
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

The Application of String-Searching Algorithm and

Dynamic Programming in Multilingual Plagiarism

Checker

Ignatius Timothy Manullang - 13517044

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

ignatiustimothymanullang@gmail.com

Abstract—Translation Plagiarism is a new way of plagiarism

in which many people are trying to do because some Plagiarism

Checkers do not have the ability to detect plagiarism in more

than 1 language. In order to counteract Translation Plagiarism,

Mullingual Plagiarism checker, which can check plagiarism in

many languages can be used. This paper will discuss about the

implementation of String-Searching Algorithm and Minimum

Edit Distance Dynamic Programming to Multilingual Plagiarism

Checker, which can detect plagiarized texts translated in many

languages.

Keywords—translation plagiarism, string matching, dynamic

programming, multilingual plagiarism checker

I. INTRODUCTION

 Today, many people have access to many media as

resource for their work, including, but not limited to, books,

internet, television, so on and so forth. It’s easier than ever for

people to just take those resources and claim it as their own.

 Computers of this generation can execute processes,

including, but not limited to, cut, which removes a selected

data and save it to the clipboard for a later use, copy, which is

saving a selected data to the clipboard, and paste, which is

placing the data chosen from the clipboard into a document at

the flashing cursor’s location. By using cut, copy, and paste,

many people have taken other people’s works as their own.

 Plagiarism is a way to take others’ works as their

own. It also involves using others’ works without crediting the

source. This is a very big issue in the world, since taking

others’ ideas and claiming as own work is a lie and not ethical.

 There are many types of plagiarism. A modern-day

concern is translation plagiarism. It is a new way of plagiarism

that uses content and translating it to another language so that

plagiarism checkers might not be able to detect it as

plagiarized.

 Plagiarism checker itself is an automatic plagiarism

detection tool. It checks for similarities in a text, by using

databases of articles, and if it detects that the text is similar to

another text, then it will output that the text is a plagiarized

text, in which the text actually came from other people’s ideas

and works.

 Plagiarism checkers can detect an exact text or

similarities of a text to another text, mostly in the same

language. However, some plagiarism checkers will not be able

to detect a translated text as plagiarized because those

plagiarism checkers do not deal with situations when the text

are translated to different languages. As a result, many people

got away with translation plagiarism.

 One way to detect plagiarism is by checking a text

and compare it by using string matching algorithm. However,

that can only detect if the text is exactly the same, which

means it cannot detect when a text is copied into a translator

and instantly translated to other languages.

 Therefore, the solution that the author of this paper

thought of, is by using database of translations, thesauruses

and text database in order to detect translation plagiarized text.

II. BASIC THEORY

A. Pattern Matching

 Pattern Matching is the action of checking whether a

pattern exists in a data, or not. It is also commonly referred to

as String Searching.

It is an important problem in Computer Science. Pattern

matching is used to output search results based on a search

query.

 By definition, if we are given a text T, which is a

string that has a length of n characters, and a pattern P, which

is another string that has a length of m characters and is going

to be searched in the text. The problem is that we have to

locate the first location in which the text matches the pattern.

There are some common ways in which the problem can be

solved, which are:

1. Brute-force String Searching Algorithm

2. Knuth-Morris-Pratt String Searching Algorithm

3. Boyer-Moore String Searching Algorithm

B. Brute-Force Algorithm

 Brute-force algorithm, which is also commonly

referred to as the naïve algorithm, is an algorithm that uses

straightforward ways to solve problems. It is straightforward

because it refers to the problem statement and the definition of

concept which is involved in the problem. Brute-force

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

algorithm also breaks down problems in a very simple, direct

and obvious way.

 In string searching, the brute-force algorithm will

slide the pattern over the text one-by-one and check each

position in the text T to see if the pattern P starts in that

position. If the pattern P starts in that position, it will check

the 2nd character in the pattern P (if it exists) with the next

character in the text T, and so on, until every character in the

pattern is checked and matches a part of the text. If the pattern

P doesn’t start in that position, or a character which is

currently checked in the pattern P doesn’t match the character

which is also currently checked in the text T, the position for

the pattern P is moved 1 character to the right. The string

searching will continue until every character in the pattern is

checked and matches a part of the text, or every character in

the text T is checked.

