
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Implementation of Backtracking Algorithm and
Regex on Word Shuffle Game

Kevin Sendjaja / 13517023
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517023@std.stei.itb.ac.id
kevin.sendjaja@gmail.com

Abstract—Word Shuffle is a game where several letters are

given and the player must take some or all the letters and place
them in a specific order in order to create a word with correct
spelling. The main goal of this game is to create as many
correctly spelled words as possible. This paper will cover about
the concept of backtracking algorithm as well as regular
expressions and its implementation in solving the Word Shuffle
game.

Keywords— Word Shuffle, Backtracking, Regular Expression

I. INTRODUCTION

Games are a form of play usually done for the purpose of
enjoyment and relaxation. Apart from those, people also play
games to obtain a sense of achievement or reward, whether
from playing alone, with friends, or against other people. The
three major components that compose a game are rules,
challenge, and interaction. Games provide either physical or
mental stimulation, or both at the same time, which in turn
helps in developing the players’ practical skill and perform an
educational, psychological, or simulational role.

One example of such games is Word Shuffle. Word Shuffle
is a game where the player must arrange letters into words with
a specific length and correct spelling, in order to finish the
game. The higher the difficulty, more letters will be given to
the player, resulting in more time needed to check whether
each word is correctly spelled or not.

Through this paper, the author would like to explain the
concept of Backtracking algorithm, as well as Regular
Expressions, and their implementation in solving the Word
Shuffle game.

II. BACKTRACKING ALGORITHM

A. Definition

Backtracking algorithm is an algorithm commonly used to
find some or all possible solutions for a computational
problem. Backtracking algorithm involves building candidates
for solutions incrementally, saving each solution that satisfies
the problem, while abandoning each partial candidates as soon
as it determines that the candidate cannot possibly lead to a
satisfying solution, hence called backtracking. The idea of
backtracking is building the solution step by step, using
recursive method, and as soon as the candidate is found to be

unable to procure a solution, we stop processing that solution
and return to the step before and compute the next possible
candidate. As such, backtracking is considered as an
improvement over the exhaustive search, which method
involves building every potential solution possible, without
pruning candidates that would not lead to a possible solution.

Figure 1: A representation of Backtracking algorithm

(Source: https://www.w3.org/2011/Talks/01-14-steven-
phenotype/backtracking.png)

Backtracking algorithm concept was first introduced in
1950, by D. H. Lehmer, an American mathematician.
Backtracking can be seen as a phase of the graph tracing
algorithm Depth First Search (DFS). Three major components
which compose the Backtracking algorithm are solution space,
expand function, and bounding function.

1. Solution Space

Solution space contains the possible solution for the
problem. It may contain one or all possible solutions.
Solution space is represented as a vector containing n-
tuple: X = (x1, x2, ..., xn), xi  Si.

2. Expand Function

Expand function serves to expand the candidate
solutions that becomes potential candidates for the
solution space. Expand function is represented as the
predicate T(k).

3. Bounding Function

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Bounding function is used to prune the candidates
that would not lead to a possible solution.
Bounding function is represented as the predicate
B(x1, x2, ..., xk). B would give the value true should
(x1, x2, ..., xk) leads toward a possible solution,
which will cause the expand function to expand a
value for xk+1. Otherwise, (x1, x2, ..., xk) would be
discarded, as it would not lead to a potential
solution.

Solution space can also be represented in a tree structure,
where each node represent a state of the solution and the
branch represent a value for xi. The path taken from the root
node to a leaf node is a possible solution. The solution space
consists of all the paths from the root to the leaves, and the tree
representing the solution space can be referred as a state space
tree.

Figure 2: An example of a state space tree

(Source:
http://www.cs.uni.edu/~fienup/cs153f03/lectures/lec31_12-9-

03.htm)

The process of expanding the nodes follows the DFS rule,
which is expanding the leftmost node until it reaches a leaf
node. Nodes created from an expansion process are called live
nodes, and a live nodes that are in the process of being
expanded is called expand nodes. The path becomes longer as
more nodes are expanded. Eventually, should the node being
expanded has no chance of forming a possible solution, which
is determined using the bounding factor, the node will pruned
and becomes a dead node, which will never be expanded again.

