
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Depth First Search Algorithm for Solving Nonogram
Puzzles

Michael Ray/13517092
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13517092@std.stei.itb.ac.id

Abstract— Nonogram Puzzle is a logical picture puzzle played
on a grid with numerical hints on the top and the left side of the
grid. The hints are used to know which cell of the grid is
supposed to be colored. In this paper, I will try to explain the use
of Depth First Search (DFS) Algorithm to solve a Nonogram
Puzzle.

Keywords—Nonogram Puzzle; Depth First Search (DSF)

I. INTRODUCTION
Who doesn’t love playing good old puzzles? Many puzzles

that we know now are most likely to be a derivation of the
ones older and way more simpler. One of those simple puzzles
is the Nonogram Puzzle. It’s a simple logical grid colouring
puzzle that uses numbers as a guide to colour the grid. This
somehow simple puzzle can be intimidating sometimes
because this puzzle doesn’t have size constraint.

Nonogram Puzzle first came about at 1897, when a
Japanese graphics editor won a competition at Tokyo by
designing a grid picture using a skyscrapers lights that were
turned on or off. This led her to the idea of making a puzzle
based on filling certain cell on a grid using numbers as hints.

The gameplay is very simple, there are going to be
numbers at the left side of each row and the top each column.
Using those numbers as a guide, start choosing which cell
should be coloured and which cell should be left empty. For
example, if the number on the left side of a row is “2 4”, this
means that there should be 2 consecutive cells and 4 other
consecutive cells that should be coloured and at least one cell
is empty between the two. Nonogram Puzzles are considered
as NP-Complete problems, this means that this problem
cannot be completed in polynomial time.

This puzzle is interesting in many ways, I myself have
found this puzzle to be very interesting, and that is why I
chose this as my paper topic.

Figure 1 - Example of a nonogram puzzle
Source: https://en.wikipedia.org/wiki/Nonogram

Figure 2 - Example of a 25x25 nonogram puzzle

Source: https://www.puzzle-nonograms.com/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

1
1 5 1

1
2
1
1
3

Figure 3 - Example of a 100 by 100 nonogram puzzle

II. BASE THEORY

A. Depth First Search (DFS)
Depth First Search is an algorithm mostly used to traverse

or search along a tree or graph data structure. It starts at a
particular node, usually called the root node, and explores a
branch as far/deep as possible before going to another branch.

For example, on a graph

Figure 4 - A graph

If we use a DFS algorithm to traverse all the nodes on this

graph with A as the root node, the function will get A-B-E-D-F
then backtracks all the way to the B node then continues the
search to C, because the function will search as deep as
possible through a branch until there is no new nodes to search.

Using DFS as a solving algorithm means to make a tree
data structure with the root node representing the starting
condition, other nodes representing steps that are taken, and
leaf nodes representing possible solutions.

DFS algorithm is considered as a recursive algorithm which
uses backtracking.

B. NP-Complete Problems
NP-Complete problems or most commonly known as NPC

problems are NP (Non-deterministic Polynomial) problems that
are usually interesting and hard to solve in polynomial time.

This is how to prove that a problem is an NPC problem,
first find an NP problem that is similar to the problem that you
want to prove to be NPC, the find a way to reduce that NP
problem to the problem you have in polynomial time.

The reason why can’t we solve an NPC problem in
polynomial time and considered as the hardest problems is
because if somehow someone solved an NPC problem in
polynomial time, it means that all NP problems supposedly
could be solved in polynomial time.

C. Recursive
Recursive function is a function which call itself inside the

function. On recursive functions, there are 2 important parts:
1. The base case
2. The recursive part

In the base case, the function is stopped at some specific

point where the problem doesn’t need to be traversed
anymore. In the recursive part, the program does all the
necessary work and reduces the problem so that it will reach
the base case condition.