 Using the example before, the brute-force string

algorithm will find the solution as follows:

Text : “The shimmering star”

Pattern: “ring”

 T h e s h i m m e r i n g s t a r

1 r i n g

2 r i n g

3 r i n g

4 r i n g

5 r i n g

6 r i n g

7 r i n g

8 r i n g

9 r i n g

10 r i n g

11 r i n g

 The best case for this algorithm happens when the

first character of the pattern P doesn’t appear in the text T at

all, which means the maximal number of character checking is

n times (n being the number of characters that the text T has).

An example of this case is:

Text: “Best string case yyy”

Pattern: “yyy”

 The time complexity for the best case of brute-force

string matching algorithm is O(n).

 The average case for this algorithm takes O(m+n)

time complexity, in which m is the number of characters that

the pattern P has, and n is the number of characters that the

text T has.

An example of this case is:

Text: “Average case analysis”

Pattern: “Any”

 The worst case for this algorithm happens when all

the characters of the text T and pattern P are the same, which

is shown below.

Text: “ZZZZZZZZZZZZZZZZZZZZ”;

Pattern: “ZZZ”

 The worst case also happens when only the last

character is different, which is shown below.

Text: “ZZZZZZZZZZZZZZZZZZZY”;

Pattern: “ZZY”.

 The time complexity for the worst case of brute-force

string matching algorithm is O(m*(n-m+1)) = O(mn).

The brute-force algorithm in Java is shown below:

public static int brute(String text,String pattern) {

int n = text.length(); // n is length of text

int m = pattern.length(); // m is length of pattern

int j;

for(int i=0; i <= (n-m); i++) {

j = 0;

while ((j < m) && (text.charAt(i+j)==

pattern.charAt(j))) {

j++;

}

if (j == m)

return i; // match at i

}

return -1; // no match

} // end of brute()

(Source: Slides on Pattern Matching by Dr. Andrew Davidson

and updated by Dr. Rinaldi Munir)

C. Knuth-Morris-Pratt Algorithm

 The Knuth-Morris-Pratt Algorithm, which was

conceived by Donald Knuth and Vaughan Pratt, and

independently by James H. Morris. It searches the pattern P in

the text T from left-to-right. However, it shifts the pattern P

better than the brute force algorithm. Whenever the Knuth-

Morris-Pratt Algorithm detects a mismatch, some of the

characters in the text of the next window is already known.

The algorithm finds the most we can shift the pattern to avoid

wasteful comparisons, which is the largest proper prefix of P[0

.. j-1] that is also a suffix of P[1 .. j-1].

An example of this case is:

Text:

Pattern:

. . c d c c d y

 c d c c d c

 c d c c d c

 Find the largest prefix (start) of “cdccd” which is also

the suffix(end) of “cdccd”. We find that the answer is “cd”.

The number of shifts is the length of pattern subtracted by the

length of the largest prefix of pattern that matches the text

which is also the suffix of pattern that matches the text. In this

case, the number of shifts is 3 (since 5 - 2 = 3).

 Knuth-Morris-Pratt Algorithm uses a Border

Function in which the algorithm preprocesses the pattern to

find matches of prefixes of the pattern with the pattern itself.

First, we initialize the variable j with the mismatch position in

pattern P, initialize the variable k with the position before the

mismatch (k = j - 1). The border function b(k) is the size of the

largest prefix of P[0 .. k] that is also a suffix of P[1 .. k].

