
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

The Longest Path Problem: an NP-Complete
Example

Eginata Kasan / 13517030
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517030@std.stei.itb.ac.id - eginatakasan@gmail.com

Abstract—The longest path problem is the problem of finding
a path which will result in the maximum length out of all paths
possible in a given graph. Its useful applications include giving the
critical path of a graph and Static Timing Analysis (STA) in
electronical design automation. Unlike that of Shortest Path
Problem, the longest path problem is an NP-Complete problem,
except for cases where the given graphs are of directed acyclic
graphs which has linear time solution.

Keywords— nondeterministic polynomial; longest path; graph;
algorithm

I. INTRODUCTION

The longest path problem is the problem of finding the path
with maximum length of a given graph. It searches for a vertex
to start with, such that when it travels to a certain end node, it
has travelled all the vertices in the graph with the sum of the
distance travelled being the maximum out of all other paths in
other possibilities.

One of the uses of solving the longest path in a graph is to
determine the critical path of that graph. A critical path is usually
used for Critical Path Analysis (CPA) to help manage
scheduling of complex projects. [1] The critical path method has
been used in a variety of projects, from construction, aerospace
and defense to software and product development, engineering,
plant maintenance and more.

The longest path problem is not as popular as its opposite,
the shortest path problem. Both problems are very different, in
ways that are not just the level of optimization (minimum or
maximum length). There are a lot of algorithms to determine the
shortest path between two points of location such as: Dijkstra’s
Algorithm, Breadth-First Search (BFS), the A* algorithm, etc.

The shortest path problems are fairly easy to solve and can
be solved in polynomial time, so it is categorized as a P problem.
Solving the longest path problem, however, is not as easy as the
shortest path.

One answer may state that the answer to the longest path
problem should be infinite which is caused by infinite
loops/cycle in a graph. In this discussion, the definition of
longest path problem is limited to finding a simple path within a
graph, with simple meaning that all the vertices in a graph is
visited only once, so that there are no infinite cycles to answer
the longest path problem.

II. P, NP, AND NP-COMPLETE PROBLEMS

In the world of Computer Science, problems can be
classified into 2 types based on the time needed to solve the
problem: Polynomial-time problems (P problem) and the
nondeterministic polynomial-time (NP problem). What
distinguishes between P problem and NP problem depends on
the time an algorithm takes to solve them. If the problem can be
solved in polynomial time, it is categorized as a P problem, and
if there are no known algorithm that can solve the problem in
polynomial time, then it is considered an NP problem. The
definition of polynomial time to classify as a P problem is [2] “if
there exists a polynomial function p(n) such that the algorithm
can solve any instance of size n in a time O(p(n))”. Generally,
problems that are easy to solve and easy to verify are considered
as P problems, whereas the ones that are hard to solve but easy
to check are considered NP problems.

The most difficult of NP problems can also be categorized as
a group called the NP-Complete problems or NPC.

Figure 1.1 the P, NP, and NPC illustrated as Venn diagram

A few popular NP-Complete problems in Computer Science
are: Travelling Salesperson Problem, Knapsack Problem,
Hamiltonian Path Problem and Graph Coloring Problem. Games
such as Sudoku and Minesweeper are also considered NP-
Complete problems.

NP-Complete problems can represent every NP problem
well. This is most interesting to computer scientists because if it
can be proven that an NPC problem can be reduced to being P
then that would lead to conclusion that every NP problem are
also P. Even though the question “Does P equals NP?” has not
been given a definite answer, the majority of computer scientists
believe that P does not equal NP.

A few other sources might say that the longest distance
problem is an NP-hard problem. [3] A problem is NP-hard if an
algorithm for solving it can be translated into one for solving any

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

NP-problem (nondeterministic polynomial time) problem. NP-
Complete is a subset of NP-Hard.

Figure 1.2 N, NP, NPC, and NP-Hard as Venn Diagram

III. ALGORITHMS FOR THE LONGEST PATH PROBLEM

The Longest path problem in general is a NP-Complete
Problem because there are no found algorithm to solve the
problem in a Hamiltonian graph within polynomial time.
However, an exception is made for directed acyclic graph. The
longest path in a directed acyclic graph can be solved in linear
time.