B. Advantages

Backtracking algorithm is effective and efficient for solving
problems with constraint. The global optimal solution is
guaranteed to be found using the backtracking algorithm,
compared to other algorithms such as Greedy algorithm, which
may only get the local optimal solution. Backtracking is also
relatively easy to implement and its’ accuracy is granted.

C. Disadvantages

While backtracking is efficient in solving constraint related
problems, it is not as effective when handling strategic
problems, as the overall runtime of backtracking algorithm is
quite slow. To solve a problem with a large amount of data,
backtracking would also require a large amount of memory
space, while other algorithms such as Branch and Bound might
be proven to be more efficient.

III. REGULAR EXPRESSIONS

A. Definition

Regular expressions or regex for short, are series of
characters that define a search pattern. They are most
commonly used in string matching algorithms to find and/or
replace a sequence of string within a series of string that
satisfies the pattern. The concept of regular expressions was
brought by the American mathematician Stephen Cole Kleene,
back in the year 1951, and different syntaxes for writing
regular expressions have been developed since then. In formal
language theory, regular expressions are used to describe
regular languages.

Figure 3: An example of a regular expression pattern

(Source: https://medium.com/tech-tajawal/regular-expressions-
the-last-guide-6800283ac034)

The most basic regular expressions are usually comprised
of the sequence of letters that is used to search that specific
pattern in a text. For example, the regex ‘high’ simply means
the letter ‘h’, followed by the letter ‘i’, followed by the letter
‘g’, followed by the letter ‘h’. A key component in forming a
regular expressions is a meta character. Unlike regular letters,
meta characters have different interpretation and is treated as a
replacement for one or a series of letters. Some meta
characters can be used by itself, while others need to be placed
within square brackets so that it may define something.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Figure 4: Meta characters and their description

(Source: https://medium.com/tech-tajawal/regular-
expressions-the-last-guide-6800283ac034)

Other than meta characters, there are also shorthand
character sets, which is represented by the character backslash
(\) followed by a specific letter, which is used to determine
whether the character satisfies a certain category or not. There
are also lookarounds, which are used to get a string which is
preceded or followed by a certain pattern.

Regular expressions are usually applied in word processing
application, and are used for tasks such as syntax highlighting.
Other usage include parsing, data validation, and data scraping.

B. Advantages

Regular expressions are considered to be very flexible. A
single line of code using regular expression could process a
text without much problem. As such, it is considered to be
simpler than calculating indexes and processing substrings
during string matching.

C. Disdvantages

Some people who are not used to using regular expressions
might have a hard time in understanding the characters’
meaning, as some characters might have multiple definitions,
depending on where it is used. Not to mention that a block of
code using regular expression is quite hard to debug, since it
doesn’t give any additional info should no match is found
within the text. Another disadvantage is that typos are easily
made while making a pattern, since the creator must fully
understand the purpose of the pattern that he created, as other
people might not understand it, so a difference in one character
could give a wrong result and other people might not realize
which part is wrong. Regular expressions would be useful in
search engines, such as Google, however it might consume
excessive processing power depending on the pattern design
and complexity, as the database is very large. For that reason,
most search engines do not offer regular expression support for
queries to public.

IV. WORD SHUFFLE

Word Shuffle is a game where the player is given the task
of unscrambling given letters and arrange them into words with
a specific length with a certain order. While this game are
commonly played using application, this game can still be
played using traditional methods, such as pen and paper. The
player may form any word using the letters, and if the word is
correctly spelled, it is counted as a correct answer. Earlier
version of the game focused on finding all the possible words,
but as time goes, developers also implement point systems in
order to make the game more enjoyable.