Another name for the border function of Knuth-Morris-Pratt

algorithm is failure function. An example of the use of Knuth-

Morris-Pratt Border Function is

Pattern: cdcccd

j = 012345

j 0 1 2 3 4 5

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

P[j] c d c c d c

k - 0 1 2 3 4

b(k) - 0 0 1 1 2

An example of the usage of Knuth-Morris-Pratt algorithm is:

Text: bcbdbbcbdbc

Pattern: bcbdbc

b c b d b b c b d b c

1 2 3 4 5 6

b c b d b c

 7

 b c b d b c

 8 9 10 11 12 13

 b c b d b c

This means there are 13 comparisons until the word is found.

Below is the result which is generated by the border function.

j 0 1 2 3 4 5

P[j] 0 0 1 0 1 0

 Parts of the Knuth-Morris-Pratt algorithm has a time

complexity of:

• Calculating the border function: O(m)

• String searching O(n)

 Therefore, the Knuth-Morris-Pratt Algorithm has a

time complexity of O(m+n), which is faster than brute-force

(which has a time complexity of O(mn).

 The Knuth-Morris-Pratt Algorithm in Java is shown

below:

public static int kmpMatch(String text, String pattern) {

int n = text.length();

int m = pattern.length();

int fail[] = computeFail(pattern);

int i=0;

int j=0;

while (i < n) {

if (pattern.charAt(j) == text.charAt(i)) {

if (j == m - 1)

return i - m + 1; // match

i++;

j++;

} else if (j > 0)

j = fail[j-1];

else

i++;

}

return -1; // no match

} // end of kmpMatch()

public static int[] computeFail(String pattern) {

int fail[] = new int[pattern.length()];

fail[0] = 0;

int m = pattern.length();

int j = 0;

int i = 1;

while (i < m) {

if (pattern.charAt(j) == pattern.charAt(i)) {

//j+1 chars match

fail[i] = j + 1;

 i++;

j++;

} else if (j > 0) // j follows matching prefix

j = fail[j-1];

else { // no match

fail[i] = 0;

i++;

}

}

(Source: Slides on Pattern Matching by Dr. Andrew Davidson

and updated by Dr. Rinaldi Munir)

D. Boyer-Moore Algorithm

 The Boyer-Moore pattern matching algorithm is a

pattern matching algorithm made by Robert S. Boyer and J

Sthrother Moore. It involves two techniques, the looking-glass

technique, which is done by finding the pattern P in the text T

by checking with the pattern P from right to left, starting from

the end of the text T, and the character-jump technique, which

is done when a mismatch occurs at T[i] == x, in which the

character in the pattern P[j] isn’t the same as T[i]. There are 3

possible cases:

1. If the pattern P has x, then shift the pattern until x in

the pattern and in the text T is parallel to each other.

2. If the pattern P has x, however if a shift right to the

last occurrence isn’t possible, then the pattern P is

shifted right by 1 character.

3. If both previous cases didn’t work, then jump pattern

so that it passes x.

 Boyer-Moore string matching algorithm also has a

Last Occurrence Function L() to preprocess the pattern P and

the alphabet A to map all the letters in A to integers.

An example of the usage of Boyer-Moore Algorithm is as

follows:

Text: abacaabacab

Pattern: abacab

a b a c a a b a d a b a c a d

 1

a b a c a b

 4 3 2

 a b a c a b

 5 12 11 10 9 8 7

 a b a c a b a b a c a d

 6

 a b a c a b

There are 12 comparisons in total.

x a b c d

L(x) 4 5 3 -1

 In an average case, shown above, the time

complexity of Boyer-Moore algorithm is O(m + n), which is

equal to the time complexity of Knutt-Morris-Pratt algorithm.

However, the Boyer-Moore algorithm has a worst case

running time of O(mn+A), which happens when the first

character in the pattern P doesn’t exist in text T and text T

only contain the same character as the last characters in

pattern P, since it will match from the last character until the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

first, and failing to match the text every time, and will

continue to do so until the pattern goes to the first string.

