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Abstract—The longest path problem is the problem of finding 
a path which will result in the maximum length out of all paths 
possible in a given graph. Its useful applications include giving the 
critical path of a graph and Static Timing Analysis (STA) in 
electronical design automation. Unlike that of Shortest Path 
Problem, the longest path problem is an NP-Complete problem, 
except for cases where the given graphs are of directed acyclic 
graphs which has linear time solution.  
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I.  INTRODUCTION  

The longest path problem is the problem of finding the path 
with maximum length of a given graph. It searches for a vertex 
to start with, such that when it travels to a certain end node, it 
has travelled all the vertices in the graph with the sum of the 
distance travelled being the maximum out of all other paths in 
other possibilities. 

One of the uses of solving the longest path in a graph is to 
determine the critical path of that graph. A critical path is usually 
used for Critical Path Analysis (CPA) to help manage 
scheduling of complex projects. [1] The critical path method has 
been used in a variety of projects, from construction, aerospace 
and defense to software and product development, engineering, 
plant maintenance and more. 

The longest path problem is not as popular as its opposite, 
the shortest path problem. Both problems are very different, in 
ways that are not just the level of optimization (minimum or 
maximum length). There are a lot of algorithms to determine the 
shortest path between two points of location such as: Dijkstra’s 
Algorithm, Breadth-First Search (BFS), the A* algorithm, etc.  

The shortest path problems are fairly easy to solve and can 
be solved in polynomial time, so it is categorized as a P problem. 
Solving the longest path problem, however, is not as easy as the 
shortest path.  

One answer may state that the answer to the longest path 
problem should be infinite which is caused by infinite 
loops/cycle in a graph. In this discussion, the definition of 
longest path problem is limited to finding a simple path within a 
graph, with simple meaning that all the vertices in a graph is 
visited only once, so that there are no infinite cycles to answer 
the longest path problem.  

II. P, NP, AND NP-COMPLETE PROBLEMS 

In the world of Computer Science, problems can be 
classified into 2 types based on the time needed to solve the 
problem: Polynomial-time problems (P problem) and the 
nondeterministic polynomial-time (NP problem). What 
distinguishes between P problem and NP problem depends on 
the time an algorithm takes to solve them. If the problem can be 
solved in polynomial time, it is categorized as a P problem, and 
if there are no known algorithm that can solve the problem in 
polynomial time, then it is considered an NP problem. The 
definition of polynomial time to classify as a P problem is [2] “if 
there exists a polynomial function p(n) such that the algorithm 
can solve any instance of size n in a time O(p(n))”. Generally, 
problems that are easy to solve and easy to verify are considered 
as P problems, whereas the ones that are hard to solve but easy 
to check are considered NP problems.  

The most difficult of NP problems can also be categorized as 
a group called the NP-Complete problems or NPC.  

 

Figure 1.1 the P, NP, and NPC illustrated as Venn diagram 

A few popular NP-Complete problems in Computer Science 
are: Travelling Salesperson Problem, Knapsack Problem, 
Hamiltonian Path Problem and Graph Coloring Problem. Games 
such as Sudoku and Minesweeper are also considered NP-
Complete problems. 

NP-Complete problems can represent every NP problem 
well. This is most interesting to computer scientists because if it 
can be proven that an NPC problem can be reduced to being P 
then that would lead to conclusion that every NP problem are 
also P. Even though the question “Does P equals NP?” has not 
been given a definite answer, the majority of computer scientists 
believe that P does not equal NP.  

A few other sources might say that the longest distance 
problem is an NP-hard problem. [3] A problem is NP-hard if an 
algorithm for solving it can be translated into one for solving any 
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NP-problem (nondeterministic polynomial time) problem. NP-
Complete is a subset of NP-Hard. 

 

Figure 1.2 N, NP, NPC, and NP-Hard as Venn Diagram 

III. ALGORITHMS FOR THE LONGEST PATH PROBLEM 

The Longest path problem in general is a NP-Complete 
Problem because there are no found algorithm to solve the 
problem in a Hamiltonian graph within polynomial time. 
However, an exception is made for directed acyclic graph. The 
longest path in a directed acyclic graph can be solved in linear 
time. 

