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Abstract—Algorithms have experienced such improvements 
since its existence centuries ago; be it mathematical techniques 
like the Euclidean algorithm in computing the greatest common 
divisor of two numbers, or even algorithms in graph theories like 
Dijkstra’s shortest path algorithm. This paper will mainly cover 
one among the many outstanding algorithms we have now; Ford-
Fulkerson method and its implementation, the Edmonds-Karp 
algorithm. This algorithm basically computes the maximum flow 
that can be passed through a directed graph-like system, aiming 
for efficiency and optimal utilization of the edges of said graph. 
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I.  INTRODUCTION 
Ford-Fulkerson method or Ford-Fulkerson algorithm is a 

greedy algorithm in computing the maximum flow in a flow 
network. It is generally called a ‘method’ instead of an 
‘algorithm’ because the full implementation of finding the 
augmenting path in the graph is not fully specified in their 
published papers. Maximum flow problem can be considered 
as a special case of more complex network problems, all of 
them involving directed graphs with the flow starting from a 
starting node ‘s’ and ending in a terminal node ‘t’. 

 
Figure 1. Directed graphs in maximum flow problem 

(https://en.wikipedia.org/wiki/File:Max_flow.svg, accessed on 
April 24, 2019 22:17 GMT+7) 

 The maximum flow problem was first formulated in 1954 
by T.E. Harris and F.S. Ross as a simplified model of Soviet 
railway traffic flow when they were doing their research for a 
secret documentation for the US Air Force. In attempts of 
solving the problem, Lester Randolph Ford Jr. and Delbert Ray 

Fulkerson created the first known algorithm for the maximum 
flow problem in 1955; the name of the algorithm taking their 
very surnames: Ford-Fulkerson algorithm. 

 
Figure 2. Railway system of western Russia fetched from 

Ford-Fulkerson’s secret documentation 
(https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf, accessed on 

April 24, 2019 23:22 GMT+7) 

  Ford-Fulkerson algorithm quickly gained attention, mostly 
because an integral part of solving the problem was not fully 
specified, leaving a space for others to improvise and develop. 
In 1970, Dinic’s algorithm (or Dinitz’s algorithm), a 
polynomial algorithm for computing the maximum flow in a 
network was conceived by an Israeli computer scientist Yefim 
A. Dinitz. Another move was made then in 1972, when Jack 
Edmonds and Richard Karp independently published their 

https://en.wikipedia.org/wiki/File:Max_flow.svg
https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf
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papers, showing another improvement on the maximum flow 
problem with optimal utilization of Breadth First Search 
(BFS); thus the name, Edmonds-Karp algorithm. 

 Since then, many solutions to the problem have come up to 
public, for instance: the MPM (Malhotra, Pramodh-Kumar, 
Maheshwari) algorithm, KRT (King, Rao, Tarjan) algorithm, 
and James B. Orlin’s algorithm; each with optimization in 
different aspects of said problem. In deciding which is better 
than which in terms of space and time complexity, inspecting 
individual cases and the network system is essential. Some 
algorithms are better with less nodes more edges, and vice 
versa. 

II. BASIC THEORIES 

A. Directed Graph 
A graph G = (V, E) consists of a non-empty set of vertices 

V and a set of edges E. Each edge has one or a pair of vertices 
connected with it, called endpoints. 

 
Figure 3. Graphs 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on April 25, 2019 16:35 

GMT+7) 
 

For instance, graph G1 in Figure 3 can be considered as G 
= (V, E) where V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3}, 
{2, 4}, {3, 4}} and G2 can also be considered as G = (V, E) 
with the same V as G1. However, G2 differs from G1 in terms 
of its sets of edges E, where E in G2 has 2 sets of parallel or 
multiple edges, one being e3 & e4, another being e6 & e7. 
Multiple edges are two different edges connecting the same 
two vertices; in this case, edges e3 and e4 both connect vertices 
1 and 3, while edges e6 and e7 both connect vertices 3 and 4. 
Edge e8 in G3 is called a loop, as it starts from a vertex (vertex 
3) and goes back to the same vertex (back to vertex 3). We can 
also say that a loop edge connects a vertex to itself. 

