
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Verify the Correctness of Matrix Multiplication

Algorithm With Freivald’s Algorithm

Adyaksa Wisanggeni 13517091
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
adyaksa.wisanggeni@gmail.com

Abstract—Matrix multiplication is one of the most widely

discussed algorithm in the computer science community. Many

proposed algorithm and theorem are already proposed to decrease

its complexity. With a deep mathematical insight and various

supporting paper for every proposed algorithm, it would need a

long time to understand the paper, more so to approve or disprove

the proposed algorithm. In this paper, we will try to check whether

a multiplication algorithm is valid or not using the Freivald’s

algorithm and compare it with another verifier algorithm.

Keywords—Matrix, Matrix Multiplication, Divide and Conquer,

Freivald’s Algorithm

I. INTRODUCTION

 Matrix is one of the most widely used mathematical concept

in computer science. We can model a problem to its matrix

representation and manipulate it using mathematic tools. For

example, we can model a graph with an adjacency matrix and

find its complement easily by using the matrix. Another example

is the uses of linear algebra in data science.

 One of the most commonly matrix manipulation is to
multiply it with another matrix. Matrix multiplication algorithm

is one of the most common topics to be researched in computer

science. Many algorithms and optimization are proposed to

decrease its complexity. To check the proposed algorithm, we

need to check whether the proposed algorithm find the correct

solution in better time than current algorithm. In this paper, we

will use Freivald’s algorithm to determine the correctness of

matrix multiplication and compare it with various matrix

multiplication correctness verifier algorithm.

II. BASIC THEORY

A. Matrix

Matrix is defined as a collection of number that arranged in

rows and columns. Basic operations in matrix that will be used

in this paper are addition, scalar multiplication, transposition,

and matrix multiplication.

• Addition operation in matrix is defined as follows

(A + B)i,j = 𝐴𝑖,𝑗 + 𝐵𝑖,𝑗

Where A and B is m-by-n matrices and 1 ≤ i ≤
m, 1 ≤ j ≤ n

• Scalar multiplication c in matrix Ai,j is defined as

multiplying every entry in matrix with c, or more

formally

(cAi,j) = 𝑐. 𝐴𝑖,𝑗

• Transposition in matrix Ai,j is defined as turning it into

matrix Aj,i, or more formally

(Ai,j)
𝑇

= Aj,i

• Matrix multiplication m-by-n matrix A with n-by-p

matrix B is defined as follows

AB = ∑ ∑ ∑ 𝑎𝑖,𝑟𝑏𝑟,𝑗

𝑛

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

B. Brute Force

Brute force technique is defined as enumerating every

possible sequence and check for the most optimum solution in

the enumeration. Brute force technique is usually easy to

implement but have a bigger complexity than other possible
solution. This technique is good for verifying the optimality of

other proposed solution.

Figure 1 N-Queen problem

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

C. Divide and Conquer

Divide and Conquer technique is an approach that

recursively break down a solution into multiple sub-problem

until it become simple enough to be solved directly. Problem

that can be solved with this technique must have an independent

subproblem, or one subproblem must not depend on other

subproblem to be solved directly.

Figure 2 Divide and Conquer visualization (Taken from

https://medium.com/cracking-the-data-science-interview/divide-and-
conquer-algorithms-b135681d08fc)

D. Master Theorem

In the analysis of algorithm, Master Theorem for Divide-

and-Conquer recurrences provides an asymptotic analysis

complexity of the given recurrences. If T(n) defined as the total

time for the algorithm with an input size n, and f(n) defined as

the amount of time taken at the top level of recurrences, master

theorem can provide an asymptotic analysis for T(n) with the

following form

T(n) = a (T (
n

𝑏
)) + 𝑐𝑛𝑑

To get the asymptotic complexity of divide-and-conquer

algorithm using master theorem, we can divide the algorithm

by its T(n)

• If a < bd, then the complexity is O(nd)

• If a = bd, then the complexity is O(nd𝑙𝑜𝑔𝑛)

• If a > bd, then the complexity is O(nlogb 𝑎)

III. MATRIX MULTIPLICATION VERIFIER ALGORITHM

In the following subtopic, we will discuss how to verify

whether a matrix is the result of multiplication of 2 other given
matrix. Formally, given 3 matrix A, B, and C, we will check

whether the following equation is true

AB = C

To ease the calculation of our complexity, we will use the

same dimension for each matrix, namely n-by-n.

