
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Maximum Flow Problem: Ford-Fulkerson Method
and Its Implementation

Kevin Angelo 13517086

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13517086@std.stei.itb.ac.id

Abstract—Algorithms have experienced such improvements
since its existence centuries ago; be it mathematical techniques
like the Euclidean algorithm in computing the greatest common
divisor of two numbers, or even algorithms in graph theories like
Dijkstra’s shortest path algorithm. This paper will mainly cover
one among the many outstanding algorithms we have now; Ford-
Fulkerson method and its implementation, the Edmonds-Karp
algorithm. This algorithm basically computes the maximum flow
that can be passed through a directed graph-like system, aiming
for efficiency and optimal utilization of the edges of said graph.

Keywords—algorithms, maximum flow problem, Ford-
Fulkerson, Edmonds-Karp, graph theory, greedy, bfs

I. INTRODUCTION
Ford-Fulkerson method or Ford-Fulkerson algorithm is a

greedy algorithm in computing the maximum flow in a flow
network. It is generally called a ‘method’ instead of an
‘algorithm’ because the full implementation of finding the
augmenting path in the graph is not fully specified in their
published papers. Maximum flow problem can be considered
as a special case of more complex network problems, all of
them involving directed graphs with the flow starting from a
starting node ‘s’ and ending in a terminal node ‘t’.

Figure 1. Directed graphs in maximum flow problem

(https://en.wikipedia.org/wiki/File:Max_flow.svg, accessed on
April 24, 2019 22:17 GMT+7)

 The maximum flow problem was first formulated in 1954
by T.E. Harris and F.S. Ross as a simplified model of Soviet
railway traffic flow when they were doing their research for a
secret documentation for the US Air Force. In attempts of
solving the problem, Lester Randolph Ford Jr. and Delbert Ray

Fulkerson created the first known algorithm for the maximum
flow problem in 1955; the name of the algorithm taking their
very surnames: Ford-Fulkerson algorithm.

Figure 2. Railway system of western Russia fetched from

Ford-Fulkerson’s secret documentation
(https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf, accessed on

April 24, 2019 23:22 GMT+7)

 Ford-Fulkerson algorithm quickly gained attention, mostly
because an integral part of solving the problem was not fully
specified, leaving a space for others to improvise and develop.
In 1970, Dinic’s algorithm (or Dinitz’s algorithm), a
polynomial algorithm for computing the maximum flow in a
network was conceived by an Israeli computer scientist Yefim
A. Dinitz. Another move was made then in 1972, when Jack
Edmonds and Richard Karp independently published their

https://en.wikipedia.org/wiki/File:Max_flow.svg
https://apps.dtic.mil/dtic/tr/fulltext/u2/093458.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

papers, showing another improvement on the maximum flow
problem with optimal utilization of Breadth First Search
(BFS); thus the name, Edmonds-Karp algorithm.

 Since then, many solutions to the problem have come up to
public, for instance: the MPM (Malhotra, Pramodh-Kumar,
Maheshwari) algorithm, KRT (King, Rao, Tarjan) algorithm,
and James B. Orlin’s algorithm; each with optimization in
different aspects of said problem. In deciding which is better
than which in terms of space and time complexity, inspecting
individual cases and the network system is essential. Some
algorithms are better with less nodes more edges, and vice
versa.

II. BASIC THEORIES

A. Directed Graph
A graph G = (V, E) consists of a non-empty set of vertices

V and a set of edges E. Each edge has one or a pair of vertices
connected with it, called endpoints.

Figure 3. Graphs

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf, accessed on April 25, 2019 16:35

GMT+7)

For instance, graph G1 in Figure 3 can be considered as G
= (V, E) where V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3},
{2, 4}, {3, 4}} and G2 can also be considered as G = (V, E)
with the same V as G1. However, G2 differs from G1 in terms
of its sets of edges E, where E in G2 has 2 sets of parallel or
multiple edges, one being e3 & e4, another being e6 & e7.
Multiple edges are two different edges connecting the same
two vertices; in this case, edges e3 and e4 both connect vertices
1 and 3, while edges e6 and e7 both connect vertices 3 and 4.
Edge e8 in G3 is called a loop, as it starts from a vertex (vertex
3) and goes back to the same vertex (back to vertex 3). We can
also say that a loop edge connects a vertex to itself.

