
Application for Arranging Travel Itinerary in the City
of Bandung Using Greedy Algorithm

Kintan Sekar Adinda
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517102@std.stei.itb.ac.id

This paper explains a little about how to apply the greedy
algorithm to arrange an itinerary that contains two attractions and
a place to eat that can be done on a one-day vacation in Bandung.
The greedy algorithm is one algorithm for optimizing problems.
Making this paper aims to facilitate application users during the
holidays and help us understand the greedy algorithm.

Keywords—greedy; itinerary; profit; weight

I. INTRODUCTION

Bandung is one of the favorite destinations of many people
during holiday. So many places that can be visited, starting
from nature, shopping and culinary tourism. Too many
choices might make us confused, which place is the most
recommended and closest to our position.

If we search in the search engines, we can find a variety of
tourist destinations in Bandung. However, of course we cannot
visit all these destinations. In one day maybe we can only visit
one to two tourist attractions. Therefore, we must be smart in
choosing as many tourist attractions as possible with high
ratings and located close to our current position. For example,
now we are at ITB. We have three tourism options, namely
Tangkuban Perahu, Cisangkuy, and Braga where all three
have the same rating. Of the three choices, we better choose
Cisangkuy and Braga because the distance tends to be closer
to our current position. Likewise, by choosing a place to eat.
We can choose culinary tours that are close to Cisangkuy and
Braga.

In this case, the author designed an application to arrange a
traveling itinerary in Bandung. This application detects tourist
locations that are close to our current position and helps
choose which destinations are worth visiting. Not only tourist
attractions, this application also helps us to determine culinary
tours that are located close to the tourist attractions we choose.
To determine which tourist attractions are worth visiting, a
greedy algorithm is used. Greedy algorithm is commonly used
to solve the knapsack problem. There are several variables that
will be used as benchmarks in implementing the greedy

algorithm. This application will make it easier for us to
optimize vacation time.

II. THEORETICAL BASIS

A. Greedy Algorithm
The greedy method suggests that one can devise an

algorithm that works in stages, considering one input at a time.
At each stage, a decision is made regarding whether a
particular input is in an optimal solution. This is done by
considering the inputs in an order determined by some
selection procedure. If the inclusion of the next input into the
partially constructed optimal solution will result in an
infeasible solution, then this input is not added to the partial
solution. Otherwise, it is added. The selection procedure itself
is based on some optimization measure. This measure may be
the objective function. In fact, several different optimization
measures may be plausible for a given problem. Most of these,
however, will result in algorithms that generate suboptimal
solutions. This version of the greedy technique is called the
subset paradigm.

We can describe the subset paradigm abstractly, but more
precisely than above, by considering the control abstraction in
following code.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

B. Knapsack Problem
Let us try to apply the greedy method to solve the

knapsack problem. We are given n objects and a knapsack or
bag. Object i has a weight and the knapsack has a capacity m.
If a fraction xi, 0≤xi≤1, of object i is placed into the knapsack,
then a profit of pixi is earned. The objective is to obtain a
filling of the knapsack that maximizes the total profit earned.
Since the knapsack capacity is m, we require the total weight
of all chosen objects to be at most m. Formally, the problem
can be stated as

The profits and weights are positive numbers.

Insert objects one by one into knapsack. Once an object is
entered into knapsack, the object cannot be taken out again.

There are some greedy strategies that are heuristic which
can be used to select objects that are will be entered into
knapsack:

1. Greedy by profit

At each step, the knapsack is filled with objects
which has the biggest profit. This strategy tries to
maximize profits by choosing the most profitable
object first.

2. Greedy by weight

At each step, the knapsack is filled with objects that
have the lightest weight. This strategy tries to
maximize profits by entering as many objects as
possible into the knapsack.

3. Greedy by density

At each step, the knapsack is filled with objects that
have the largest number of density. This strategy tries
to maximize profits by selecting objects that have the
greatest profit per unit weight.

The choice of object based on one of the three strategies
above does not guarantee that it will provide an optimal
solution. There is even a possibility that the three strategies do
not provide optimum solutions. The following example
illustrates these cases.

Review the 0/1 Knapsack problem with n = 4.

w1 = 2; p1 = 12

w2 = 5; p1 = 15

w3 = 10; p1 = 50

w4 = 5; p1 = 10

Knapsack capacity W = 16

Solution by greed algorithm:

Object Property Greedy by Opti
mal
Solu
tion

i wi pi pi/wi profi
t

weig
ht

dens
ity

1 6 12 2 0 1 0 0

2 5 15 3 1 1 1 1

3 10 50 5 1 0 1 1

4 5 10 2 0 1 0 0

Total weight 15 16 15 15

Total profit 65 37 65 65

In this example, the greedy algorithm with the object
selection strategy based on profit and density provides the
optimal solution, while the selection of objects based on
weight does not provide an optimal solution.

