
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Identifying Market Arbitrage Opportunity using
Pathfinding Algorithm

Yoel Susanto 13517014
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517014@std.stei.itb.ac.id

Abstract—In economics and finance, arbitrage is the activity
of buying and selling similar financial instruments on different

markets to gain margin from the difference price. Price
difference on the same asset could occur in different markets due
to various factors such as supply and demand, currency
fluctuation and political stability, this situation is known as

market inefficiencies. Arbitrage usually involve buying and
selling of similar financial instruments simultaneously at the
same time; therefore, arbitrage carries low to no risk for the

perspective trader. While arbitrage promises to produce margin
for low to no risk, it proves to be very hard to identify arbitrage

opportunity. The use of computer in High Frequency Trading

addresses market inefficiency in matter of seconds. This
condition makes it impossible for human trader to gain margin

from arbitrage. This paper will discuss on method of identifying

arbitrage opportunity using pathfinding algorithm. This solution
would enable traders to gain margin from arbitrage even in High

Frequency Trading environments.

Keywords—Arbitrage, Market, Riskless Activity, Pathfinding,
Negative Cycle

I. INTRODUCTION

Trading has been a preferred way of gaining margin. There

are many kinds of trading using various of method. Some

involve low risk and some involved high risk. In this paper we

will discuss about market arbitrage. A low risk method of
gaining capital through selling and buying of similar

instruments. We will also discuss the challenge and problems

traders face when trying to find arbitrage opportunity. We will
also propose some solutions to tackle the challenge and enable

traders to gain profit from this low risk method.

II. BACKGROUND ON MARKET ARBITRAGE

Arbitrage is the activity of buying and selling similar
financial instruments on different markets to gain margin from

the difference price. Consider a simple example case of

arbitrage as follow: the stock of a company is trading at

$100.00 on the Indonesia Stock Exchange while the same

stock of company X is trading at $100.5 at Singapore

Exchange Centre. As a trader, we could buy the stock of
company X in Indonesia Stock Exchange while at the same

time selling it at Singapore Exchange Centre. We would gain a

margin of $0.5 for every stock we trade. A more complicated

market arbitrage would be triangle arbitrage. Imagine having

three banks exchanging various kinds of currencies.

Fig 1. Example of Triangular Dependency

We could gain margin by selling and buying currency in the

order of the transaction cycle. More complicated arbitrage
would involve more than just three institutions and it poses a

challenge to actually identify and exploit them.

III. BACKGROUND ON GRAPHS

A. Definition
Graphs are discrete structures consisting of vertices and

edges that connect these vertices. There are different kinds of
graphs, depending on whether edges have directions, whether
multiple edges can connect the same pair of vertices, and

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

whether loops are allowed.[2]
Formally, graphs are denoted as

G = (V, E)
where V is a nonempty set of vertices, nodes, or points and E

is a set of edges, lines or arcs. The vertices and edges inside a
graph can represent different kind of objects and relations,
their meanings differ significantly depending on the context

where the graph is being used to represent information.
Vertices on graph are usually labelled using alphabet or

numbers or the combination of both while the edges are

usually labelled using e followed by a number. subscript
Vertices can have multiple or no edges associated with it,
while edges must have either one or two vertices associated

with it. Edges are commonly denoted as
e = (u, v)

where u and v are the vertices connected by e.

Generally, graphs are visualized using points to represent

vertices and line segments to represent edges.

Fig 2. A graph consisting of 10 vertices and 11 edges V = {1, 2, ...,
10}, E = {e1, e2, …, e11}

https://mathinsight.org/media/image/image/small_undirected_networ

k_labeled.png (accessed December 8, 2018)

B. Types of Graph

There are many ways to classify graphs. Based on the
existence of parallel edges, graphs can be classified into two
kinds:

1. Simple Graph
A simple graph is a graph with no loop or parallel

edges connecting a pair of vertices. Edges in
simple graph are concerned with the order of the

vertices they are connected to. We can safely say

that edge (u, v) is the same as edge (v, u).