A graph may have ‘direction’ in its edges, meaning it has
sets of edges made of ordered vertex pair. Such graph is called
a directed graph. If it has sets of edges made of unordered
vertex pair on the other hand, it is an undirected graph. Graphs
G1, G2, G3 in Figure 3 are all undirected graphs as they do
not have direction associated with their edges.

Figure 4. Examples of directed graphs

(http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015
-2016/Graf%20(2015).pdf, accessed on April 25, 2019 16:42

GMT+7)

Graph G4 and G5 from Figure 4 has sets of edges made of
ordered pair of vertex, which can be denoted as G = (V, E)
where E = (sets of {a, b}), indicating a ‘direction’ starting
from node a to node b, and further implying that {a, b} ≠ {b,
a}.

B. Greedy Algorithm
Greedy algorithm is an algorithm paradigm that follows the

problem-solving heuristic of making locally optimal choice at
each iteration, with the intent of eventually finding a global
optimum solution of the problem. In most problems, a greedy
algorithm does not usually produce an optimal solution.
Nevertheless, a greedy approach may return locally optimal
solution approximately close to a global optimum in a much
faster time than other algorithms which can ensure globally
optimal solution, like brute force (exhaustive search) or divide
and conquer.

Greedy algorithm chooses a local optimal solution from a
set of choices, fulfilling the objective function of the problem.
Objective function is an aspect or value aimed to be
maximized. In each iteration, besides from choosing the
optimal values and fulfilling the objective function, greedy
algorithm also decides if a chosen temporary solution does not
violate the feasibility function; for instance, in Integer
Knapsack problem, the chosen solution must not exceed the
maximum weight for the bag. In some cases, like Kruskal’s
algorithm and Prim’s algorithm for constructing minimum
spanning trees of given connected graphs, greedy algorithm
effectively always returns optimal solution. However, this
effectiveness does not apply to all problems.

http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Figure 5. Example of false utilization of greedy

algorithm
(https://upload.wikimedia.org/wikipedia/commons/8/8c/Gre
edy-search-path-example.gif, accessed on April 25, 2019

23:56 GMT+7)

 In Figure 4 for instance, with the objective function being
to reach the largest sum of numbers from each node by the time
it reaches the bottom node. At each step, greedy algorithm will
choose what appears to be the optimal solution at the time
being, so it will choose node with a value of 12 (right) instead
of 3 (left) at the first iteration. Doing so will not reach the
global optimum in this problem, which is node with a value of
99 in the left section of the graph. One advantage of using the
greedy approach however, despite the result produced being
wrong, is the time required to return a solution. Rather than
enumerating each potential solution and calculating its total
sum of the numbers afterwards (which will take a much longer
time as the number of nodes and edges increases), using local
optimum is quite acceptable and reasonable, selecting members
of solution as it traverses through the graph.

C. Maximum Flow Problem
Maximum flow problem involves computing a feasible

flow through a single-source, single-sink flow network that is
maximum; with the source and sink each denoted as vertex ‘s’
and vertex ‘t’, respectively. Maximum implies on the most
amount of flow to pass through the system; being fed from
node ‘s’, passing through the edges along the network system,
and eventually ‘coming’ out from terminal node ‘t’. Each edge
connecting the nodes in the graph has two values attached; one
is the total flow going through said node, and another one is a
certain amount of threshold known as the capacity of the edge.
Several rules can be directly inferred from the name alone: the
amount of flow going through an edge must not exceed its
capacity, and the total flow being fed from node ‘s’ to the
system must all reach node ‘t’ without any reduction in the
amount.

In other version, some algorithms were built for solving the
maximum flow problem involving undirected graphs. One of
the well-known algorithms is from Sherman and Kelner. The
solution to maximum flow problem is equal to the minimum
capacity of an s-t cut in the network as stated in max-flow min-
cut theorem. Minimum cut is the minimal set of edges required
to keep the system working, as well as pursuing for a
maximum amount of flow passing through the network.