A graph may have ‘direction’ in its edges, meaning it has 
sets of edges made of ordered vertex pair. Such graph is called 
a directed graph. If it has sets of edges made of unordered 
vertex pair on the other hand, it is an undirected graph. Graphs 
G1, G2, G3 in Figure 3 are all undirected graphs as they do 
not have direction associated with their edges. 

 

 
Figure 4. Examples of directed graphs 

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015
-2016/Graf%20(2015).pdf, accessed on April 25, 2019 16:42 

GMT+7) 
 

Graph G4 and G5 from Figure 4 has sets of edges made of 
ordered pair of vertex, which can be denoted as G = (V, E) 
where E = (sets of {a, b}), indicating a ‘direction’ starting 
from node a to node b, and further implying that {a, b} ≠ {b, 
a}. 

B. Greedy Algorithm 
Greedy algorithm is an algorithm paradigm that follows the 

problem-solving heuristic of making locally optimal choice at 
each iteration, with the intent of eventually finding a global 
optimum solution of the problem. In most problems, a greedy 
algorithm does not usually produce an optimal solution. 
Nevertheless, a greedy approach may return locally optimal 
solution approximately close to a global optimum in a much 
faster time than other algorithms which can ensure globally 
optimal solution, like brute force (exhaustive search) or divide 
and conquer. 

Greedy algorithm chooses a local optimal solution from a 
set of choices, fulfilling the objective function of the problem. 
Objective function is an aspect or value aimed to be 
maximized. In each iteration, besides from choosing the 
optimal values and fulfilling the objective function, greedy 
algorithm also decides if a chosen temporary solution does not 
violate the feasibility function; for instance, in Integer 
Knapsack problem, the chosen solution must not exceed the 
maximum weight for the bag. In some cases, like Kruskal’s 
algorithm and Prim’s algorithm for constructing minimum 
spanning trees of given connected graphs, greedy algorithm 
effectively always returns optimal solution. However, this 
effectiveness does not apply to all problems. 

http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
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Figure 5. Example of false utilization of greedy 

algorithm 
(https://upload.wikimedia.org/wikipedia/commons/8/8c/Gre
edy-search-path-example.gif, accessed on April 25, 2019 

23:56 GMT+7) 
 

 In Figure 4 for instance, with the objective function being 
to reach the largest sum of numbers from each node by the time 
it reaches the bottom node. At each step, greedy algorithm will 
choose what appears to be the optimal solution at the time 
being, so it will choose node with a value of 12 (right) instead 
of 3 (left) at the first iteration. Doing so will not reach the 
global optimum in this problem, which is node with a value of 
99 in the left section of the graph. One advantage of using the 
greedy approach however, despite the result produced being 
wrong, is the time required to return a solution. Rather than 
enumerating each potential solution and calculating its total 
sum of the numbers afterwards (which will take a much longer 
time as the number of nodes and edges increases), using local 
optimum is quite acceptable and reasonable, selecting members 
of solution as it traverses through the graph.  

C. Maximum Flow Problem 
Maximum flow problem involves computing a feasible 

flow through a single-source, single-sink flow network that is 
maximum; with the source and sink each denoted as vertex ‘s’ 
and vertex ‘t’, respectively. Maximum implies on the most 
amount of flow to pass through the system; being fed from 
node ‘s’, passing through the edges along the network system, 
and eventually ‘coming’ out from terminal node ‘t’. Each edge 
connecting the nodes in the graph has two values attached; one 
is the total flow going through said node, and another one is a 
certain amount of threshold known as the capacity of the edge. 
Several rules can be directly inferred from the name alone: the 
amount of flow going through an edge must not exceed its 
capacity, and the total flow being fed from node ‘s’ to the 
system must all reach node ‘t’ without any reduction in the 
amount. 

In other version, some algorithms were built for solving the 
maximum flow problem involving undirected graphs. One of 
the well-known algorithms is from Sherman and Kelner. The 
solution to maximum flow problem is equal to the minimum 
capacity of an s-t cut in the network as stated in max-flow min-
cut theorem. Minimum cut is the minimal set of edges required 
to keep the system working, as well as pursuing for a 
maximum amount of flow passing through the network. 