In below explanation, every algorithm is used only for
directed acyclic graph. Topological sort can be used to find the
longest path. With a few modifications, Dijkstra’s Algorithm
can be used to find the longest path in a tree or directed acyclic
graphs.

Figure 1.3 Example of a graph

A. Topological Sort

Below are the more detailed steps of finding the solution of
a graph with n vertices using topological sort:

1. create an array of distance of size n and initialize the
elements with negative infinity, except for the vertex s
(source vertex) distance[s] = 0

2. Use topological sort to sort the vertices of the graph

3. For every vertex v in graph, and for every adjacent
vertex u of vertex v, check if distance[v] is smaller than
distance[u] + weight(v,u), if true, then initialize
distance[v] with the value of distance[u] + weight(v,u)

Figure 1.3 can be used as an example. Figure 1.4 shows the
topological graph sorted from Figure 1.3

Figure 1.3 Topological Graph of the previous figure

For this example, lets say we store the vertices of the
topological graph in a stack. While the stack is not empty,
check for every array of distance, if it is not NINF (Negative
Infinity), then check every other vertices v adjacent to it to
see if distance[v] is smaller than distance[u] + weight(v,u).

At the start, because we initialized all distance except for s
as NINF, we will check every adjacent vertices of s, to find
that all the distance are smaller than 0. This would mean that
the distance[v] will be replaced by the weight of (v,u) +
NINF.

The process continues and the result of the longest distance
in a graph will be stored in the array of distance.

Below is a C++ source code to calculate the longest distance:

void topologicalSortUtil(int v, bool
visited[],

stack<int>& Stack)

{

 // Mark the current node as visited

 visited[v] = true;

 // Recur for all the vertices
adjacent to this vertex

 list<AdjListNode>::iterator i;

 for (i = adj[v].begin(); i !=
adj[v].end(); ++i) {

 AdjListNode node = *i;

 if (!visited[node.getV()])

topologicalSortUtil(node.getV(), visited,
Stack);

 }

 // Push current vertex to stack
which stores topological

 // sort

 Stack.push(v);

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

}

void Graph::longestPath(int s)

{

 stack<int> Stack;

 int dist[V];

 // Mark all the vertices as not
visited

 bool* visited = new bool[V];

 for (int i = 0; i < V; i++)

 visited[i] = false;

 // Call the recursive helper
function to store Topological

 // Sort starting from all vertices
one by one

 for (int i = 0; i < V; i++)

 if (visited[i] == false)

 topologicalSortUtil(i,
visited, Stack);

 // Initialize distances to all
vertices as infinite and

 // distance to source as 0

 for (int i = 0; i < V; i++)

 dist[i] = NINF;

 dist[s] = 0;

 // Process vertices in topological
order

 while (Stack.empty() == false) {

 // Get the next vertex from
topological order

 int u = Stack.top();

 Stack.pop();

 // Update distances of all
adjacent vertices

 list<AdjListNode>::iterator i;

 if (dist[u] != NINF) {

 for (i = adj[u].begin(); i
!= adj[u].end(); ++i)

 if (dist[i->getV()] <
dist[u] + i->getWeight())

 dist[i->getV()] =
dist[u] + i->getWeight();

 }

 }

 // Print the calculated longest distances

 for (int i = 0; i < V; i++)

 (dist[i] == NINF) ? cout << "INF " :
cout << dist[i] << " ";

}

B. Dijkstra’s Algorithm

The Dijkstra’s Algorithm is made by Edsger Dijkstra, who
published a highly detailed description of the development of a
depth-first backtracking algorithm. In order to use Dijkstra’s
algorithm to find the longest path of a directed acyclic graph, it
is needed to negate the length 𝑐 into −𝑐 . The rest of the
algorithm remains the same, with finding the shortest path of the
modified graph as the main goal in the Dijkstra’s algorithm.

The steps for a Dijkstra Algorithm are as follows:

1. Mark your selected initial node with a current distance
of 0 and the rest with infinity.

2. Set the non-visited node with the smallest current
distance as the current node C.

3. For each neighbour N of your current node C: add the
current distance of C with the weight of the edge
connecting C-N. If it's smaller than the current distance
of N, set it as the new current distance of N.