A. Brute Force

Our first approach to verify the correctness of a matrix

multiplication algorithm is by using brute force method. Brute

force method for this algorithm is to calculate the multiplication

of A and B and check whether it’s equals to C or not. To

calculate the given matrix, we will use the straight-forward

definition of matrix multiplication operation.

For example, we define A, B, and C as 2-by-2 matrix with
the following element

A = (
𝑎11 𝑎12

𝑎21 𝑎22
) , B = (

𝑏11 𝑏12

𝑏21 𝑏22
) , C = (

𝑐11 𝑐12

𝑐21 𝑐22
)

To check whether AB = C, we will check whether all of the

following equation are true

c11 = 𝑎11𝑏11 + 𝑎12𝑏21

𝑐12 = 𝑎11𝑏12 + 𝑎12𝑏22

𝑐21 = 𝑎21𝑏11 + 𝑎22𝑏21

𝑐22 = 𝑎21𝑏11 + 𝑎22𝑏21

Because in the definition it will have 3-nested loop, this

approach will have the complexity of O(n3)

B. Strassen Algorithm

Our second approach to verify the correctness of a matrix

multiplication algorithm is by using Strassen Algorithm to

calculate the result of the multiplication directly. Strassen

Algorithm uses Divide-and-Conquer approach. The basic idea

of Strassen Algorithm is to recursively minimize the use of

multiplication and adding more addition operation. This

algorithm assumes that multiplication operation uses more time

than addition operation.

For example, we define A, B, C as 2d-by-2d matrix, and

Aij, 𝐵𝑖𝑗 , 𝐶𝑖𝑗 as 2d−1-by-2d−1 submatrix of A, B, and C

respectively. We can separate matrix A, B, C as follow

A = (
𝐴11 𝐴12

𝐴21 𝐴22
) , B = (

𝐵11 𝐵12

𝐵21 𝐵22
) , C = (

𝐶11 𝐶12

𝐶21 𝐶22
)

The brute force method to verify whether AB = C is to

recursively check whether all of the following equation are true

C11 = 𝐴11𝐵11 + 𝐴12𝐵21

𝐶12 = 𝐴11𝐵12 + 𝐴12𝐵22

𝐶21 = 𝐴21𝐵11 + 𝐴22𝐵21

𝐶22 = 𝐴21𝐵11 + 𝐴22𝐵21

As we can see, we need 8 multiplication to verify whether AB

= C and O(n2) time to add 2 matrixes. We can denote the total

time of this brute force method as follow

T(n) = 8𝑇 (
𝑛

2
) + 𝑂(𝑛2)

With the master theorem, we can get the complexity of this

method

T(n) = O(nlog8 2) = 𝑂(𝑛3)

To reduce the number of multiplications, Strassen Algorithm

uses intermediate variable to minimize the multiplication.

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc
https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

M0 = (𝐴11 + 𝐴22)(𝐵11 + 𝐵22)

M1 = (𝐴21 + 𝐴22)𝐵11

M2 = 𝐴11(𝐵12 − 𝐵22)

M3 = 𝐴22(𝐵21 − 𝐵11)

M4 = (𝐴11 + 𝐴12)𝐵22

M5 = (𝐴21 − 𝐴11)(𝐵11 + 𝐵12)

M6 = (𝐴12 − 𝐴22)(𝐵21 + 𝐵22)

C11 = 𝑀0 + 𝑀3 − 𝑀4 + 𝑀6

C12 = 𝑀2 + 𝑀4

C21 = 𝑀1 + 𝑀3

C22 = 𝑀0 − 𝑀1 + 𝑀2 + 𝑀5

We can denote the total time of the Strassen Algorithm as

follow

T(n) = 7𝑇 (
𝑛

2
) + 𝑂(𝑛2)

With the master theorem, we can get the complexity of this

method

T(n) = O(nlog7 2) = 𝑂(𝑛2.807)

As we can see, Strassen algorithm have a smaller

complexity than the brute force method. But because

asymptotic analysis does not include constant factor such as

overhead in recursive function, there would be some difference

in real-life scenario.