A formal definition of the maximum flow problem is as 
follows: 

Definition 16.1.1 A flow network is a directed graph G = (V, 
E) with a source s ∈ V , a sink t ∈ V , and capacities along each 
edge (described by a function c : E → R where c(e) is the 
capacity of edge e). [Prochnow 2009] 

Definition 16.1.2 The amount of flow between two vertices is 
described by a function f : V × V → R. The flow function f has 
the following properties:  

• Capacity: f(v,w) ≤ c(v,w) ∀v,w ∈ V 

• Antisymmetry: f(v,w) = −f(w,v) ∀v,w ∈ V  

• Conservation: P w∈V f(v,w) = 0 ∀v ∈ V − {s,t} 
[Prochnow 2009] 

Definition 16.1.3 The total flow |f| of a flow network is the 
amount of flow going into the sink. Formally, |f| = X v∈V 
f(v,t). We’re interested in finding the maximum flow, the 
largest possible |f| for a given graph G. [Prochnow 2009] 

Definition 16.1.4 The residual across two vertices v,w ∈ V is 
described by function r : V × V → R such that r(v,w) = c(v,w) 
− f(v,w). Thus, the residual r(v,w) represents the amount of 
potential flow we can still push from v to w. [Prochnow 2009] 

Definition 16.1.5 The set of residual edges ER consists of all 
vertex pairs with positive residuals. Formally, ER = {(v,w) ∈ V 
× V | r(v,w) > 0}. [Prochnow 2009] 

III. APPROACHES ON THE MAXIMUM FLOW PROBLEM: 
METHODS AND ALGORITHMS 

A. Ford-Fulkerson Method: Flow Augmenting Path 
Algorithm 
The formal algorithm of Ford-Fulkerson method in 

computing the maximum flow in a network diagram is as 
follows: 

1. Identify the source node and the terminal node. A 
temporary solution may be set to zero, indicating the 
flow amount of each edge is 0. 

2. Find a flow augmenting path P = (n1, n2, …, np) 
where n is the nodes in the network along the path. 

3. Decide the maximum flow increase in the path 
specified, that being the capacity of the edge with 
least capacity along the path. Say we traverse through 
5 nodes, we will then have 4 edges, each with 
capacity of 2, 4, 6, and 8. The maximum flow increase 
in this path is then 2. 

4. Change the flow in each edge, with the amount being 
the minimum capacity of the edges found in step 3. 

5. If a flow decrease needs to happen, mark the flow 
with a negative number on the edge, indicating that an 
amount of such flow must be passed through the said 
edge in order for the solution to be valid. Adjustment 
happens accordingly. 

https://upload.wikimedia.org/wikipedia/commons/8/8c/Greedy-search-path-example.gif
https://upload.wikimedia.org/wikipedia/commons/8/8c/Greedy-search-path-example.gif
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6. Repeat from step 2 until no other augmenting path can 
be found, and the algorithm terminates. 

 The actual method in finding the augmenting paths along 
the network in step 2 is not specified by Ford and Fulkerson in 
their papers. For small graphs with no such amount of nodes 
and edges, only manual observations are required for 
discovering the augmenting paths. But for larger networks and 
for computer implementation, a fully defined procedure is 
required. Ford and Fulkerson, in their documentation, they 
were using a ‘labelling algorithm’, where it labels all nodes to 
which a flow augmenting path from source node ‘s’ can be 
found. When the terminal node ‘t’ is labeled, the required 
augmenting path to ‘t’ has been discovered. The algorithm 
begins with all nodes unlabeled except for the source node ‘s’. 
We add an additional label on each node after all avenues for 
finding paths from the node have been explored (we “check” 
the node). 

 When this ‘labelling algorithm’ terminates and node ‘t’ is 
labeled, then there is an augmenting path from node ‘s’ to ‘t’, 
and vice versa. This algorithm is then repeated until no 
labelling can anymore be made to the nodes. This however, 
does not guarantee all augmenting paths to be found all the 
time. Following is an example of the utilization of Ford-
Fulkerson method. 