Text: “zzzzzzzz”

Pattern: “yzzzzz”

z z z z z z z z z

6 5 4 3 2 1

y z z z z z

 12 11 10 9 8 7

 y z z z z z

 18 17 16 15 14 13

 y z z z z z

 24 23 22 21 20 19

 y z z z z z

 The best case of Boyer-Moore algorithm is O(n/m),

which happens when the algorithm found a character that

appears in text and doesn’t exist in the pattern before that

position. Then, because the character doesn’t exist in the

pattern before that position, the algorithm shifts the pattern

past to the position and then instantly gets a perfect match of a

pattern.

An example of a case is:

Text: defgcababa

Pattern:ababa

d e f g c a b a b a

 1

a b a b a

 6 5 4 3 2

 a b a b a

The Boyer-Moore Algorithm in Java is shown below:

public static int bmMatch(String text, String pattern) {

int last[] = buildLast(pattern);

int n = text.length();

int m = pattern.length();

int i = m-1;

if (i > n-1) return -1; // no match if pattern is

// longer than text

int j = m-1;

do {

if (pattern.charAt(j) == text.charAt(i))

if (j == 0)

return i; // match

else { // looking-glass technique

i--;

 j--;

}

else { // character jump technique

int lo = last[text.charAt(i)]; //last

//occ

i = i + m - Math.min(j, 1+lo);

j = m - 1;

}

} while (i <= n-1);

return -1; // no match

} // end of bmMatch()

(Source: Slides on Pattern Matching by Dr. Andrew Davidson

and updated by Dr. Rinaldi Munir)

E. Dynamic Programming

Dynamic Programming is an optimization of recursion.

Optimization can be done if there is a recursive solution that

has repeated calls for inputs. Dynamic programming involves

storing results of subproblems so that recompute isn’t needed.

Dynamic programming is able to reduce time complexities

from exponential to polynomial. The characteristics for

problems that can be solved using Dynamic Programming,

are, the problem can be divided into a number of stages, which

in every stage, only one decision can be made, and each stage

consists of states, which are various possible inputs, that are

connected to that stage.

One common problem that can be solved using Dynamic

Programming is the similarity between strings, which can be

used to detect plagiarism. A method that can be used is edit

distance

F. Edit Distance Dynamic Programming Algorithm

Edit distance algorithm aims to find the minimum edit

distance between two strings. In this algorithm, in order to

search for the sequence of edits from the start string to the

final string, there are four important points.

• Initial State, which is the word that is going to be

transformed

• Operators, which include:

o Insertion of character

▪ Cost = D(m , n) = D(m, n – 1) + 1

o Deletion of character

▪ Cost = D(m, n) = D(m – 1, j) + 1

o Substitution of character

▪ Cost = D(m, n) = D(m – 1, n – 1) +

1

• Final state, which is the word that is the output of

transformation

• The cost produced to change one string to become the

other string is minimum.

The idea is that if we are given 2 strings m and n

• If the last characters of the two strings match, nothing

is changed and the program recurs for length m-1 and

n-1

• Else, we compute the minimum cost of insert, delete

and substitute and take the minimum of the three

values.

An example is comparing “cart” to “march”.

EditDistance Ø M A R C H

Ø 0 1 2 3 4 5

C 1 1 2 3 3 5

A 2 2 1 2 3 4

R 3 3 2 1 2 3

T 4 4 3 2 2 3

Assume Cell is labeled (X,Y), with X is horizontal

(corresponds to ØMARCH) and Y is vertical (corresponds
to ØCART)

1st Column

Cell (Ø, Ø) = 0

Cell (Ø, C) = Cell (Ø, Ø) + 1 = 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Cell (Ø, A) = Cell (Ø, C) + 1 = 2