A formal definition of the maximum flow problem is as
follows:

Definition 16.1.1 A flow network is a directed graph G = (V,
E) with a source s ∈ V , a sink t ∈ V , and capacities along each
edge (described by a function c : E → R where c(e) is the
capacity of edge e). [Prochnow 2009]

Definition 16.1.2 The amount of flow between two vertices is
described by a function f : V × V → R. The flow function f has
the following properties:

• Capacity: f(v,w) ≤ c(v,w) ∀v,w ∈ V

• Antisymmetry: f(v,w) = −f(w,v) ∀v,w ∈ V

• Conservation: P w∈V f(v,w) = 0 ∀v ∈ V − {s,t}
[Prochnow 2009]

Definition 16.1.3 The total flow |f| of a flow network is the
amount of flow going into the sink. Formally, |f| = X v∈V
f(v,t). We’re interested in finding the maximum flow, the
largest possible |f| for a given graph G. [Prochnow 2009]

Definition 16.1.4 The residual across two vertices v,w ∈ V is
described by function r : V × V → R such that r(v,w) = c(v,w)
− f(v,w). Thus, the residual r(v,w) represents the amount of
potential flow we can still push from v to w. [Prochnow 2009]

Definition 16.1.5 The set of residual edges ER consists of all
vertex pairs with positive residuals. Formally, ER = {(v,w) ∈ V
× V | r(v,w) > 0}. [Prochnow 2009]

III. APPROACHES ON THE MAXIMUM FLOW PROBLEM:
METHODS AND ALGORITHMS

A. Ford-Fulkerson Method: Flow Augmenting Path
Algorithm
The formal algorithm of Ford-Fulkerson method in

computing the maximum flow in a network diagram is as
follows:

1. Identify the source node and the terminal node. A
temporary solution may be set to zero, indicating the
flow amount of each edge is 0.

2. Find a flow augmenting path P = (n1, n2, …, np)
where n is the nodes in the network along the path.

3. Decide the maximum flow increase in the path
specified, that being the capacity of the edge with
least capacity along the path. Say we traverse through
5 nodes, we will then have 4 edges, each with
capacity of 2, 4, 6, and 8. The maximum flow increase
in this path is then 2.

4. Change the flow in each edge, with the amount being
the minimum capacity of the edges found in step 3.

5. If a flow decrease needs to happen, mark the flow
with a negative number on the edge, indicating that an
amount of such flow must be passed through the said
edge in order for the solution to be valid. Adjustment
happens accordingly.

https://upload.wikimedia.org/wikipedia/commons/8/8c/Greedy-search-path-example.gif
https://upload.wikimedia.org/wikipedia/commons/8/8c/Greedy-search-path-example.gif

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

6. Repeat from step 2 until no other augmenting path can
be found, and the algorithm terminates.

 The actual method in finding the augmenting paths along
the network in step 2 is not specified by Ford and Fulkerson in
their papers. For small graphs with no such amount of nodes
and edges, only manual observations are required for
discovering the augmenting paths. But for larger networks and
for computer implementation, a fully defined procedure is
required. Ford and Fulkerson, in their documentation, they
were using a ‘labelling algorithm’, where it labels all nodes to
which a flow augmenting path from source node ‘s’ can be
found. When the terminal node ‘t’ is labeled, the required
augmenting path to ‘t’ has been discovered. The algorithm
begins with all nodes unlabeled except for the source node ‘s’.
We add an additional label on each node after all avenues for
finding paths from the node have been explored (we “check”
the node).

 When this ‘labelling algorithm’ terminates and node ‘t’ is
labeled, then there is an augmenting path from node ‘s’ to ‘t’,
and vice versa. This algorithm is then repeated until no
labelling can anymore be made to the nodes. This however,
does not guarantee all augmenting paths to be found all the
time. Following is an example of the utilization of Ford-
Fulkerson method.

Figure 6. Network flow example, initial condition

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:10 GMT+7)

 In Figure 6, a network flow diagram is given in a
representation of directed graph, with the two numbers in each
edge representing the flow and the capacity of the edge,
respectively. The source node ‘s’ is node A and the terminal
sink ‘t’ is node F. For an initial flow, we feed the system 0
flows, assigning flow number 0 on every edge in the network
flow. As a mean of adjusting the solution, the flow inputted
from the source node may be increased in an edge when the
current flow amount is less than the capacity, and may be
decreased if the flow amount violates its capacity.

 For the initial iteration in the network flow in Figure 6,
there are many augmenting paths we can choose from, as the
current flow amount in all edges in the graph is still zero. For
instance, we choose path P1 = (A, B, E, F), implying the
‘route’ travelled passed through nodes A, B, E, and finally
node F. As the capacity of the edges along the said path we
chose from has the lowest capacity of 5 (in fact, all of them
have the same capacity value), the flow may be increased by 5.