 
Figure 6. Network flow example, initial condition 

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:10 GMT+7) 

 

 In Figure 6, a network flow diagram is given in a 
representation of directed graph, with the two numbers in each 
edge representing the flow and the capacity of the edge, 
respectively. The source node ‘s’ is node A and the terminal 
sink ‘t’ is node F. For an initial flow, we feed the system 0 
flows, assigning flow number 0 on every edge in the network 
flow. As a mean of adjusting the solution, the flow inputted 
from the source node may be increased in an edge when the 
current flow amount is less than the capacity, and may be 
decreased if the flow amount violates its capacity. 

 For the initial iteration in the network flow in Figure 6, 
there are many augmenting paths we can choose from, as the 
current flow amount in all edges in the graph is still zero. For 
instance, we choose path P1 = (A, B, E, F), implying the 
‘route’ travelled passed through nodes A, B, E, and finally 
node F. As the capacity of the edges along the said path we 
chose from has the lowest capacity of 5 (in fact, all of them 
have the same capacity value), the flow may be increased by 5. 

 
Figure 7. Network flow example, first iteration 

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:32 GMT+7) 

 

 So far, the solution for maximum flow problem in this case 
is 5. By observation, there is still another obvious augmenting 
path, P2 = (A, C, D, F). With the utilization of the greedy 
algorithm, we may find the minimal capacity of the edges 
along the path P2, which is 5. The flow may then be increased 
again by 5, updating the solution from 5 to 5+5 = 10. 

 
Figure 8. Network flow example, second iteration 

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:39 GMT+7) 

 

 Looking at edge 2 and edge 6, along with edge 1 and edge 
3, we discover that there is still one final augmenting path in 
the network. Say we increase the flow from node A to node C 
by 5 and deliver the flow to edge 6 afterwards. The flow of 
amount 5 will then be stuck at node E, since the flow is already 
equal with the capacity at edge 8 (5 and 5 respectively) and 
there is no other edge coming out from node E. Looking at 
edge 3 and edge 4, we can decrease the flow in edge 4 by 5, 
and adding the decreased value to edge 3, then edge 7 
afterwards. The final path updating the network would then be 
P3 = (A, C, E, B, D, F). A thing to note, when a flow passes 
through the opposite direction of the directed edge, the flow 
amount decreases. 

 
Figure 9. Network flow example, final iteration 

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.

https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
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pdf, accessed on April 26, 2019 04:02 GMT+7) 
 

 Looking at the network in Figure 9, it can be deduced that 
there is no more augmenting path in the network, thus giving 
us the globally optimal solution of the problem which is 15. To 
ensure our answer does not violate the constraints and 
capacities of the edges, we check for the terms of a valid 
solution: 

• The flow being inputted from source node A enters 
terminal node F without any reduction in amount 

• The flow amount in each edge does not go beyond its 
capacity 

• There is no negative amount in the flow amount, 
indicating that we have made a mistake in mapping 
the flow and overdone a flow decrease in the network 

B. Edmonds-Karp Algorithm 
 Since the ‘labelling algorithm’ used in Ford-Fulkerson 
method cannot ensure a solution, a Breadth First Search (BFS) 
implementation on finding the flow augmenting paths in Ford-
Fulkerson method is usually used. This very algorithm is called 
Edmonds-Karp algorithm. Jack Edmonds and Richard Karp 
independently published an algorithm in O(VE2) in 1972 in one 
of their papers Theoretical Improvements in Algorithmic 
Efficiency for Network Flow Problems, two years after Yefim 
Dinitz in 1970, where V is the number of nodes/vertices, and E 
is the number of edges in the network. 

 Edmonds-Karp algorithm is identical to the Ford-Fulkerson 
method, except that the process of looking for the flow 
augmenting paths in the network is specifically defined—
implementing Breadth First Search in graph processing. At 
each iteration, instead of ‘labelling’ the nodes as it goes, this 
algorithm applies weight value to the edges. Therefore, in each 
iteration, instead of checking for the labels in the nodes of the 
network, we choose the shortest path available which has not 
been traversed, rather than the path with maximum capacity. 
By shortest path it means a path with the least amount of edges 
possible. Although this sounds strange, it is claimed that the 
algorithm makes at most VE iterations, enabling us to run the 
whole algorithm including the path finding (the BFS) in 
O(VE2). The proof of this theorem is as follows: 

“Proof: Let d be the distance from s to t in the current residual 
graph. We’ll prove the result by showing that (a) d never 
decreases, and (b) every m iterations, d has to increase by at 
least 1 (which can happen at most n times).  