Cell (Ø, R) = Cell (Ø, A) + 1 = 3

Cell (Ø, T) = Cell(Ø, R) + 1 = 4

1st Row

Cell (M, Ø) = Cell(Ø, Ø) + 1 = 1

Cell (A, Ø) = Cell(M, Ø) + 1 = 2

Cell (R, Ø) = Cell(A, Ø) + 1 = 3

Cell (C, Ø) = Cell(R, Ø) + 1 = 4

Cell (H, Ø) = Cell(C, Ø) + 1 = 5

2nd Row

Cell (M, C) = 1

Cell (A, C) = Cell (M, C) + 1 = 2

Cell (R, C) = Cell (A, C) + 1 = 3

Cell (C, C) = Cell (R, C) + 0 = 3

Cell (H, C) = Cell (C, C) + 1 = 4

3rd Row

Cell (M, A) = Cell(M, C) + 1 = 2

Cell (A, A) = Cell (M, C) + 0 = 1

Cell (R, A) = Cell (A, A) + 1 = 2

Cell (C, A) = Cell (R, A) + 1 = 3

Cell (H, A) = Cell (C, A) + 1 = 4

4th Row

Cell (M, R) = Cell (M, A) + 1 = 3

Cell (A, R) = Cell (A, A) + 1 = 2

Cell (R, R) = Cell (A, A) + 0 = 1

Cell (C, R) = Cell (R, R) + 1 = 2

Cell (H, R) = Cell (C, R) + 1 = 3

5th Row

Cell (M, T) = Cell (M, R) + 1 = 4

Cell (A, T) = Cell (A, R) + 1 = 3

Cell (R, T) = Cell (R, R) + 1 = 2

Cell (C, T) = Cell (R, R) + 1 = 2

Cell (H, T) = Cell (C, R) + 1 = 3

The time complexity of this algorithm is O (m x n) where m is

the character length of one string and n is the character length

of the other string.

III. Application of String-Searching Algorithm for Exact

String Matching in Multilingual Plagiarism Checker

I will demonstrate the application of a Bilingual Plagiarism

Checker, using a test case for Brute-Force Algorithm, Knuth-

Morris-Pratt Algorithm and Boyer Moore Algorithm. As for

the languages, this time I will use Indonesian and English. The

Plagiarism checker will use a database of translations and

thesaurus. The programming language used to create this

application is Python 3.7.3.

A. Problem Definition

Given an input string pattern P, we have to determine whether

a text includes an exact copy or an exact translation copy of a

text T in the database.

In this problem, the text in the database is

Meskipun Joker direncanakan untuk dibunuh selama

penampilan awalnya, ia terhindar dari intervensi editorial,

yang memungkinkan karakter untuk bertahan sebagai musuh

utama Batman."

An example input is

“Although the Joker was planned to be killed off during his

initial appearance, he was spared by editorial intervention,

allowing the character to endure as the archenemy of the

Batman.”

B. Solving the Problem

First, the language in the database has to be found out in order

for the translator to be able to translate into the appropriate

language. By using the googletrans translator database in

python, we can identify the language of the text.

from googletrans import Translator

translator = Translator()

inputText = “Although the Joker was planned to be killed off

during his initial appearance, he was spared by editorial

intervention, allowing the character to endure as the

archenemy of the Batman.”

print(translator.detect(inputText))

(Python code to use googletrans translator database to detect

language)

The output should be as follows:

Detected(lang=id, confidence=0.86180246)

Since the input text is in a different language from the text in

the database, a translator must be used before the string

matching algorithm. In order to do that, I will use the

translation library in order to translate the text to Indonesian,

which is the language that is used by the text in the database.

translation = translator.translate(dest='id’)

Using the python code, the inputted text will be translated to

Indonesian, and the result is as follows:

“Meskipun Joker direncanakan untuk dibunuh selama

penampilan awalnya, ia terhindar dari intervensi editorial,

yang memungkinkan karakter untuk bertahan sebagai musuh

utama Batman."

After translating, we can then use any implementation of the

string-searching algorithm to find the text in the database that

exactly matches the input text.

The implementation is as follows.