Fig 3. Simple graph(left), multigraph(middle) and
pseudograph(right)

2. Multigraph
Multigraph are graphs consisting of parallel

edges. In addition, when a vertex in a graph has
edge connecting to itself, the graph is classified as

pseudograph.

Based on the whether the edge of a graph is associated with
ordered pair of vertices or not, we classify graph into two
kinds:

1. Undirected Graph
Edges in directed graph are not associated with

any order of the vertices they connected. Edge (u,

v) is the same as edge (v, u).
2. Directed Graph

On the other hand, directed graphs are graph with

edges that have direction associated with it. In this

case we say that edge (u, v) start at u and end at v.
This means that edge (u, v) is not the same as edge

(v, u).

Fig 4. Undirected and directed graph

https://www.e-education.psu.edu/geog597i_02/sites/www.e-

education.psu.edu.geog597i_02/files/Lesson8/Geog597i_Lesson8_di

rectedgraph.jpg (accessed December 8, 2018)

C. Graph Terminology
1. Adjacent

If two vertices u and v in a graph G is connected

by an edge, u and v are adjacent in G.
2. Incident

An edge is incident with both of the vertex it

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

connected.
3. Isolated Vertex

The isolated vertex in a graph is a vertex which

doesn’t have any edge incident with it.
4. Null Graph

Null graph is a graph which doesn’t contain any

edges. Nonetheless the null graph may contain

any number of vertices.
5. Degree

Degree of a vertex inside a graph is the sum of

edges associated to it.
6. Path

Path in a graph is a sequence of edges that travels

from one vertex to the other vertices.
7. Circuit

Circuit is path that begins and ends at the same

vertex.
8. Connected

Two vertices a and b inside a graph are said to be
connected if there exist a path that begins at a and

ends at b.
9. Subgraph

A subgraph H of graph G which contain a subset
of vertices that G has and also contain a subset of

the edges that G has.
10. Spanning Subgraph

A subgraph of a graph which contains all the
vertices inside the original graph is called the

spanning subgraph.
11. Cut-Set

A cut-set of a graph is a set of edges which would

cause a graph not to be connected if it is removed.
12. Weighted Graph

A graph G is called as weighted graph if edges
inside graph G has a value assigned to it instead of

just lines.
13. Special Graph

There are several kinds of special graph such as: complete

graph, regular graph and bipartite graph.

D. Representing Graphs
It is easy for human to represent graph as depicted in

pictures using dots and lines, but it is not such in the case of

representing graph in computers. As computer store data using

ones and zeros, we cannot simply draw a graph into graph.
We need to a systematic and reliable way of representing

graph such that the data could be meaningful. There are
several ways we could represent graph:

1. Adjacency Matrix
When we use adjacency matrix to represent graph,
we define a matrix A the size of N x N where N is

the number of nodes inside a graph. Suppose aij is
an element of A, aij is 1 if there exist an edge

connecting vi and vj. Otherwise, aij will equal to 0.

Fig 5. Example of a graph and its corresponding adjancency matrix

Discrete Mathematics and Its Applications, Seventh Edition, Kenneth
H Rosen, Page 669

2. Incidence Matrix
Incidence matrix focus on vertex and which edges

is it incident with. If we have a graph G = (V, E)
consisting of vertices v1, v2, …, vn and edges e1, e2,
…, em, then the incidence matrix will have a size

of n x m. Suppose mij is an element of M, mij is 1 if

ej is incident with vi and 0 otherwise.

