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Abstract—Matrix multiplication is one of the most widely 

discussed algorithm in the computer science community. Many 

proposed algorithm and theorem are already proposed to decrease 

its complexity. With a deep mathematical insight and various 

supporting paper for every proposed algorithm, it would need a 

long time to understand the paper, more so to approve or disprove 

the proposed algorithm. In this paper, we will try to check whether 

a multiplication algorithm is valid or not using the Freivald’s 

algorithm and compare it with another verifier algorithm. 
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I. INTRODUCTION 

 Matrix is one of the most widely used mathematical concept 

in computer science. We can model a problem to its matrix 

representation and manipulate it using mathematic tools. For 

example, we can model a graph with an adjacency matrix and 

find its complement easily by using the matrix. Another example 

is the uses of linear algebra in data science.  

 One of the most commonly matrix manipulation is to 
multiply it with another matrix. Matrix multiplication algorithm 

is one of the most common topics to be researched in computer 

science. Many algorithms and optimization are proposed to 

decrease its complexity. To check the proposed algorithm, we 

need to check whether the proposed algorithm find the correct 

solution in better time than current algorithm. In this paper, we 

will use Freivald’s algorithm to determine the correctness of 

matrix multiplication and compare it with various matrix 

multiplication correctness verifier algorithm. 

II. BASIC THEORY 

A. Matrix 

Matrix is defined as a collection of number that arranged in 

rows and columns. Basic operations in matrix that will be used 

in this paper are addition, scalar multiplication, transposition, 

and matrix multiplication. 

 

• Addition operation in matrix is defined as follows 
 

(A + B)i,j = 𝐴𝑖,𝑗 + 𝐵𝑖,𝑗  

Where A and B is m-by-n matrices and 1 ≤ i ≤
m, 1 ≤ j ≤ n 

 

• Scalar multiplication c in matrix Ai,j is defined as 

multiplying every entry in matrix with c, or more 

formally 

(cAi,j) = 𝑐. 𝐴𝑖,𝑗 

 

• Transposition in matrix Ai,j is defined as turning it into 

matrix Aj,i, or more formally 

(Ai,j)
𝑇

= Aj,i 

• Matrix multiplication m-by-n matrix A with n-by-p 

matrix B is defined as follows 

AB = ∑ ∑ ∑ 𝑎𝑖,𝑟𝑏𝑟,𝑗

𝑛

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

 

B. Brute Force 

Brute force technique is defined as enumerating every 

possible sequence and check for the most optimum solution in 

the enumeration. Brute force technique is usually easy to 

implement but have a bigger complexity than other possible 
solution. This technique is good for verifying the optimality of 

other proposed solution.  

 

 
Figure 1 N-Queen problem 
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C. Divide and Conquer 

Divide and Conquer technique is an approach that 

recursively break down a solution into multiple sub-problem 

until it become simple enough to be solved directly. Problem 

that can be solved with this technique must have an independent 

subproblem, or one subproblem must not depend on other 

subproblem to be solved directly. 

 

 
Figure 2 Divide and Conquer visualization (Taken from 

https://medium.com/cracking-the-data-science-interview/divide-and-
conquer-algorithms-b135681d08fc) 

 

D. Master Theorem 

In the analysis of algorithm, Master Theorem for Divide-

and-Conquer recurrences provides an asymptotic analysis 

complexity of the given recurrences. If T(n) defined as the total 

time for the algorithm with an input size n, and f(n) defined as 

the amount of time taken at the top level of recurrences, master 

theorem can provide an asymptotic analysis for T(n) with the 

following form 

T(n) = a (T (
n

𝑏
)) + 𝑐𝑛𝑑 

To get the asymptotic complexity of divide-and-conquer 

algorithm using master theorem, we can divide the algorithm 

by its T(n) 

 

• If a < bd, then the complexity is O(nd) 

• If a = bd, then the complexity is O(nd𝑙𝑜𝑔𝑛) 

• If a > bd, then the complexity is O(nlogb 𝑎) 

 

 

III. MATRIX MULTIPLICATION VERIFIER ALGORITHM 

In the following subtopic, we will discuss how to verify 

whether a matrix is the result of multiplication of 2 other given 
matrix. Formally, given 3 matrix A, B, and C, we will check 

whether the following equation is true 

AB = C 

 

To ease the calculation of our complexity, we will use the 

same dimension for each matrix, namely n-by-n. 