C. Freivald’s Algorithm

Our third approach to verify the matrix multiplication

algorithm is by using Freivald’s Algorithm. Freivald’s

Algorithm is a probabilistic randomized algorithm used to

verify matrix multiplication. The following procedure is the

procedure to verify the given multiplication matrix with

Freivald’s Algorithm

1. Generate an n-by-1 random 0/1 vector 𝑟

2. Compute �⃑⃑� = 𝐴 𝑥 (𝐵𝑟) − 𝐶𝑟

3. Return true if �⃑⃑� = (0,0, … ,0)𝑇, return false otherwise

This algorithm has O(n2) complexity. If AB = C, then the

algorithm always returns true. But if AB ≠ C, then the

algorithm has
1

2
 chance to return false. To decrease the

probability of error, we can iterate this algorithm multiple

time. If we run the algorithm for k times, then this algorithm

has O(kn2) complexity with the probability of error
1

2k.

IV. VERIFY MATRIX MULTLIPLICATION ALGORITHM

A. Verifier Method

To compare our matrix multiplication correctness verifier

algorithm, we will create a testcase where there is a slight

difference between matrix C and matrix AB. Figure 3 is our

template test case generator. For each text file, we will create

100 randomized case where each case has matrix A, B, C with
size no more than 20, 50, 100, 200, 500, and 1000. For our

testcases, we will alternate the correct case and the wrong case.

For the wrong cases, they will have a slight difference with the

correct multiplication.

Figure 3 Test case generator

To verify the correctness algorithm, we will use the same

template for our algorithm checker and modify it accordingly,
based on implementation detail of the given approach, such as

the data structure that are needed and whether we need another

parameter. For example, Freivald’s Algorithm needed the

number of iterations in its parameter to increases its correctness.

Figure 4 shows our algorithm verifier template. Our

verifier algorithm will be called inside isProduct function.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Figure 4 Algorithm verifier template

Our first verifier will use Freivald’s Algorithm. We will

use k = 20 to verify the correctness of a matrix multiplication

with high accuracy, having an error less than
1

2k ≈ 9.5 ∗ 10−7.

This will be enough for our testcase where there is only 100

matrix in our testcases. The implementation of this algorithm

can be seen in Figure 5.

Figure 5 Freivald's algorithm (Taken from

https://www.geeksforgeeks.org/freivalds-algorithm/ with
modification)

Our second verifier will use brute force method as its

routine. This algorithm will directly use the definition of matrix

multiplication to calculate the correctness of AB = C. In the

implementation of this algorithm, we will not use any

optimization such as optimizing cache memory. The
implementation of this algorithm can be seen in Figure 6.

Figure 6 Brute Force Verifier

Our third verifier will use Strassen Algorithm as its routine.

This algorithm will calculate matrix AB by divide and conquer

method with some multiplication reduction to reduce the

complexity of this algorithm. The implementation of this

algorithm can be seen in Figure 7.

Figure 7 Header of Strassen Algorithm (taken from https://martin-

thoma.com/strassen-algorithm-in-python-java-cpp/ with
modification)

For our fourth verifier, we will use C++ Linear Algebra

libraries called Armadillo. Armadillo provides matrix

multiplication method in the library with their own

implementation method. The implementation of Armadillo

matrix multiplication method can be seen in Figure 8, and our

verifier implementation using Armadillo can be seen in Figure

9.

Figure 8 Main Routine of C++ Armadillo Matrix Multiplication

(taken from https://martin-thoma.com/strassen-algorithm-in-python-
java-cpp/)

https://www.geeksforgeeks.org/freivalds-algorithm/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/
https://martin-thoma.com/strassen-algorithm-in-python-java-cpp/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Figure 9 Verify Using Armadillo Matrix Multiplication

For our fifth verifier, we will use another Linear Algebra

library called Eigen. Eigen is a lightweight Linear Algebra

library, contrary to Armadillo. Syntax for simple matrix

multiplication in Eigen is similar to Armadillo. Figure 10 shows

our implementation for matrix multiplication using Eigen, and
Figure 11 shows part of implementation of Eigen Matrix

multiplication

Figure 10 Verify using Eigen Matrix Multiplication

Figure 11 Part of Implementation of Eigen Matrix Multiplication

(taken from
https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/

GeneralMatrixMatrix.h)

B. Result

Using the previous verifier algorithm, Figure 12 shows the

time needed to verify the correctness of matrix multiplication.