4. Mark the current node C as visited.

5. If there are non-visited nodes, go to step 2.

Here are step by step illustration for the Djikstra Algorithm
for the shortest route:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Below is a source code for Djikstra Algorithm using Python
programming language:

Python program for Dijkstra's single

source shortest path algorithm. The
program is

for adjacency matrix representation of
the graph

Library for INT_MAX

import sys

class Graph():

 def __init__(self, vertices):

 self.V = vertices

 self.graph = [[0 for column in
range(vertices)]

 for row in
range(vertices)]

 def printSolution(self, dist):

 print "Vertex tDistance from
Source"

 for node in range(self.V):

 print node,"t",dist[node]

 # A utility function to find the
vertex with

 # minimum distance value, from the set
of vertices

 # not yet included in shortest path
tree

 def minDistance(self, dist, sptSet):

 # Initilaize minimum distance for
next node

 min = sys.maxint

 # Search not nearest vertex not in
the

 # shortest path tree

 for v in range(self.V):

 if dist[v] < min and sptSet[v]
== False:

 min = dist[v]

 min_index = v

 return min_index

 # Funtion that implements Dijkstra's
single source

 # shortest path algorithm for a graph
represented

 # using adjacency matrix
representation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

 def dijkstra(self, src):

 dist = [sys.maxint] * self.V

 dist[src] = 0

 sptSet = [False] * self.V

 for cout in range(self.V):

 # Pick the minimum distance
vertex from

 # the set of vertices not yet
processed.

 # u is always equal to src in
first iteration

 u = self.minDistance(dist,
sptSet)

 # Put the minimum distance
vertex in the

 # shotest path tree

 sptSet[u] = True

 # Update dist value of the
adjacent vertices

 # of the picked vertex only if
the current

 # distance is greater than new
distance and

 # the vertex in not in the
shotest path tree

 for v in range(self.V):

 if self.graph[u][v] > 0
and sptSet[v] == False and

 dist[v] > dist[u] +
self.graph[u][v]:

 dist[v] = dist[u]
+ self.graph[u][v]

 self.printSolution(dist)

Driver program

g = Graph(9)

g.graph = [[0, 4, 0, 0, 0, 0, 0, 8, 0],

 [4, 0, 8, 0, 0, 0, 0, 11, 0],

 [0, 8, 0, 7, 0, 4, 0, 0, 2],

 [0, 0, 7, 0, 9, 14, 0, 0, 0],

 [0, 0, 0, 9, 0, 10, 0, 0, 0],

 [0, 0, 4, 14, 10, 0, 2, 0, 0],

 [0, 0, 0, 0, 0, 2, 0, 1, 6],

 [8, 11, 0, 0, 0, 0, 1, 0, 7],

 [0, 0, 2, 0, 0, 0, 6, 7, 0]

];

g.dijkstra(0);

This code is contributed by Divyanshu
Mehta

IV. CONCLUSION

The longest path problem is the problem of finding a path
which will result in the maximum length out of all paths
possible in a given graph.

Its useful applications include giving the critical path of a
graph which can be used for planning of complex projects
and Static Timing Analysis (STA) in electronical design
automation.

Unlike that of Shortest Path Problem, the longest path
problem is an NP-Complete problem, except for cases where
the given graphs are of directed acyclic graphs which has
linear time solution.

There are algorithms to solve directed acyclic graphs. Using
Topological sorting or Modified Djikstra’s Algorithm, the
longest distance of a graph can be found. Both algorithm can
be used to find the shortest route for graph, but also can be
used to found the longest route.

ACKNOWLEDGMENT

Author would like to express her deepest appreciation to all
those who provided me the possibility to complete this report.
Thank God, for His blessings, for it is His grace that made this
paper can be finished in time. A thanks to Dr. Ir. Rinaldi Munir,
MT. for his teachings, his loving support for all the students, his
informative website, and for his ever-glowing spirit he shows
everyone in his works.

REFERENCES
[1] https://www.projectmanager.com/blog/understanding-critical-path-

project-management

[2] https://www.tutorialspoint.com/design_and_analysis_of_algorithms/desi
gn_and_analysis_of_algorithms_p_np_class.htm

[3] http://mathworld.wolfram.com/NP-HardProblem.html

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

[4] https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-
greedy-algo-7/

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 3 Desember 2017

 13517030
 Eginata Kasan