Figure 7. Network flow example, first iteration

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:32 GMT+7)

 So far, the solution for maximum flow problem in this case
is 5. By observation, there is still another obvious augmenting
path, P2 = (A, C, D, F). With the utilization of the greedy
algorithm, we may find the minimal capacity of the edges
along the path P2, which is 5. The flow may then be increased
again by 5, updating the solution from 5 to 5+5 = 10.

Figure 8. Network flow example, second iteration

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.
pdf, accessed on April 26, 2019 03:39 GMT+7)

 Looking at edge 2 and edge 6, along with edge 1 and edge
3, we discover that there is still one final augmenting path in
the network. Say we increase the flow from node A to node C
by 5 and deliver the flow to edge 6 afterwards. The flow of
amount 5 will then be stuck at node E, since the flow is already
equal with the capacity at edge 8 (5 and 5 respectively) and
there is no other edge coming out from node E. Looking at
edge 3 and edge 4, we can decrease the flow in edge 4 by 5,
and adding the decreased value to edge 3, then edge 7
afterwards. The final path updating the network would then be
P3 = (A, C, E, B, D, F). A thing to note, when a flow passes
through the opposite direction of the directed edge, the flow
amount decreases.

Figure 9. Network flow example, final iteration

(https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.

https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

pdf, accessed on April 26, 2019 04:02 GMT+7)

 Looking at the network in Figure 9, it can be deduced that
there is no more augmenting path in the network, thus giving
us the globally optimal solution of the problem which is 15. To
ensure our answer does not violate the constraints and
capacities of the edges, we check for the terms of a valid
solution:

• The flow being inputted from source node A enters
terminal node F without any reduction in amount

• The flow amount in each edge does not go beyond its
capacity

• There is no negative amount in the flow amount,
indicating that we have made a mistake in mapping
the flow and overdone a flow decrease in the network

B. Edmonds-Karp Algorithm
 Since the ‘labelling algorithm’ used in Ford-Fulkerson
method cannot ensure a solution, a Breadth First Search (BFS)
implementation on finding the flow augmenting paths in Ford-
Fulkerson method is usually used. This very algorithm is called
Edmonds-Karp algorithm. Jack Edmonds and Richard Karp
independently published an algorithm in O(VE2) in 1972 in one
of their papers Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems, two years after Yefim
Dinitz in 1970, where V is the number of nodes/vertices, and E
is the number of edges in the network.

 Edmonds-Karp algorithm is identical to the Ford-Fulkerson
method, except that the process of looking for the flow
augmenting paths in the network is specifically defined—
implementing Breadth First Search in graph processing. At
each iteration, instead of ‘labelling’ the nodes as it goes, this
algorithm applies weight value to the edges. Therefore, in each
iteration, instead of checking for the labels in the nodes of the
network, we choose the shortest path available which has not
been traversed, rather than the path with maximum capacity.
By shortest path it means a path with the least amount of edges
possible. Although this sounds strange, it is claimed that the
algorithm makes at most VE iterations, enabling us to run the
whole algorithm including the path finding (the BFS) in
O(VE2). The proof of this theorem is as follows:

“Proof: Let d be the distance from s to t in the current residual
graph. We’ll prove the result by showing that (a) d never
decreases, and (b) every m iterations, d has to increase by at
least 1 (which can happen at most n times).

Let’s lay out G in levels according to a BFS from s. That is,
nodes at level i are distance i away from s, and t is at level d.
Now, keeping this layout fixed, let us observe the sequence of
paths found and residual graphs produced. Notice that so long
as the paths found use only forward edges in this layout, each
iteration will cause at least one forward edge to be saturated
and removed from the residual graph, and it will add only
backward edges. This means first of all that d does not
decrease, and secondly that so long as d has not changed (so
the paths do use only forward edges), at least one forward edge
in this layout gets removed. We can remove forward edges at

most m times, so within m iterations either t becomes
disconnected (and d = ∞) or else we must have used a non-
forward edge, implying that d has gone up by 1. We can then
re-layout the current residual graph and apply the same
argument again, showing that the distance between s and t
never decreases, and there can be a gap of size at most m
between successive increases. Since the distance between s and
t can increase at most n times, this implies that in total we have
at most nm iterations.” [Blum 2015, Carnegie Mellon
University]

 Following piece of code is a C++ implementation of
Edmonds-Karp algorithm. The data structure used are two 2D-
vectors, ‘capacity’ for storing the capacity of every pair of
nodes and ‘mat’ as a representation of the graph in adjacency
matrix. The function ‘bfs()’ will find the shortest path available
from source node ‘s’ to terminal node ‘t’, and will return 0 if
no more path is available. Function ‘maxFlow()’ computes the
maximum flow in the given graph, calling ‘bfs()’ (finding
shortest path possible) in each iteration and returns the value
when the program terminates.

