum have not exceeded the targeted sum, this state is
still considered viable and is continued for the neighbors. The
exhaustive search continues to find candidate solutions for the
column, 7 + 4 [1, 0, 0, 0, 1] = 7 + 4 [0, 0, 1, 0, 1] = 11. These
two candidate solutions are then added to the back of the
queue. The queue is again popped for the [[1, 1, 0, 1, 0], [0, 0,
0, 1, 1], [0, 0, 0, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] (Fig. 9).
However, this also has the same problem with the previous 2
state, in which the state’s fourth row’s sum exceeds the
targeted sum. This state is then discarded and the search is left
with this queue:

[[1, 1, 0, 1, 0],

[0, 0, 0, 1, 1],

[1, 1, 0, 1, 0],

[1, 0, 0, 0, 1],

[0, 0, 0, 0, 0]]

[[1, 1, 0, 1, 0],

[0, 0, 0, 1, 1],

[0, 1, 1, 0, 1],

[0, 0, 1, 0, 1],

[0, 0, 0, 0, 0]]

Fig. 10, 11. Screenshot of “Pluszle” App on iOS after

Row 1, 2, 3, 4 Highlights
(Source: Screenshot on 26 April 2019)

Continuing the search, the next state from the queue, [[1, 1,
0, 1, 0], [0, 0, 0, 1, 1], [1, 1, 0, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0,
0]] (Fig. 10), each row’s sum has not exceeded the targeted
sum for each row. The exhaustive search continues to find
permutations for the column, 3 + 1 [1, 0, 1, 0, 0] = 3 + 1 [1, 0 ,
0, 1, 1] = 3 + 1 [0, 1, 1, 0, 0] = 3 + 1 [0, 1, 0, 1, 0] = 3 + 1 [0,
0, 1, 0, 0] = 3 + 1 [0, 0, 0, 1, 1] = 4. These states have reached
the number-of-rows deep on the levels and therefore gets
checked if the sum of each number on the rows are equal to
the expected sum. For the first and second state, 9 + 7 + 3 >
16, so it is discarded. For the third state, the solution is found,
with 9 + 7 = 16, 2 + 1 + 3 = 6, 6 + 1 = 7, 6 + 9 = 15, and 2 + 3

+ 4 = 9. Therefore, the search comes to a halt with the state
being the answer and the solution.

Fig. 12. Screenshot of “Pluszle” App on iOS:

Finished!
(Source: Screenshot on 26 April 2019)

VI. CONCLUSION
Through the use of breadth-first search combined with

exhaustive search, the complexity of the method is reduced
quite significantly when compared to just brute force or
exhaustive search. By using brute force or exhaustive search
alone, the complexity would be O(n * 2n), because there
would be checking of the values plus the permutations. By
using breadth-first search alone, the complexity would be O(n
* n!), because of the number of states available in every single
iteration. By combining both exhaustive search and breadth-
first search, the complexity was able to be reduced down by
O(n * n), as shown by the results of the experiment. There was
not a need to check all the states because of the results or
states that the exhaustive search provided, and there was no
need of backtracking or testing all single boxes because of the
breadth-first search which checked every row. All in all, the
use of breadth-first search joined with the exhaustive search
resulted in a favorable outcome.

ACKNOWLEDGMENT
The author would like to thank first of all God as the author

was able to finish writing this paper well. The author would
also like to thank lecturer Dr. Ir. Rinaldi Munir, MT. from the
Strategic Algorithm IF2211 class for his lectures and support.
Also, the author would like to express his gratitude for his
family and friends for their constant support.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

REFERENCES
[1] “Pluszle: Brain Logic Game.” App Store, Apple Inc. Web,

itunes.apple.com/us/app/pluszle-brain-logic-game/id1327839430?mt=8.
Accessed 25 Apr. 2019.

[2] Munir, Rinaldi. “Algoritma Brute Force.” Program Studi Informatika,
2014. Web, informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/
Algoritma-Brute-Force-(2016).pdf . Accessed 25 Apr. 2019.

[3] “Lecture 13: Graphs I: Breadth First Search.” MIT OpenCourseWare,
MIT. Web, ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-006-introduction-to-algorithms-fall-2011/lecture-
videos/MIT6_006F11_lec13.pdf. Accessed 26 Apr. 2019.

[4] “Breadth First Serach or BFS for a Graph.” GeeksforGeeks,
GeeksforGeeks. Web, www.geeksforgeeks.org/breadth-first-search-or-
bfs-for-a-graph/. Accessed 26 Apr. 2019.

[5] Munir, Rinaldi. “Breadth/Depth First Search (BFS/DFS).” Program
Studi Informatika, 2015. Web, informatika.stei.itb.ac.id/~rinaldi.munir/
Stmik/2017-2018/BFS-dan-DFS%20(2018).pdf. Accessed 25 Apr. 2019.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Kevin Nathaniel Wijaya

13517072