C. Java Languange

Java is a general-purpose programming language that is
class-based, object-oriented, and specifically designed to have
as few implementation dependencies as possible. It is intended
to let application developers "write once, run anywhere"
(WORA), meaning that compiled Java code can run on all
platforms that support Java without the need for
recompilation. Java applications are typically compiled to

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Dependency_(computer_science)
https://en.wikipedia.org/wiki/Application_developer
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Compiler

"bytecode" that can run on any Java virtual machine (JVM)
regardless of the underlying computer architecture. The syntax
of Java is similar to C and C++, but it has fewer low-level
facilities than either of them. As of 2018, Java was according
to GitHub one of the most popular programming languages in
use, particularly for client-server web applications, with a
reported 9 million developers.

There are quite a number of academics in Indonesia who
use the Java language as a tool to complete a thesis or final
assignment with various topics. Therefore, the author wants to
use java language as a reference to apply the greedy algorithm
to knapsack problems.

Like any programming language, the Java language has its
own structure, syntax rules, and programming paradigm. The
Java language’s programming paradigm is based on the
concept of OOP, which the language’s features support.

The Java language is a C-language derivative, so its syntax
rules look much like C’s. For example, code blocks are
modularized into methods and delimited by braces ({ and }),
and variables are declared before they are used.

Structurally, the Java language starts with packages. A
package is the Java language’s namespace mechanism. Within
packages are classes, and within classes are methods,
variables, constants, and more.

III. SAMPLING

In using this application, the location of our current
position is needed. This is useful for finding the location of the
nearest tourist destination and place to eat. For example our
position is now at Bandung Institute Technology. The five
closest tourist objects from ITB are

● Bandung Zoo
● Upside Down World
● Bandung Geological Museum
● Gedung Sate
● Museum Konferensi Asia Afrika

The five closest place to eat from ITB are

● Warung Pasta
● Midori Japanese Restaurant
● Kapulaga Indonesian Bistro
● Gyu-Kaku Japanese BBQ Restaurant
● Pizza Hut

From all tourist attractions and places to eat, we determine
the weight and profit of each place as a characteristic of the
0/1 Knapsack problem. Determination of weight and profit for
this tourist destination is determined from several aspects that
are subjectively considered influential and can be a
differentiating factor in reviewing the issue of the selection of
tourist visits. The process of determining weight and profit is
also carried out under several assumptions that can help define
the problem to be modeled.

To determine the profit from these places, we need data in
the form of ratings from the place along with the price (in the
form of the price of admission for tourism objects and food
prices for places to eat). Will benefit users, if the rating is
high, but the price is cheap. So, the calculation that can be
done is if we divide the rating by price, then we will get a
profit. The higher the rating, the higher the profit. The lower
the price, the higher the profit.

profit= price
rating

To determine the weight from these places, we need data
in the form of the distance of the tourist attractions from our
current position and data in the form of the length of trip that
must be taken to arrive at that destination. To do a calculation,
we can multiply the distance by 50% and multiply the duration
of the trip by 50% then add it up, then we will get the weight.
The distance and travel time are directly proportional to
weight.

weight
= 50% distance + 50% time× ×

To get the value of density, we can divide weight by its
profit.

density= prof it
weight

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Client%E2%80%93server
https://en.wikipedia.org/wiki/Web_applications

By implementing these two formulas for all tourist
attractions and restaurants, we get the following data.

Profit Table for Tourist Attraction

Tourist
Attraction

Rating Price for
two people

(approx.) ×
1,000,000

Profit

Bandung
Zoo

3.8 0.04 95

Upside
Down World

4.0 0.1 40

Bandung
Geological
Museum

4.6 0.01 460

Bosscha 4.5 0.02 225

NuArt
Sculpture

Park

4.6 0.05 92

Profit Table for Places to Eat

Places to
Eat

Rating Ticket Price Profit

Warung
Pasta

4.2 0.08 52.5

Midori
Japanese

Restaurant

4.3 0.2 21.5

Kapulaga
Indonesian

Bistro

4.2 0.12 35

Gyu-Kaku
Japanese

BBQ
Restaurant

4.7 0.3 15.67

Pizza Hut 4.4 0.2 22

Weight Table for Tourist Attraction

Tourist
Attraction

Distance
(km)

Duration of
Trip by Car

(minute)

Weight

Bandung
Zoo

3.9 2 2.95

Upside
Down World

5.1 9 7.05

Bandung
Geological
Museum

5.7 15 10.35

Bosscha 8.4 47 27.7

NuArt
Sculpture

Park

0.95 30 15.48

Weight Table for Places to Eat

Places to
Eat

Distance
(km)