Code 1.

vector<vector<int>> capacity; // storing the
capacity of each edge
vector<vector<int>> mat; // graph representation
in adjacency matrix

// utilizing Breadth First Search (BFS) algorithm
int bfs(int s, int t, vector<int>& prev) {
 fill(prev.begin(), prev.end(), -1); //
initalize previous nodes with -1
 prev[s] = -2;
 queue<pair<int, int>> q;
 q.push({s, INF});

 // while queue is not empty
 while (!q.empty()) {
 int cur = q.front().first;
 int flow = q.front().second;
 q.pop();

 for (int next : mat[cur]) {
 if (prev[next] == -
1 && capacity[cur][next]) {
 prev[next] = cur;
 int new_flow = min(flow,
capacity[cur][next]);
 if (next == t)
 return new_flow;
 q.push({next, new_flow});
 }
 }
 }

 return 0;
}

// computing maximum flow in the graph
int maxflow(int s, int t) {
 int flow = 0;
 vector<int> prev(n);

https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

 int new_flow;

 // doing BFS in each iteration, finding the
shortest path available from 's' to 't'
 while (new_flow = bfs(s, t, prev)) {
 flow += new_flow;
 int cur = t;
 while (cur != s) {
 int prev = prev[cur];
 capacity[prev][cur] -= new_flow;
 capacity[cur][prev] += new_flow;
 cur = prev;
 }
 }

 return flow;
}

C. Implementation and Code Testing in C++
Suppose we have a graph represented in an adjacency matrix,
using a 2D vector in C++ as the data structure. Besides the
graph, we also have matrix of capacity of the graph’s edges,
represented too in a 2D-vector. graph[i][j] = 0 indicates that
there is no edge from i to j, while graph[i][j] ≠ 0 indicates there
exists an edge connecting node i and node j with capacity of
capacity[i][j].

Code 2.

vector<vector<int>> capacity={{0, 16, 13, 0, 0, 0},
 {0, 0, 10, 12, 0, 0},
 {0, 4, 0, 0, 14, 0},
 {0, 0, 9, 0, 0, 20},
 {0, 0, 0, 7, 0, 4},
 {0, 0, 0, 0, 0, 0}
 };

vector<vector<int>> graph = {{0, 1, 1, 0, 0, 0},

 {0, 0, 1, 1, 0, 0},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 0, 0, 1},

 {0, 0, 0, 1, 0, 1},
 {0, 0, 0, 0, 0, 0}
 };

 The source node ‘s’ is node 0 as column 0 in the 2D-vector
consists of all zeros, while the terminal node ‘t’ is node 5 as
row 5 in the 2D-vector consists of all zeros; i.e. no edges are
‘going into’ node 1 and no edges are ‘coming from’ node 5,
thus the source node and terminal node, respectively.

Code 3.

#include <iostream>
using namespace std;

int main(){
vector<vector<int>> capacity={{0, 16, 13, 0, 0, 0},

 {0, 0, 10, 12, 0, 0},
 {0, 4, 0, 0, 14, 0},
 {0, 0, 9, 0, 0, 20},

 {0, 0, 0, 7, 0, 4},
 {0, 0, 0, 0, 0, 0}
 };

vector<vector<int>> graph = {{0, 1, 1, 0, 0, 0},

 {0, 0, 1, 1, 0, 0},
 {0, 1, 0, 0, 1, 0},
 {0, 0, 1, 0, 0, 1},
 {0, 0, 0, 1, 0, 1},
 {0, 0, 0, 0, 0, 0}

 };

 cout << "Maximum flow of the graph:
" << maxflow(0,5) << endl; // as the source node
's' is node 0, and terminal node 't' is node 5

 return 0;
}

 Passing the source node ‘s’ and terminal node ‘t’ of the
graph in Code 2 to function ‘maxflow()’ in Code 1 in our main
program in Code 3 will print to stdout:

Maximum flow of the graph: 23

IV. CONCLUSION
 It began from an unclear ‘algorithm’ published in 1955,
which is basically a method in solving the problem. Next few
years, a defined implementation for said method was
independently published. Not so long from that, another
improvement was found and applied. Since its first formulation
until this time, the solution of the maximum flow problem
keeps on getting more improvements from the community of
computer science, enhancing its algorithm aiming for better
efficiency and faster execution time.