A. Brute Force 

Our first approach to verify the correctness of a matrix 

multiplication algorithm is by using brute force method. Brute 

force method for this algorithm is to calculate the multiplication 

of A and B and check whether it’s equals to C or not. To 

calculate the given matrix, we will use the straight-forward 

definition of matrix multiplication operation.  

For example, we define A, B, and C as 2-by-2 matrix with 
the following element 

 

A = (
𝑎11 𝑎12

𝑎21 𝑎22
) , B =  (

𝑏11 𝑏12

𝑏21 𝑏22
) , C = (

𝑐11 𝑐12

𝑐21 𝑐22
)  

 

To check whether AB = C, we will check whether all of the 

following equation are true 

c11 = 𝑎11𝑏11 + 𝑎12𝑏21 

𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22 

𝑐21 = 𝑎21𝑏11 + 𝑎22𝑏21 

𝑐22 = 𝑎21𝑏11 + 𝑎22𝑏21 

 

 

Because in the definition it will have 3-nested loop, this 

approach will have the complexity of O(n3) 

B. Strassen Algorithm 

Our second approach to verify the correctness of a matrix 

multiplication algorithm is by using Strassen Algorithm to 

calculate the result of the multiplication directly. Strassen 

Algorithm uses Divide-and-Conquer approach. The basic idea 

of Strassen Algorithm is to recursively minimize the use of 

multiplication and adding more addition operation. This 

algorithm assumes that multiplication operation uses more time 

than addition operation. 

For example, we define A, B, C as 2d-by-2d matrix, and 

Aij, 𝐵𝑖𝑗 , 𝐶𝑖𝑗 as 2d−1-by-2d−1 submatrix of A, B, and C 

respectively. We can separate matrix A, B, C as follow 

 

A = (
𝐴11 𝐴12

𝐴21 𝐴22
) , B = (

𝐵11 𝐵12

𝐵21 𝐵22
) , C = (

𝐶11 𝐶12

𝐶21 𝐶22
) 

 

The brute force method to verify whether AB = C is to 

recursively check whether all of the following equation are true 

 

C11 = 𝐴11𝐵11 + 𝐴12𝐵21  

𝐶12 = 𝐴11𝐵12 + 𝐴12𝐵22  

𝐶21 = 𝐴21𝐵11 + 𝐴22𝐵21  

𝐶22 = 𝐴21𝐵11 + 𝐴22𝐵21  

 

As we can see, we need 8 multiplication to verify whether AB 

= C and O(n2) time to add 2 matrixes. We can denote the total 

time of this brute force method as follow 

T(n) = 8𝑇 (
𝑛

2
) + 𝑂(𝑛2) 

With the master theorem, we can get the complexity of this 

method 

T(n) = O(nlog8 2) = 𝑂(𝑛3) 

 

To reduce the number of multiplications, Strassen Algorithm 

uses intermediate variable to minimize the multiplication. 