Brute-Force String-Searching Algorithm

def BruteForceSearch(text, pattern):

 M = len(pattern)

 N = len(text)

 for i in range(N - M + 1):

 j = 0

 for j in range(0, M):

 if (text[i + j] != pattern[j]):

 break

 if (j == M - 1):

 print("Pattern found at index ", i)

Knutt-Morris-Pratt String-Searching Algorithm

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

def KMPMatch(pattern, text):

 M = len(pattern)

 N = len(text)

 fail = [0]*M

 j = 0

 computeFail(pattern, M, fail)

 i = 0

 while i < N:

 if pattern[j] == text[i]:

 i += 1

 j += 1

 if j == M:

 print("Pattern found at index " + str(i-j))

 j = fail[j-1]

 elif i < N and pattern[j] != text[i]:

 if j != 0:

 j = fail[j-1]

 else:

 i += 1

def computeFail(pattern, M, fail):

 fail[0] = 0

 i = 1

 j = 0

 while i < M:

 if pattern[i]== pattern[j]:

 j += 1

 fail[i] = j

 i += 1

 else:

 if j != 0:

 j = fail[j-1]

 else:

 fail[i] = 0

 i += 1

Boyer-Moore String-Searching Algorithm

def bmMatch(text, pattern):

 last = buildLast(pattern)

 n = len(text)

 m = len(pattern)

 i = m-1;

 if (i > n-1):

 return -1 # no match if pattern is

 # longer than text

 j = m-1;

 while (i < n):

 if (pattern[j] == text[i]):

 if (j == 0):

 return (“Pattern found at index “ + str(i)) #match

 else : #looking glass technique

 i -=1

 j -=1

 else : #character juml algoritma

 lo = last[text[i]]

 i = i + m - min(j, 1 + lo)

def buildLast(pattern):

 #/* Return array storing index of last occurrence of

each ASCII char in pattern. */

 last = {} #ASCII char set

 for i in range(128):

 last[i] = -1 #initialize array

 for i in range(len(pattern)):

 last[pattern[i]] = i

 return last

These string-matching algorithms are sufficient to solve if the

plagiarizer just copied the text into the translator. However,

the problem is that these algorithms couldn’t match the whole

string in the database, since if the database contains a word

that is different, the pattern cannot fully match. Therefore,

another way to check if the input text is a plagiarized text is to

use a different algorithm strategy, which is Dynamic

Programming.

IV. Application of Edit Distance Dynamic Programming

Algorithm in Multilingual Plagiarism Checker

I will demonstrate the application of a Multilingual Plagiarism

Checker, using a test case for Minimum Edit Dis. As for the

languages, this time I will use Indonesian and German. The

Plagiarism checker will use a database of translations and

thesaurus. The programming language used to create this

application is Python 3.7.3.

A. Problem Description

Given an input string pattern P, we have to determine whether

a text is similar to the text T.

In this problem, the text in the database is :

"Joker tidak memiliki kemampuan manusia super, alih-alih

menggunakan keahliannya di bidang teknik kimia untuk

mengembangkan ramuan beracun atau mematikan, dan

persenjataan tematik, termasuk kartu bermain berujung silet,

buzzers yang mematikan, dan bunga kerah yang

menyemburkan asam."

And the input is

“Der Joker verfügt nicht über übermenschliche Fähigkeiten.

Stattdessen nutzt er sein Fachwissen in der chemischen

Verfahrenstechnik, um giftige oder tödliche Inhaltsstoffe und

thematische Waffen zu entwickeln, darunter Spielkarten mit

Rasiermessern, tödliche Summer und Kragenblüten mit Säure.

Obwohl geplant war, dass der Joker während seines ersten

Auftritts getötet wurde, überlebte er die redaktionelle

Intervention, wodurch der Charakter als Batman Hauptfeind

überleben konnte.”

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

B. Solving the Problem

First, we use the translator database to detect the language of

the word in the database.

from googletrans import Translator

translator = Translator()

test_Database = "Joker tidak memiliki kemampuan manusia

super, alih-alih menggunakan keahliannya di bidang teknik

kimia untuk mengembangkan ramuan beracun atau

mematikan, dan persenjataan tematik, termasuk kartu bermain

berujung silet, buzzers yang mematikan, dan bunga kerah

yang menyemburkan asam."

print(translator.detect(testDatabase))

The result will be as follows:

Detected(lang=id, confidence=0.86244613)

Which means the language of the text in the database is

Indonesian, because the confidence is about 86%.