Let’s lay out G in levels according to a BFS from s. That is, 
nodes at level i are distance i away from s, and t is at level d. 
Now, keeping this layout fixed, let us observe the sequence of 
paths found and residual graphs produced. Notice that so long 
as the paths found use only forward edges in this layout, each 
iteration will cause at least one forward edge to be saturated 
and removed from the residual graph, and it will add only 
backward edges. This means first of all that d does not 
decrease, and secondly that so long as d has not changed (so 
the paths do use only forward edges), at least one forward edge 
in this layout gets removed. We can remove forward edges at 

most m times, so within m iterations either t becomes 
disconnected (and d = ∞) or else we must have used a non-
forward edge, implying that d has gone up by 1. We can then 
re-layout the current residual graph and apply the same 
argument again, showing that the distance between s and t 
never decreases, and there can be a gap of size at most m 
between successive increases. Since the distance between s and 
t can increase at most n times, this implies that in total we have 
at most nm iterations.” [Blum 2015, Carnegie Mellon 
University] 

 Following piece of code is a C++ implementation of 
Edmonds-Karp algorithm. The data structure used are two 2D-
vectors, ‘capacity’ for storing the capacity of every pair of 
nodes and ‘mat’ as a representation of the graph in adjacency 
matrix. The function ‘bfs()’ will find the shortest path available 
from source node ‘s’ to terminal node ‘t’, and will return 0 if 
no more path is available. Function ‘maxFlow()’ computes the 
maximum flow in the given graph, calling ‘bfs()’ (finding 
shortest path possible) in each iteration and returns the value 
when the program terminates. 

Code 1. 

vector<vector<int>> capacity; // storing the 
capacity of each edge 
vector<vector<int>> mat; // graph representation 
in adjacency matrix 
 
// utilizing Breadth First Search (BFS) algorithm 
int bfs(int s, int t, vector<int>& prev) { 
   fill(prev.begin(), prev.end(), -1); // 
initalize previous nodes with -1 
   prev[s] = -2; 
   queue<pair<int, int>> q; 
   q.push({s, INF}); 
  
   // while queue is not empty 
   while (!q.empty()) { 
       int cur = q.front().first; 
       int flow = q.front().second; 
       q.pop(); 
 
       for (int next : mat[cur]) { 
           if (prev[next] == -
1 && capacity[cur][next]) { 
               prev[next] = cur; 
               int new_flow = min(flow, 
capacity[cur][next]); 
               if (next == t) 
                   return new_flow; 
               q.push({next, new_flow}); 
           } 
       } 
   } 
  
   return 0; 
} 
  
// computing maximum flow in the graph 
int maxflow(int s, int t) { 
    int flow = 0; 
    vector<int> prev(n); 

https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
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    int new_flow; 
  
    // doing BFS in each iteration, finding the 
shortest path available from 's' to 't' 
    while (new_flow = bfs(s, t, prev)) { 
        flow += new_flow; 
        int cur = t; 
        while (cur != s) { 
            int prev = prev[cur]; 
            capacity[prev][cur] -= new_flow; 
            capacity[cur][prev] += new_flow; 
            cur = prev; 
        } 
    } 
  
    return flow; 
} 
 

C. Implementation and Code Testing in C++ 
Suppose we have a graph represented in an adjacency matrix, 
using a 2D vector in C++ as the data structure. Besides the 
graph, we also have matrix of capacity of the graph’s edges, 
represented too in a 2D-vector. graph[i][j] = 0 indicates that 
there is no edge from i to j, while graph[i][j] ≠ 0 indicates there 
exists an edge connecting node i and node j with capacity of 
capacity[i][j]. 