We can see from the Figure that Freivald’s Algorithm

outperform another algorithm in the bigger testcases. On

smaller testcases, all algorithm has similar performance, but

because Armadillo have some implementation overhead and

Strassen have recurrence overhead, they’re slightly slower.

Another interesting point from here is that although brute

force method has bigger complexity than Strassen Algorithm,
Brute Force method perform better on all testcase than

Strassen Algorithm. This is because Strassen Algorithm that

we choose overuse function and function recurrence in their

implementation. This causes more function overhead, and

results in slower time.

For Armadillo result, they have a bit slower time than

straightforward brute force method. This is because they have

implementation overhead and are not optimized for matrix

multiplication directly.

For Eigen result, they excel in small testcase size because

of its lightweight nature, resulting in smaller overhead. But

because they’re not optimized for bigger cases, they have

slower time than armadillo, but still faster than Strassen.

V. CONCLUSION

For verifying the correctness of Matrix Multiplication

result, Freivald’s Algorithm outperform another algorithm that

directly multiply the given matrix. But because of its

probabilistic nature, we need to determine sufficient iteration

that are needed to confidently claim the given matrix

multiplication correctness.

Another interesting point that we get is to get a better

algorithm to multiply 2 matrixes better than the brute force

method, we need to carefully implement the proposed

algorithm to not have useless overhead. Because brute force

method almost doesn’t have useless overhead and they can get

better performance with the use of cache memory, they are

better than badly implemented algorithm with smaller

complexity but higher constant factor.

https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/GeneralMatrixMatrix.h
https://github.com/libigl/eigen/blob/master/Eigen/src/Core/products/GeneralMatrixMatrix.h

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

VI. ACKNOWLEDGMENT

I would like to express my deep gratitude to Mrs Nur Ulfa

Maulidevi, Mrs. Masayu Leylia Khodra, and Mr. Rinaldi Munir

as our lecturer in Algorithm Strategy Course for the knowledge

that they shared upon us. I also would like to thank my family

and friends for help and support while this paper is created. I

also would like to thank all programming language creator that

open-source their language implementation, as their

contribution to make their source-code open helps me test my

algorithm implementation.

REFERENCES

[1] Huang, J., Smith, T., Henry, G. and Geijn, R. (2019). Strassen’s

Algorithm Reloaded. [online] Jianyuhuang.com. Available at:

http://jianyuhuang.com/papers/sc16.pdf [Accessed 25 Apr. 2019].

[2] Bentley, Jon Louis; Haken, Dorothea; Saxe, James B. (September

1980), “A general method for solving divide-and-conquer
recurrences", ACM SIGACT News, 12 (3): 36–

44, doi:10.1145/1008861.1008865K.

[3] Munir, R. (2019). Divide and Conquer. [online] Informatika.stei.itb.ac.id.
Available at: http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-

2018/Algoritma-Divide-and-Conquer-(2018).pdf [Accessed 25 Apr.

2019].

VII. PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 25 April 2019

TTD

Adyaksa Wisanggeni 13517091

Algorithm N=20 N=50 N=100 N=200 N=500 N=1000

Freivald's Algorithm (k = 20) 0.286 0.365 0.45 1.106 4.587 24.277

Brute Force Method 0.298 0.42 0.478 1.605 11.829 131.033

Armadillo Library without additional library 0.388 0.416 1.118 5.174 42.008 179.681

Strassen Algorithm 0.378 0.924 3.064 21.47 178.2 4541.58

Eigen Library 0.273 0.341 1.256 7.807 99.961 788.329
Figure 12 Time Needed for Verifying Matrix Multiplication

https://en.wikipedia.org/wiki/Jon_Bentley_(computer_scientist)
https://en.wikipedia.org/wiki/Dorothea_Blostein
https://en.wikipedia.org/wiki/James_B._Saxe
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA064294
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA064294
https://en.wikipedia.org/wiki/ACM_SIGACT_News
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F1008861.1008865