Fig 6. Example of a graph and its corresponding incidence matrix

Discrete Mathematics and Its Applications, Seventh Edition,
Kenneth H Rosen, Page 669

E. Negative Cycle
Negative cycle is a special cycle in directed graph whose

summed values of edge weight is less than zero. This cycle

cause problem for various mainstream path finding algorithm.
Generally, path finding algorithm update the distance of a node
if it could find a path with less weight than the previously

known. The negative cycle causes the algorithm to never stop
because it could get cheaper route each time it goes through the

negative cycle, getting negative infinity for the shortest path.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Fig 7. Example of negative cycle

IV. PATH-FINDING ALGORITHM

Pathfinding algorithm are usually utilized for finding the

shortest path possible from a given point A to point B.
Different pathfinding algorithms try to achieve this in very
different ways, but generally the algorithms consider the
weights of each edge in the graph and try to find the smallest

sum for each node in the graph.

A. Bellman Ford Shortest Path

The Bellman Ford Shortest Path algorithm provide solution

to single-source shortest-paths problem. Given a node s in
directed graph G containing |V| nodes, the algorithm will
calculate the shortest distance from s to e, distance[e], for
every edge e in the graph provided there is no negative cycles

reachable from s. Here is the pseudocode for Bellman Ford SP:

for (int v = 0; v<G.V; v++)
{
 distTo[v] = double.PositiveInfinity;
}

distTo[s] = 0.0;

for (int i=0; i<|V|; i++)
{
 foreach (DirectedEdge e in G.Adj(v))
 {
 if (distTo[e.To] > distTo[v] + e.Weight)
 {
 distTo[e.To] = distTo[v] + e.Weight;
 edgeTo[e.To] = e;
 }
 }
}

Using Bellman Ford Algorithm, we could allow the graph

to have negative weight of edge. Even though the algorithm is
considered slower than Dijkstra, Dijkstra algorithm does not

work with graph containing negative weight edges. In addition,
a slight modification could be implemented to the Bellman
Ford Algorithm to enable it to detect negative cycles in a

graph.

Time Complexity = O (|V| |E|)

Space Complexity = O (|V|)

V. IDENTIFYING ARBITRAGE OPPORTUNITY USING

NEGATIVE CYCLE DETECTION

A. Modelling the Market as Directed Edge-Weighted Graph

To solve this problem using path finding algorithm, we
would first need to convert the data from the text form into a

structure we could easily process using path finding algorithm.
Below is the code for reading the input file and construct a
graph model of the market:

public EdgeWeightedDigraph(TextInput input) :
this(input.ReadInt())
{
 int E = input.ReadInt();
 for (int i = 0; i < E; i++)
 {
 int v = input.ReadInt();
 int w = input.ReadInt();
 // validation wil be done from within
AddEdge
 double weight = input.ReadDouble();
 AddEdge(new DirectedEdge(v, w, weight));
 }
}

EdgeWeightedDigraph G = new EdgeWeightedDigraph(V);
for (int v = 0; v < V; v++)
{
 name[v] = StdIn.ReadString();
 for (int w = 0; w < V; w++)
 {
 double rate = StdIn.ReadDouble();
 DirectedEdge e = new DirectedEdge(v, w, -
Math.Log(rate));
 G.AddEdge(e);
 }
}

 In this model of the data, the node inside the graphs
represent each kind of currency while the weight of each edge

represents the exchange rate between currency. The weight of
the edge is calculated using the minus of the logarithm of

original value. The reason behind using this method of
calculation is to reduce computational cost of computing the

path weight. In the original problem, we would need to do the

calculation by using multiplication operation. In the
transformed problem we could achieve the same result using
addition instead of multiplication thus making the algorithm

faster.

B. Identifying Negative Cycle in the Graph Model

To identify arbitrage opportunity in the market model, we

would need to identify negative cycle in graph model. A

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

negative cycle is reachable from the source of a graph if and
only if the LIFO Queue of the algorithm is not empty after

|V|th pass through all the edges. We first do this by identifying

the cycle in a subgraph of edges in the original graph. The code
for the creating the subgraph and finding the cycle:

private void findNegativeCycle()
{
 // edgeTo[v] = last edge on shortest s->v
path
 int V = edgeTo.Length;
 EdgeWeightedDigraph spt = new
EdgeWeightedDigraph(V);

 for (int v = 0; v < V; v++)
 if (edgeTo[v] != null) {
 spt.AddEdge(edgeTo[v]);
 }