Figure 5: An example of a Word Shuffle game

(Source: https://wordbrainsolver.com/wp-
content/uploads/2017/08/Word-Shuffle-Level-127.jpg)

Word Shuffle games usually already had the list of the
words that need to be made in order to complete the game.
However, they might also compare the created word with the
dictionary, should the word created is not in the list but is still
spelled correctly. Should that happen, usually the game would
offer bonus points or something along that line.

Players would often use the brute force technique, which is
done by trying each possible combination of letters possible, in
an event where they don’t know the words that could be
created by the letters given. Word Shuffle games usually
display empty spaces that suggests the length of the word that
the player need to create, which helps in reducing the time the
player need to solve the word. Once the word is found, the
word is written over the empty spaces, so that the player can
keep track over which words have been found.

Word Shuffle is a type of game that is played for the sake
of leisure, instead of competing. It also has educational value,
since it helps the player in memorizing or learning new
vocabularies. Word Shuffle could also be played by children as
an effort to improve their linguistic skills.

V. IMPLEMENTATION OF BACKTRACKING

ALGORITHM AND REGULAR EXPRESSIONS FOR

WORD SHUFFLE GAME

A. Application

Before implementing both the backtracking algorithm and
regular expressions, it is necessary to make a database first
that contains the list of letters and list of words that need to be
created beforehand. The test will be done twice, using 5 letters

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

and 6 letters each. Both test will be executed using the original
brute force strategy, and using backtracking algorithm and
regular expression.

Before executing the test, the components of the
backtracking algorithm used in this experiment are as follows:

1. Solution Space
The solution space contains all the correctly
spelled words which are recorded in the answer
database. The solution space is originally empty
and will be filled as each correct answer is found.

2. Expand Function
The expand function will add the current letter
into the string and further expand the potential
solution until the length of the string is equal to
the number of letters.

3. Bounding Function
The bounding function will implement regular
expression and will be used to ensure that the
current string is a substring of a potential answer.

The tracing process are as follows:
def backtrack(sentence,step):
 global letters
 global words
 global answersbt

 step += 1
 if((len(sentence) == len(letters))
and (sentence in words)):
 answersbt.append(sentence)
 return step

 elif(sentence in words):
 answersbt.append(sentence)
 found = False
 for word in words:
 if(re.match(sentence+".+",word)):
 found = True
 break

 if found:
 for letter in letters:
 if letter not in sentence:
 nextsentence=sentence+letter
 step=

backtrack(nextsentence,step)
 return step

 else:
 found = False
 for word in words:
 if(re.match(sentence+".+",word)):
 found = True
 break
 if found:
 for letter in letters:
 if letter not in sentence:
 nextsentence=sentence+letter
 step =

backtrack(nextsentence,step)

 return step

Figure 6: Pseudocode for the Backtracking Algorithm

(Source: Author’s documentation)

The global variable letters is a list containing all the letters,
while words contain all the possible words created from the
letters. The global variable answersbt represents the solution
space generated from the process and is originally empty.
Sentence represent the current string in the process, while step
represent the total steps taken during the solution generating
process. Each expansion is counted as one step. How the
algorithm works are as follows:

1. For each recursion, step is increased by one.

2. If the current string is already the same length as
the number of letters and it is a word that is
recorded in the variable words, it is added into the
list answersbt. Otherwise, the answer is discarded.

3. If the length of the current string is less than the
number of letters but is also a word that is
recorded in the variable words, it is added into the
list answersbt.

4. Then, regular expression is used to check whether
the current string is a substring of at least one
possible answer from the list words.

5. If the result is false, then it means that no matter
how much that string is expanded, it won’t
generate a possible solution, and so, the current
candidate is not getting expanded any further.

6. However, if the result is true, that means that
there’s at least one possible answer that could be
created should the current string is expanded even
further, and so the expansion process continues.

7. If the current string is not a word that is recorded
in the variable words, it will go through the same
checking and expansion process as mentioned
before, with the exception that the current string is
not added into the list answersbt.