Duration of
Trip by Car

(minute)

Weight

Warung
Pasta

0.45 4 2.23

Midori
Japanese

Restaurant

1.6 12 6.8

Kapulaga
Indonesian

Bistro

0.35 6 3.18

Gyu-Kaku
Japanese

BBQ
Restaurant

1.6 12 6.8

Pizza Hut 0.7 9 4.85

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Density Table for Tourist Attraction

Tourist
Attraction

Weight Profit Density
00 × 1

Bandung
Zoo

2.95 95 3.1

Upside
Down World

7.05 40 17.63

Bandung
Geological
Museum

10.35 460 2.25

Bosscha 27.7 225 12.31

NuArt
Sculpture

Park

15.48 92 16.83

Density Table for Place to Eat

Places to
Eat

Weight Profit Density
00 × 1

Warung
Pasta

2.23 52.5 4.25

Midori
Japanese

Restaurant

6.8 21.5 31.63

Kapulaga
Indonesian

Bistro

3.18 35 9.09

Gyu-Kaku
Japanese

BBQ
Restaurant

6.8 15.67 43.4

Pizza Hut 4.85 22 22.05

This application will help us to choose in one day two
attractions and one place to eat. Here is a general holiday
schedule before the application chooses a tourist attraction.

1 Tourist Attraction

2 Place to Eat (for lunch)

3 Tourist Attraction

IV. ANALYSIS

In the analysis section, a greedy by density approach will
be used because greedy by density tends to lead to optimal
solutions compared to greedy by weight or greedy by profit.

A. Result of Greedy Algorithm by Density

Result of Greedy Algorithm for Tourist Attraction

Number Tourist
Attraction

Density 00 × 1

1 Upside Down
World

17.63

2 NuArt Sculpture
Park

16.83

3 Bosscha 12.31

4 Bandung Zoo 3.1

5 Bandung
Geological
Museum

2.25

Result of Greedy Algorithm for Places to Eat

Number Tourist
Attraction

Density 00 × 1

1 Gyu-Kaku
Japanese BBQ

Restaurant

43.4

2 Midori Japanese
Restaurant

31.63

3 Pizza Hut 22.05

4 Kapulaga
Indonesian Bistro

9.09

5 Warung Pasta 4.25

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Based on the result of greedy algorithm, so the application
will display the following itinerary for a day.

1 Upside Down World

2 Gyu-Kaku Japanese BBQ Restaurant

3 NuArt Sculpture Park

B. Code that Implements a Greedy Algorithm

class Knapsack {

 static int max(int a, int b) { return
(a > b) ? a : b; }

 static int knapSack(int W, int wt[],
int val[], int n)
 {
 if (n == 0 || W == 0)
 return 0;

 if (wt[n - 1] > W)
 return knapSack(W, wt, val, n
- 1);

 else
 return max(val[n - 1] +
knapSack(W - wt[n - 1], wt, val, n - 1),
 knapSack(W, wt,
val, n - 1));
 }

 public static void main(String
args[])
 {
 int val[] = new int[] { 60, 100,
120 };
 int wt[] = new int[] { 10, 20, 30
};
 int W = 50;
 int n = val.length;
 System.out.println(knapSack(W,
wt, val, n));

 }
}

CONCLUSION

Various attractions and places to eat are already very much
on the Internet. However, so that we can enjoy the holidays
optimally, we better arrange the itinerary first. Therefore, we
can use the application that the author made to solve the
problem. Greedy Algorithm works well as a technology that
helps writers to arrange the itinerary properly.

REFERENCES
[1] Ellis Horowitz, Sartaj Sahni, and Sanguthevar Rajasekaran, “Computer

Algorithms,” W. H. Freeman and Company 1997.
[2] Munir, Rinaldi. 2006. Diktat Strategi Algoritma.
[3] Binstock, Andrew (May 20, 2015). "Java's 20 Years of Innovation".

Forbes. Archived from the original on March 14, 2016. Retrieved March
18, 2016.

[4] https://developer.ibm.com/tutorials/j-introtojava1/, accessed on April 26
2019 at 10.13 am.

[5] https://www.geeksforgeeks.org/java-program-for-dynamic-programming
-set-10-0-1-knapsack-problem/, accessed on April 26 2019 at 3.24 pm.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2012

Kintan Sekar Adinda

13517102

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/
https://web.archive.org/web/20160314102242/http://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/
https://developer.ibm.com/tutorials/j-introtojava1/
https://www.geeksforgeeks.org/java-program-for-dynamic-programming-set-10-0-1-knapsack-problem/
https://www.geeksforgeeks.org/java-program-for-dynamic-programming-set-10-0-1-knapsack-problem/