In order to know how similar the input text is, we can use

Minimum Edit Distance. It is implemented in python with this

algorithm. a is length of pattern P and b is length of text T.

def editDistance(pattern, text, a, b):

 table = [[0 for x in range(b+1)] for x in range(a+1)]

 for i in range(a+1):

 for j in range(b+1):

 if i == 0:

 table[i][j] = j

 elif j == 0:

 table[i][j] = i

 elif str1[i-1] == str2[j-1]:

 table[i][j] = table[i-1][j-1]

 else:

 table[i][j] = 1 + min(dp[i][j-1], # Insert

 table[i-1][j], # Remove

 table[i-1][j-1]) # Substitute

 return table[a][b]

Then we can use the algorithm

print((editDistance(test_Database,

testText.text,len(test_Database),

len(testText.text)))/len(testText.text))

Which is an implementation of

The smallest edit distance divided by the length of the

database text, in order to find the similarity of the string.

The result is

0.7365145228215768

Which means 73% similarity. It means that the input text is

quite plagiarized since it has quite a lot of similarity to the

text.

V. Conclusion

Therefore, the translator database, along with String-Matching

Algorithm, such as Brute-Force String-Matching Algorithm,

Knutt-Morris-Pratt String-Matching Algorithm and Boyer-

Moore String-Matching Algorithm can be used to detect

translation plagiarism if the string is exact-matching after

being translated, and Minimum Edit Distance Dynamic

Programming Algorithm can be used to find similarities

between two strings, which can be used to find plagiarism if

the similarity that is found after the input text has already been

translated is high.

VI. Acknowledgement

The author is grateful to The One Almighty God for the

blessing that has been given so that this paper can be finished

successfully. The author is also grateful to Dr. Masayu Leylia

Khodra ST,MT, Dr. Ir. Rinaldi Munir, MT. and Dr. Nur Ulfa

Maulidevi, ST, M.Sc. our lecturers in Algorithm Strategies

Course, for the knowledge and the time which are shared with

the college students attending the course. The author is also

grateful for the support from the author’s family and friends.

REFERENCES

[1] Davison Andrew, Pattern Matching, 2006 (updated by Rinaldi Munir),
diakses 26 April 2019

[2] https://www.geeksforgeeks.org/naive-algorithm-for-pattern-searching/
diakses 26 April 2019

[3] https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-

searching/ diakses 26 April 2019
[4] https://www.geeksforgeeks.org/algorithms-gq/pattern-searching/ diakses

26 April 2019

[5] https://www.geeksforgeeks.org/dynamic-programming/ diakses 26 April
2019

[6] https://web.stanford.edu/class/cs124/lec/med.pdf diakses 26 April 2019

[7] https://smallbusiness.chron.com/cut-copy-paste-mean-word-processing-
66264.html diakses 26 April 2019

[8] https://www.geeksforgeeks.org/edit-distance-dp-5/ diakses 26 April

2019

[9] https://www.plagiarism.org/article/what-is-plagiarism diakes 26 April

2019

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Ignatius Timothy Manullang - 13517044

https://www.geeksforgeeks.org/naive-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/boyer-moore-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/algorithms-gq/pattern-searching/
https://www.geeksforgeeks.org/dynamic-programming/
https://web.stanford.edu/class/cs124/lec/med.pdf%20diakses%2026%20April%202019
https://smallbusiness.chron.com/cut-copy-paste-mean-word-processing-66264.html%20diakses%2026%20April%202019
https://smallbusiness.chron.com/cut-copy-paste-mean-word-processing-66264.html%20diakses%2026%20April%202019
https://www.geeksforgeeks.org/edit-distance-dp-5/
https://www.plagiarism.org/article/what-is-plagiarism