The pattern used for the regular expression is "^" followed
by the current sentence followed by “.+”. The caret (^)
represents preceded by, while the dot (.) represent any
character, while the plus (+) represent one or more occasion.
Simply put, the program searches for a possible answer that
starts with the current string and is followed by at least one
random character, which suggests that the current string might
be expanded to create a possible answer.

The main program consists of calling the backtrack
function for each letter in the list letters. The program also
executes a different function that process the same letters,
using the brute force method, without using the regular
expression to prune the candidates. The program will then
show the results achieved by each function, as well as the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

number of steps required by each function to generate the
results.

B. Test Case

The first test case uses 5 letters and has 16 words that could
be formed from those letters. The data are as follows:

Letters w , m , s , a , p

Words
am , amp , saw , maw , paw , spa , map , was ,

sap , wasp , swap , maps , paws , amps , maws ,
swam , swamp

Figure 7: Data for the first test

(Source: Author’s documentation)

 The result from the test using the data from figure 7 is
displayed below:

Figure 8: First test case results
(Source: Author’s documentation)

Both the backtracking algorithm and the brute force

algorithm give the same results, which is the 16 words that
were added into the list words. However, there’s a significant
difference in the number of steps taken to produce the same
result. The backtracking algorithm only requires 59 steps,
while the brute force algorithm requires 325 steps, more than
five times the previous result.

The second test case use 6 letters and 25 words that could

be formed from those letters. The data are as follows:

Letters t , h , o , m , r , e

Words

mother , other , homer , metro , throe , moth ,
home , meth , tore , them , hero , herm , term ,

mort , more , tome , ohm , roe , rot , her , ore , the ,
toe , rho , hot

Figure 9: Data for the second test case

(Source: Author’s documentation)

The result from the test using the data from figure 9 is
displayed below:

Figure 10: Second test case results
(Source: Author’s documentation)

Like before, both algorithms give exactly the same
results, which were 25 words. However, difference in the
number of steps taken to produce the results is even higher
than before, in which the backtracking algorithm only require
123 steps, while the brute force algorithm requires 1956 steps,
more than ten times the previous result.

C. Analysis

From both test cases, it can be concluded that both the
backtracking and brute force algorithm are effective in
procuring all the correct answers. However, the backtracking
algorithm with regular expression are much more efficient in
producing the result than the brute force algorithm. This is
proven by comparing the number of steps taken, where brute
force algorithm requires much more steps than the
backtracking algorithm. This shows that the Word Shuffle
game could be solved much quicker by using the backtracking
algorithm and regular expression.

VI. CONCLUSION

Backtracking algorithm is an algorithm used to solve
computational problem by pruning the candidates that would
not lead to a possible solution using a bounding function. On
the other hand, regular expressions are used to find a specific
string pattern within a text. Both of them could be used to
solve the Word Shuffle game faster than the usual brute force
method.

VII. ACKNOWLEDGEMENT

First of all, the author would like to thank God for His
blessing, because without it, the author would not be able to
finish this paper. The author also would like to thank the
authors’ parents and friends which have given the author their
support, may it be directly or indirectly, which have helped the
author to finish this paper. Lastly, the author would like to
apologize for any mistakes that may have been made
accidentally. May this paper be useful for future references
and research purposes.

REFERENCES

[1] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017
-2018/Algoritma-Runut-balik-(2018).pdf accessed on
April 25th, 2019

[2] http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2018
-2019/String-Matching-dengan-Regex-2019.pdf accessed
on April 25th, 2019

[3] https://medium.com/@andreaiacono/backtracking-
explained-7450d6ef9e1a accessed on April 25th, 2019

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

[4] https://medium.com/tech-tajawal/regular-expressions-the-
last-guide-6800283ac034 accessed on April 25th, 2019

[5] https://www.slideshare.net/FahimFerdous6/backtracking-
algorithm-technique-and-examples accessed on April 26th,
2019

[6] https://www.slideshare.net/niekschmoller/regex-external
accessed on April 26th, 2019

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Kevin Sendjaja / 13517023