 

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc
https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc
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M0 = (𝐴11 + 𝐴22)(𝐵11 + 𝐵22) 

M1 = (𝐴21 + 𝐴22)𝐵11 

M2 = 𝐴11(𝐵12 − 𝐵22) 

M3 = 𝐴22(𝐵21 − 𝐵11) 

M4 = (𝐴11 + 𝐴12)𝐵22 

M5 = (𝐴21 − 𝐴11)(𝐵11 + 𝐵12) 

M6 = (𝐴12 − 𝐴22)(𝐵21 + 𝐵22) 

C11 = 𝑀0 + 𝑀3 − 𝑀4 + 𝑀6 

C12 = 𝑀2 + 𝑀4 

C21 = 𝑀1 + 𝑀3 

C22 = 𝑀0 − 𝑀1 + 𝑀2 + 𝑀5 

 

We can denote the total time of the Strassen Algorithm as 

follow 

T(n) = 7𝑇 (
𝑛

2
) + 𝑂(𝑛2) 

With the master theorem, we can get the complexity of this 

method 

T(n) = O(nlog7 2) = 𝑂(𝑛2.807) 

 
As we can see, Strassen algorithm have a smaller 

complexity than the brute force method. But because 

asymptotic analysis does not include constant factor such as 

overhead in recursive function, there would be some difference 

in real-life scenario. 

 

C. Freivald’s Algorithm 

Our third approach to verify the matrix multiplication 

algorithm is by using Freivald’s Algorithm. Freivald’s 

Algorithm is a probabilistic randomized algorithm used to 

verify matrix multiplication. The following procedure is the 

procedure to verify the given multiplication matrix with 

Freivald’s Algorithm 

 

1. Generate an n-by-1 random 0/1 vector 𝑟 

2. Compute �⃑⃑� = 𝐴 𝑥 (𝐵𝑟) − 𝐶𝑟 

3. Return true if �⃑⃑� = (0,0, … ,0)𝑇, return false otherwise 

 

This algorithm has O(n2) complexity. If AB = C, then the 

algorithm always returns true. But if AB ≠ C, then the 

algorithm has 
1

2
 chance to return false. To decrease the 

probability of error, we can iterate this algorithm multiple 

time. If we run the algorithm for k times, then this algorithm 

has O(kn2) complexity with the probability of error 
1

2k. 

IV. VERIFY MATRIX MULTLIPLICATION ALGORITHM 

A. Verifier Method 

To compare our matrix multiplication correctness verifier 

algorithm, we will create a testcase where there is a slight 

difference between matrix C and matrix AB. Figure 3 is our 

template test case generator. For each text file, we will create 

100 randomized case where each case has matrix A, B, C with 
size no more than 20, 50, 100, 200, 500, and 1000. For our 

testcases, we will alternate the correct case and the wrong case. 

For the wrong cases, they will have a slight difference with the 

correct multiplication. 

 

 

 
Figure 3 Test case generator 

To verify the correctness algorithm, we will use the same 

template for our algorithm checker and modify it accordingly, 
based on implementation detail of the given approach, such as 

the data structure that are needed and whether we need another 

parameter. For example, Freivald’s Algorithm needed the 

number of iterations in its parameter to increases its correctness.  

 

Figure 4 shows our algorithm verifier template. Our 

verifier algorithm will be called inside isProduct function.  
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Figure 4 Algorithm verifier template 

Our first verifier will use Freivald’s Algorithm. We will 

use k = 20 to verify the correctness of a matrix multiplication 

with high accuracy, having an error less than 
1

2k ≈ 9.5 ∗ 10−7. 

This will be enough for our testcase where there is only 100 

matrix in our testcases. The implementation of this algorithm 

can be seen in Figure 5. 

 

 

 
Figure 5 Freivald's algorithm (Taken from 

https://www.geeksforgeeks.org/freivalds-algorithm/ with 
modification) 

Our second verifier will use brute force method as its 

routine. This algorithm will directly use the definition of matrix 

multiplication to calculate the correctness of AB = C. In the 

implementation of this algorithm, we will not use any 

optimization such as optimizing cache memory. The 
implementation of this algorithm can be seen in Figure 6. 

 

 
Figure 6 Brute Force Verifier 

Our third verifier will use Strassen Algorithm as its routine. 

This algorithm will calculate matrix AB by divide and conquer 

method with some multiplication reduction to reduce the 

complexity of this algorithm. The implementation of this 

algorithm can be seen in Figure 7. 