 EdgeWeightedDirectedCycle finder = new
EdgeWeightedDirectedCycle(spt);
 cycle = finder.GetCycle();
}

private void dfs(EdgeWeightedDigraph G, int v)
{
 onStack[v] = true;
 marked[v] = true;
 foreach (DirectedEdge e in G.Adj(v))
 {
 int w = e.To;

 // short circuit if directed cycle found
 if (cycle != null) return;
 else if (!marked[w])
 {
 //found new vertex, so recur
 edgeTo[w] = e;
 dfs(G, w);
 }
 else if (onStack[w])
 {
 // trace back directed cycle
 cycle = new LinkedStack<DirectedEdge>();
 DirectedEdge eTemp = e;
 while (eTemp.From != w)
 {
 cycle.Push(eTemp);
 eTemp = edgeTo[eTemp.From];
 }
 cycle.Push(eTemp);
 return;
 }
 }
 onStack[v] = false;
}

C. Calculating Margin of Arbitrage Opportunity

After we determine that there is an arbitrage opportunity in
the market, we will need to calculate the potential margin to be

gained from the market. We do this by making a stake of an
amount of money and traverse each edge in the negative cycle
of the graph as if we are doing the trading of the financial

instruments. In doing the calculation, we reverse the effect of

the negation and logarithm by doing another negation and
exponentiation of the edge weight:

// find negative cycle
BellmanFordSP spt = new BellmanFordSP(G, 0);
if (spt.HasNegativeCycle)
{
 double stake = 1000.0;
 foreach (DirectedEdge e in spt.GetNegativeCycle())
 {
 Console.Write("{0,10:F5} {1} ", stake,
name[e.From]);
 stake *= Math.Exp(-e.Weight);
 Console.Write("= {0,10:F5} {1}\n", stake,
name[e.To]);
 }
}
else
{
 Console.WriteLine("No arbitrage opportunity");
}

D. Test Data and Results

After the exposition of the method and algorithm we are
going to be using, we are going to test how the method will

work on the test data. First, we have the test data as follow:

5
USD 1 0.741 0.657 1.061 1.005
EUR 1.349 1 0.888 1.433 1.366
GBP 1.521 1.126 1 1.614 1.538
CHF 0.942 0.698 0.619 1 0.953
CAD 0.995 0.732 0.650 1.049 1

The first number in the documents define the number of

currencies involved in the data. Each row defines the exchange

rate of a currently toward the other currency in the data. For

example, the first row, third column has value 0.741 means

0.741 euro for each US dollar. Here we present the results of
the calculation:

Fig 8. Results

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

The results show that using a capital of 1000 USD we could

gain profit around $7.

CONCLUSION

Arbitrage is a low to no risk trading activity. Although
arbitrage poses very little risk, the process of identifying

arbitrage opportunity is not trivial. To tackle this problem, we
could utilize the help of computer by building a graph model
of the market situation and using algorithm to find negative

cycle. This kind of algorithm enables personal trader to gain
profit by taking part in a low risk trading activity.

ACKNOWLEDGMENT

First, the author would like to thank God for giving the

author the ability to finish the paper. The author would also
like to thank the lecturers of Algorithm Strategies for the

guidance given during this semester. In addition, the author
would also like to thank his parents, family and friends who

have supported the author to finish the paper.

REFERENCES
[1] K. H. Rosen, Discrete Mathematics and Its Applications, 7th Edition,
2013.
[2] “Shortest Path”, https://algs4.cs.princeton.edu/44sp/, diakses pada

tanggal 26 April
[3] “Dijkstra’s Algorithm”,

http://web.stanford.edu/class/archive/cs/cs161/cs161.1176/Lectures/CS1
61Lecture11.5.pdf, diakses pada tanggal 26 April

[4] S. Robert, K, Wayne, Algorithms, 4th Edition, 2011.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Yoel Susanto - 13517014