An example of recursive function is the Fibonacci
sequence, here the base are fib(0) = 0 and fib(1) = 1, and the
recursive part is fib(n) = fib(n-1) + fib(n-2). Here, the
recursive part is slowly going to reach the base because the
variable n will be decreased by 1 and 2 each time, which
means it will reach the number 1 and 0 at some point.

D. Backtracking
Backtracking is a process used in DFS algorithm to track

back the process to look for other possibilities. This process is
also used by recursive functions as a way to ensure the
function find every possible outcome.

III. USING DFS TO SOLVE NONOGRAM PUZZLE
My method of trying to solve the Nonogram Puzzle can be

narrowed down to 3 steps, try to solve a row of the grid then
check if that finished row complies to the column hints, if it is
fulfilled then continue to the next row else find another
possible solution for the current row, if the program can’t find
another solution for that row backtrack to the previous row. For
this paper I will use an example grid like so:

Figure 5

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

With each row there is a hint on the left side. Using that

hint try to fill the row from the leftmost cell.

Then check the column hint, if it is fulfilled continue to the
next row, here the column hint is fulfilled.

On the next row, fill the cells from the leftmost cell using
the hint.

Here as you can see, the column hints are no longer
fulfilled, so the program finds another solution for the row. For
checking the column hints, the program will only check if there
is some cell that is more than the constraint, in this example the
first column has a group of 2 cells together, while at the
column hint says there should only be 1 cell with another cell
separated.

Here the constraints are fulfilled, so the program continues
to the next row.

On the next row the program will fill the cells again from
the leftmost cell using the hints. I will skip the process to the
second last row because the column hints will not be fulfilled at
that row.

 Here as you can see, the left column hint is not fulfilled, so
the program backtracks to the previous row and finds an
alternative by shifting the first group of cells to the right, then
continues to the next row.

Here, the first and the third column hints are both violated,
so the program will backtrack to the previous row and finds
another alternative, then continues to the current row.

Here once again the column hints are violated as you can
see on the first and third column. Here the program backtracks

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

1
1 5 1

1
2
1
1
3

Figure 11

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

finds that it is still violated, then backtracks again, and this
process is repeated until the program reaches the first row.

Here finally the program continues forward. The program
will fill the cell all over again from the second row.

For this algorithm, the complexity that I have calculated is
T(n) = O(n2log(n))

The tree structure that is generated should be something

like this:

Even though the process takes a lot of time and memory
space, this algorithm is pretty much effective to solve most of
the puzzle.

Here is the execution result of the program with the input of
the grid I used in this paper.

Figure 15 - Input example

Figure 16 - Example of output from previous input

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

1
1 5 1

1
2
1
1
3

Figure 12

Figure 13

Figure 14 – State tree

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

Figure 17 - Example of input 2

Figure 18 - example of output from previous input

IV. RESULTS
Using the DFS algorithm for solving Nonogram Puzzles

could be efficient if the board size is not too big, for bigger
sizes, the program will take a lot of time backtracking which is
really inefficient.

As I have said before, this problem can’t be solved in
polynomial time. Human logic is far too complicated for a
program to copy, this is why this problem won’t be fully solved
using this algorithm, this algorithm will at most solve 80-90%
of all the puzzles.

ACKNOWLEDGMENT
I would like to express my special thanks of gratitude

to my teacher who gave me the golden opportunity to do this
wonderful project on the topic, which also helped me in doing
a lot of Research and I came to know about so many new
things I am really thankful to them.

Secondly I would also like to thank my parents and
friends who helped me a lot in finalizing this project within the
limited time frame.

REFERENCES
[1] https://stackoverflow.com/questions/813366/solving-nonograms-picross
[2] https://www.puzzlemuseum.com/griddler/gridhist.htm Accessed at 25

April 2019
[3] Munir, Rinaldi. 2006. Strategi Algoritma. Bandung: Institut Teknologi

Bandung.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2018/2019

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 April 2019

Michael Ray/13517092