In below explanation, every algorithm is used only for 
directed acyclic graph. Topological sort can be used to find the 
longest path. With a few modifications, Dijkstra’s Algorithm 
can be used to find the longest path in a tree or directed acyclic 
graphs.  

 

Figure 1.3 Example of a graph 

A. Topological Sort 

Below are the more detailed steps of finding the solution of 
a graph with n vertices using topological sort: 

1. create an array of distance of size n and initialize the 
elements with negative infinity, except for the vertex s 
(source vertex) distance[s] = 0 

2. Use topological sort to sort the vertices of the graph 

3. For every vertex v in graph, and for every adjacent 
vertex u of vertex v, check if distance[v] is smaller than 
distance[u] + weight(v,u), if true, then initialize 
distance[v] with the value of distance[u] + weight(v,u) 

Figure 1.3 can be used as an example. Figure 1.4 shows the 
topological graph sorted from Figure 1.3 

 

 

Figure 1.3 Topological Graph of the previous figure 

For this example, lets say we store the vertices of the 
topological graph in a stack. While the stack is not empty, 
check for every array of distance, if it is not NINF (Negative 
Infinity), then check every other vertices v adjacent to it to 
see if distance[v] is smaller than distance[u] + weight(v,u). 

At the start, because we initialized all distance except for s 
as NINF, we will check every adjacent vertices of s, to find 
that all the distance are smaller than 0. This would mean that 
the distance[v] will be replaced by the weight of (v,u) + 
NINF.  

The process continues and the result of the longest distance 
in a graph will be stored in the array of distance. 

 

Below is a C++ source code to calculate the longest distance: 

void topologicalSortUtil(int v, bool 
visited[],  

                                
stack<int>& Stack)  

{  

    // Mark the current node as visited  

    visited[v] = true;  

   

    // Recur for all the vertices 
adjacent to this vertex  

    list<AdjListNode>::iterator i;  

    for (i = adj[v].begin(); i != 
adj[v].end(); ++i) {  

        AdjListNode node = *i;  

        if (!visited[node.getV()])  

            
topologicalSortUtil(node.getV(), visited, 
Stack);  

    }  

   

    // Push current vertex to stack 
which stores topological  

    // sort  

    Stack.push(v);  
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} 

void Graph::longestPath(int s)  

{  

    stack<int> Stack;  

    int dist[V];  

   

    // Mark all the vertices as not 
visited  

    bool* visited = new bool[V];  

    for (int i = 0; i < V; i++)  

        visited[i] = false;  

   

    // Call the recursive helper 
function to store Topological  

    // Sort starting from all vertices 
one by one  

    for (int i = 0; i < V; i++)  

        if (visited[i] == false)  

            topologicalSortUtil(i, 
visited, Stack);  

   

    // Initialize distances to all 
vertices as infinite and  

    // distance to source as 0  

    for (int i = 0; i < V; i++)  

        dist[i] = NINF;  

    dist[s] = 0;  

   

    // Process vertices in topological 
order  

    while (Stack.empty() == false) {  

        // Get the next vertex from 
topological order  

        int u = Stack.top();  

        Stack.pop();  

   

        // Update distances of all 
adjacent vertices  

        list<AdjListNode>::iterator i;  

        if (dist[u] != NINF) {  

            for (i = adj[u].begin(); i 
!= adj[u].end(); ++i)  

                if (dist[i->getV()] < 
dist[u] + i->getWeight())  

                    dist[i->getV()] = 
dist[u] + i->getWeight();  

        }  

    }  

   

    // Print the calculated longest distances  

    for (int i = 0; i < V; i++)  

        (dist[i] == NINF) ? cout << "INF " : 
cout << dist[i] << " ";  

} 

 

B. Dijkstra’s Algorithm 

The Dijkstra’s Algorithm is made by Edsger Dijkstra, who 
published a highly detailed description of the development of a 
depth-first backtracking algorithm. In order to use Dijkstra’s 
algorithm to find the longest path of a directed acyclic graph, it 
is needed to negate the length 𝑐  into −𝑐 . The rest of the 
algorithm remains the same, with finding the shortest path of the 
modified graph as the main goal in the Dijkstra’s algorithm. 