Code 2. 

vector<vector<int>> capacity={{0, 16, 13, 0, 0, 0}, 
                       {0, 0, 10, 12, 0, 0}, 
                       {0, 4, 0, 0, 14, 0}, 
                       {0, 0, 9, 0, 0, 20}, 
                       {0, 0, 0, 7, 0, 4}, 
                       {0, 0, 0, 0, 0, 0} 
                      }; 

 
vector<vector<int>> graph = {{0, 1, 1, 0, 0, 0}, 

                       {0, 0, 1, 1, 0, 0}, 
                       {0, 1, 0, 0, 1, 0}, 
                       {0, 0, 1, 0, 0, 1}, 

                       {0, 0, 0, 1, 0, 1}, 
                       {0, 0, 0, 0, 0, 0} 
                      }; 

 

 The source node ‘s’ is node 0 as column 0 in the 2D-vector 
consists of all zeros, while the terminal node ‘t’ is node 5 as 
row 5 in the 2D-vector consists of all zeros; i.e. no edges are 
‘going into’ node 1 and no edges are ‘coming from’ node 5, 
thus the source node and terminal node, respectively. 

Code 3.  

#include <iostream> 
using namespace std; 
  
int main(){ 
vector<vector<int>> capacity={{0, 16, 13, 0, 0, 0}, 

                       {0, 0, 10, 12, 0, 0}, 
                       {0, 4, 0, 0, 14, 0}, 
                       {0, 0, 9, 0, 0, 20}, 

                       {0, 0, 0, 7, 0, 4}, 
                       {0, 0, 0, 0, 0, 0} 
                      }; 

 
vector<vector<int>> graph = {{0, 1, 1, 0, 0, 0}, 

                       {0, 0, 1, 1, 0, 0}, 
                       {0, 1, 0, 0, 1, 0}, 
                       {0, 0, 1, 0, 0, 1}, 
                       {0, 0, 0, 1, 0, 1}, 
                       {0, 0, 0, 0, 0, 0} 

                     }; 
 
    cout << "Maximum flow of the graph: 
" << maxflow(0,5) << endl; // as the source node 
's' is node 0, and terminal node 't' is node 5 
 
    return 0; 
} 
 

 Passing the source node ‘s’ and terminal node ‘t’ of the 
graph in Code 2 to function ‘maxflow()’ in Code 1 in our main 
program in Code 3 will print to stdout: 

Maximum flow of the graph: 23 

 

IV. CONCLUSION 
 It began from an unclear ‘algorithm’ published in 1955, 
which is basically a method in solving the problem. Next few 
years, a defined implementation for said method was 
independently published. Not so long from that, another 
improvement was found and applied. Since its first formulation 
until this time, the solution of the maximum flow problem 
keeps on getting more improvements from the community of 
computer science, enhancing its algorithm aiming for better 
efficiency and faster execution time.  

 The solution of maximum flow problem is not only 
applicable to the said problem, but also to other similar 
problems. In fact, it applies to real-life problems, too. 

A. Max-flow min-cut theorem 
 The max-flow min-cut theorem has a similar objective with 
maximum flow problem, which is to maximize the amount of 
flow that can pass through a network without violating any 
constraints. In addition to that, we are to minimize the number 
of edges that can sustain the system and remove redundant 
edges from the network. 

B. Hall’s Theorem and Menger’s Theorem 
 Both of those theorems discuss about graph theory; Hall’s 
theorem (early 1900’s) specifically discussing bipartite graphs, 
while Menger’s theorem (1972) discussed about the 
relationship of the maximum number of edge-disjoint paths 
from ‘s’ to ‘t’ and minimum number of edges. 
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C. Maximizing Traffic and Transportation 
 In terms of transportation, the solution of maximum flow 
problem can help us decide the maximum number of vehicles 
allowed on a certain sector in the streets as not to cause 
congestion or other traffic problems. 

D. Maximizing Data and Electicity Transfer 
 Data are sent online in packets, though layers of networks. 
With the solution of maximum flow problem, we are able to 
send appropriate amount of packets of data through a network 
as not to cause delay between sessions. The same concept goes 
for electricity in a wired-system with cables and electrical 
components. 
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