 

 
Figure 7 Header of Strassen Algorithm (taken from https://martin-

thoma.com/strassen-algorithm-in-python-java-cpp/ with 
modification) 

For our fourth verifier, we will use C++ Linear Algebra 

libraries called Armadillo. Armadillo provides matrix 

multiplication method in the library with their own 

implementation method. The implementation of Armadillo 

matrix multiplication method can be seen in Figure 8, and our 

verifier implementation using Armadillo can be seen in Figure 

9.  

 

 

Figure 8 Main Routine of C++ Armadillo Matrix Multiplication 

(taken from https://martin-thoma.com/strassen-algorithm-in-python-
java-cpp/) 

https://www.geeksforgeeks.org/freivalds-algorithm/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
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Figure 9 Verify Using Armadillo Matrix Multiplication 

For our fifth verifier, we will use another Linear Algebra 

library called Eigen. Eigen is a lightweight Linear Algebra 

library, contrary to Armadillo. Syntax for simple matrix 

multiplication in Eigen is similar to Armadillo. Figure 10 shows 

our implementation for matrix multiplication using Eigen, and 
Figure 11 shows part of implementation of Eigen Matrix 

multiplication 

 

 
Figure 10 Verify using Eigen Matrix Multiplication 

 

 
Figure 11 Part of Implementation of Eigen Matrix Multiplication 

(taken from  
https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/

GeneralMatrixMatrix.h ) 

B. Result 

Using the previous verifier algorithm, Figure 12 shows the 

time needed to verify the correctness of matrix multiplication. 

We can see from the Figure that Freivald’s Algorithm 

outperform another algorithm in the bigger testcases. On 

smaller testcases, all algorithm has similar performance, but 

because Armadillo have some implementation overhead and 

Strassen have recurrence overhead, they’re slightly slower.  

 

Another interesting point from here is that although brute 

force method has bigger complexity than Strassen Algorithm, 
Brute Force method perform better on all testcase than 

Strassen Algorithm. This is because Strassen Algorithm that 

we choose overuse function and function recurrence in their 

implementation. This causes more function overhead, and 

results in slower time.  

 

For Armadillo result, they have a bit slower time than 

straightforward brute force method. This is because they have 

implementation overhead and are not optimized for matrix 

multiplication directly. 

 
For Eigen result, they excel in small testcase size because 

of its lightweight nature, resulting in smaller overhead. But 

because they’re not optimized for bigger cases, they have 

slower time than armadillo, but still faster than Strassen. 

V. CONCLUSION 

For verifying the correctness of Matrix Multiplication 

result, Freivald’s Algorithm outperform another algorithm that 

directly multiply the given matrix. But because of its 

probabilistic nature, we need to determine sufficient iteration 

that are needed to confidently claim the given matrix 

multiplication correctness. 

 
Another interesting point that we get is to get a better 

algorithm to multiply 2 matrixes better than the brute force 

method, we need to carefully implement the proposed 

algorithm to not have useless overhead. Because brute force 

method almost doesn’t have useless overhead and they can get 

better performance with the use of cache memory, they are 

better than badly implemented algorithm with smaller 

complexity but higher constant factor. 

 

https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/GeneralMatrixMatrix.h
https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/GeneralMatrixMatrix.h
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Algorithm N=20 N=50 N=100 N=200 N=500 N=1000 

Freivald's Algorithm (k = 20) 0.286 0.365 0.45 1.106 4.587 24.277 

Brute Force Method 0.298 0.42 0.478 1.605 11.829 131.033 

Armadillo Library without additional library 0.388 0.416 1.118 5.174 42.008 179.681 

Strassen Algorithm 0.378 0.924 3.064 21.47 178.2 4541.58 

Eigen Library 0.273 0.341 1.256 7.807 99.961 788.329 
Figure 12 Time Needed for Verifying Matrix Multiplication 
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