The steps for a Dijkstra Algorithm are as follows: 

1. Mark your selected initial node with a current distance 
of 0 and the rest with infinity. 

2. Set the non-visited node with the smallest current 
distance as the current node C. 

3. For each neighbour N of your current node C: add the 
current distance of C with the weight of the edge 
connecting C-N. If it's smaller than the current distance 
of N, set it as the new current distance of N. 

4. Mark the current node C as visited. 

5. If there are non-visited nodes, go to step 2. 

 

Here are step by step illustration for the Djikstra Algorithm 
for the shortest route: 
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Below is a source code for Djikstra Algorithm using Python 
programming language: 

# Python program for Dijkstra's single   

# source shortest path algorithm. The 
program is   

# for adjacency matrix representation of 
the graph  

   

# Library for INT_MAX  

import sys  

   

class Graph():  

   

    def __init__(self, vertices):  

        self.V = vertices  

        self.graph = [[0 for column in 
range(vertices)]   

                      for row in 
range(vertices)]  

   

    def printSolution(self, dist):  

        print "Vertex tDistance from 
Source" 

        for node in range(self.V):  

            print node,"t",dist[node]  

   

    # A utility function to find the 
vertex with   

    # minimum distance value, from the set 
of vertices   

    # not yet included in shortest path 
tree  

    def minDistance(self, dist, sptSet):  

   

        # Initilaize minimum distance for 
next node  

        min = sys.maxint  

   

        # Search not nearest vertex not in 
the   

        # shortest path tree  

        for v in range(self.V):  

            if dist[v] < min and sptSet[v] 
== False:  

                min = dist[v]  

                min_index = v  

   

        return min_index  

   

    # Funtion that implements Dijkstra's 
single source   

    # shortest path algorithm for a graph 
represented   

    # using adjacency matrix 
representation  
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    def dijkstra(self, src):  

   

        dist = [sys.maxint] * self.V  

        dist[src] = 0 

        sptSet = [False] * self.V  

   

        for cout in range(self.V):  

   

            # Pick the minimum distance 
vertex from   

            # the set of vertices not yet 
processed.   

            # u is always equal to src in 
first iteration  

            u = self.minDistance(dist, 
sptSet)  

   

            # Put the minimum distance 
vertex in the   

            # shotest path tree  

            sptSet[u] = True 

   

            # Update dist value of the 
adjacent vertices   

            # of the picked vertex only if 
the current   

            # distance is greater than new 
distance and  

            # the vertex in not in the 
shotest path tree  

            for v in range(self.V):  

                if self.graph[u][v] > 0 
and sptSet[v] == False and  

                   dist[v] > dist[u] + 
self.graph[u][v]:  

                        dist[v] = dist[u] 
+ self.graph[u][v]  

   

        self.printSolution(dist)  

   

# Driver program  

g  = Graph(9)  

g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],  

           [4, 0, 8, 0, 0, 0, 0, 11, 0],  

           [0, 8, 0, 7, 0, 4, 0, 0, 2],  

           [0, 0, 7, 0, 9, 14, 0, 0, 0],  

           [0, 0, 0, 9, 0, 10, 0, 0, 0],  

           [0, 0, 4, 14, 10, 0, 2, 0, 0],  

           [0, 0, 0, 0, 0, 2, 0, 1, 6],  

           [8, 11, 0, 0, 0, 0, 1, 0, 7],  

           [0, 0, 2, 0, 0, 0, 6, 7, 0]  

          ];  

   

g.dijkstra(0);  

   

# This code is contributed by Divyanshu 
Mehta 

 

IV. CONCLUSION 

 
The longest path problem is the problem of finding a path 
which will result in the maximum length out of all paths 
possible in a given graph.  

Its useful applications include giving the critical path of a 
graph which can be used for planning of complex projects 
and Static Timing Analysis (STA) in electronical design 
automation.  

Unlike that of Shortest Path Problem, the longest path 
problem is an NP-Complete problem, except for cases where 
the given graphs are of directed acyclic graphs which has 
linear time solution. 

There are algorithms to solve directed acyclic graphs. Using 
Topological sorting or Modified Djikstra’s Algorithm, the 
longest distance of a graph can be found. Both algorithm can 
be used to find the shortest route for graph, but also can be 
used to found the longest route. 
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