 The solution of maximum flow problem is not only
applicable to the said problem, but also to other similar
problems. In fact, it applies to real-life problems, too.

A. Max-flow min-cut theorem
 The max-flow min-cut theorem has a similar objective with
maximum flow problem, which is to maximize the amount of
flow that can pass through a network without violating any
constraints. In addition to that, we are to minimize the number
of edges that can sustain the system and remove redundant
edges from the network.

B. Hall’s Theorem and Menger’s Theorem
 Both of those theorems discuss about graph theory; Hall’s
theorem (early 1900’s) specifically discussing bipartite graphs,
while Menger’s theorem (1972) discussed about the
relationship of the maximum number of edge-disjoint paths
from ‘s’ to ‘t’ and minimum number of edges.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

C. Maximizing Traffic and Transportation
 In terms of transportation, the solution of maximum flow
problem can help us decide the maximum number of vehicles
allowed on a certain sector in the streets as not to cause
congestion or other traffic problems.

D. Maximizing Data and Electicity Transfer
 Data are sent online in packets, though layers of networks.
With the solution of maximum flow problem, we are able to
send appropriate amount of packets of data through a network
as not to cause delay between sessions. The same concept goes
for electricity in a wired-system with cables and electrical
components.

ACKNOWLEDGMENT
An extremely sincere gratitude towards previous authors

whose work was cited in this paper, towards the community of
computer science, and towards people’s dedication to the
development of computer science and technology in general.

REFERENCES
[1] T. E. Harris and F. S. Ross (1955), “Fundamentals of a Method for

Evaluating Rail Net Capacities,” Research Memorandum, Document
Service Centre, US Air Force, Knott Building Dayton 2, Ohio

[2] L. Wang, Y. Chang, and K. Tim Cheng (2009), “Electronic Design
Automation: Synthesis, Verification, and Test”, revised: Morgan
Kaufmann, 2009.

[3] L. R. Ford and D. R. Fulkerson (1956) , “Maximal Flow Through a
Network,” Canadian Journal of Mathematics. 8: p. 399—404.

[4] J. Edmonds and R. M. Karp (1972), “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems”. Journal of the
ACM. 19: p. 248—264.

[5] R. Munir. (2015). Graf. Retrieved from
http://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2015-
2016/Graf%20(2015).pdf

[6] A. Blum, “Network Flow”, Carnegie Mellon University lectures.
Retrieved from
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1027.pdf

[7] D. A. M. Barrington, “The Edmonds-Karp Heuristic”. University of
Massachusetts Amherst lectures. Retrieved from
https://people.cs.umass.edu/~barring/cs611/lecture/11.pdf

[8] P. Jensen, “Maximum Flow Problem”. University of Texas lectures.
Retrieved from
https://www.me.utexas.edu/~jensen/methods/net.pdf/netmaxf.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Kevin Angelo 13517086

http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
http://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2015-2016/Graf%20(2015).pdf
https://www.cs.cmu.edu/%7Eavrim/451f11/lectures/lect1027.pdf
https://people.cs.umass.edu/%7Ebarring/cs611/lecture/11.pdf
https://www.me.utexas.edu/%7Ejensen/methods/net.pdf/netmaxf.pdf

	I. Introduction
	II. Basic Theories
	A. Directed Graph
	B. Greedy Algorithm
	C. Maximum Flow Problem

	III. Approaches on The Maximum Flow Problem: Methods and Algorithms
	A. Ford-Fulkerson Method: Flow Augmenting Path Algorithm
	B. Edmonds-Karp Algorithm
	C. Implementation and Code Testing in C++

	IV. Conclusion
	A. Max-flow min-cut theorem
	B. Hall’s Theorem and Menger’s Theorem
	C. Maximizing Traffic and Transportation
	D. Maximizing Data and Electicity Transfer
	Acknowledgment
	References

