
Parsing and Evaluation of Mathematical Expresion
with Regular Expression, Recursive Descent, and

Divide and Conquer Algorithm
Ridho Pratama — 135160321

Program Studi Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,Indonesia
113516032@std.stei.itb.ac.id

Abstract—We use mathematical expressions in our daily life,
but we usually just type the expression, press enter, and then
we will get the results, and the same thing with program codes.
The compiler is able to turn the input which is a sequences of
characters, make sense of it, and make results out of it. In this
paper, author will talk about the steps taken by basic modern
compiler to be able to do that, and the supporting theories
and algorithm used like formal grammar, context-free grammar,
EBNF, AST, Regex, recursive descent, and Divide and Conquer.

Keywords—Divide and Conquer, Lexing, Parsing, Recursive
Descent, Regular Expression.

I. INTRODUCTION

In our daily life as a programmer, or at least as someone
who write codes and execute it, we usually just write it in
out favourite text editor, compile, and run the result without
thinking how the compiler, or interpreter, able to execute the
program. How it able to make sense of the codes that the
computer sees as sequences of bytes.

Nowadays, a programming language compiler or interpreter
usually do three steps. Lexing, parsing, and evaluation. Lexing
takes the sequences of bytes and turns them into sequences
of token. Parsing takes the sequences of token and then
generate abstract syntax trees. And evaluation evaluates the
program and the results.[1] The kind of evaluation that happens
usually differs by language and the language type. In compiled
language like C, the evaluation step means evaluating the
syntax tree and generating the binary executable for the target
machine, which later is executed by the machine. In the other
hand, an interpreted language like Python, the evaluation step
is generating bytecodes, and the executing the bytecodes with
the language virtual machine.

In this paper, we will look at how to parse and evaluate an
mathematical expression like 5 + 1 / 2 ˆ 3, with regular
expression for lexing, recursive descent for parsing, and Tree-
Walking Evaluation for evaluating the expression. While it
may look simple, these techniques could be expanded and
implemented further to make a simple programming language
interpreter, but with drawbacks like slow runtime.

II. THEORY

A. Formal Language and Grammar

1) Formal Language: In the field of mathematics, computer
science, and linguistic formal language is a set of strings of
symbols and a set of rules specific to it. These rules define if
a sequences of letters, symbols, or tokens are in that formal
language. These rules are usually called formal grammar.

Formal language is first studied as an attempt to describe
the grammar of natural human language. But natural human
language is too complex and full of exception that it is
impossible to describe a formal language that will fit exactly
to natural human language.

Formal language founds another use in programming lan-
guage where a certain type of formal language called context-
free language could be used to describe programming language,
which must have a solid description and have no ambiguity so
no errors or bugs could happen.

At first, after defining an grammar for a programming
language, programmers usually code the parser by hand. But
as the study of formal language for programming language
continues, computer scientist were able to found a way to
create a program that could, given a grammar, create a parser
program for that grammar, which really help.

2) Context-Free Grammar: Context-free grammar is a
certain type of formal grammar where all the rules are just
simple replacement. An example of a context-free grammar is:
Where the Greek letters are terminals, and the uppercase letters

A → α | β
B → A | A B
C → γ

Figure 1: An example of a context-free grammar

are non-terminals. In the example grammar, “B −> A | A B”
means that a non-terminal “B” could be replaced with “A” or
“A B”.

A set of strings of symbols must only consist of terminals
and could be produced from a starting symbol with the available
rules. In the example grammar, with the starting symbol “B”,
string “A B” is not a part of the grammar because it contains

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

non-terminal, string “gamma” is not in the grammar because
there is no production from “B” that could produce “gamma”,
and “alpha” is part of the grammar because there is production
that could produce that.[2]

One special point of context-free grammar is that it is context-
free and have no memory, so it only have the rules to guide
the production, and no other external influences.

Context-free grammar is the type of formal grammar used
to express the grammar used in programming languages.

3) Extended Backus-Naur Form: Extended Backus-Naur
Form or EBNF, is an alternative notation of expressing context-
free grammar, because the notation used in figure II-A2 is
rooted in the mathematical and linguistic field of formal
grammar. To make it more practical, in 1959, John Backus and
Peter Naur developed what Donald Knuth would call “Backus-
Naur Form” which is first used to describe syntax of ALGOL
58.

Later Niklaus Wirth makes some extension to the Backus-
Naur Form and later ISO adopted Wirth’s works as Extended
Backus-Naur Form (ISO/IEC 14977).

The grammar in 1 could be described in EBNF as:

〈A〉 ::= α | β ;
〈B〉 ::= 〈A〉 | 〈A〉 〈B〉 ;
〈C〉 ::= γ ;

Figure 2: Grammar in figure 1 described in EBNF

EBNF also have additional syntax to express more things
like repetition, grouping, exception, and optional parts.

In this paper, we will use EBNF to describe the grammar
for mathematical expression.

B. Lexing

Lexing in the process where a source code like “1 + 2” is
turned int sequence of tokens like

[number] 1
[p l u s] +
[number] 2
[EOF]

Figure 3: Example of tokens

While we could stuff the tokens definition into the language
grammar, it is more simple of we separate the definition of
tokens and the language grammar because then the grammar
definition could be freed from the definition of the language
tokens.[1]

A token is defined as a structure that, at the very basic
level, have two fields, type defines the type of the token, like
number, plus, or EOF etc. Then literal is the slice of
the code that corresponds to that token. And in more advance
lexer, the tokens also contains the position of the token to help
in error reporting.

In figure 3, the first token, [number] 1, have number
as the type, and 1 as the literal.

In reality, writing a lexer by hand is not that hard, but
when the definition of a token changes, we have to be very
careful in changing the corresponding code. This should not
happen very often because in programming language design,
we usually expects that definition of token to not change, but
only expanded to accommodate new token definition.

Other than writing a lexer by hand and manually code the
rules by hand, there is another way of creating a lexer, that
is by utilizing another part of formal language theory, called
regular expression.

1) Regular Expression: Regular Expression is a sequence
of characters that define a patterns. This patterns will then be
used to find matches in strings, or for string validation. Regular
Expression is created to suit matching ASCII, Unicode, or the
kind of string we usually sees when reading a text, unlike EBNF
which work for a higher and abstract definition of alphabet
and token.

Regular Expression in formal language, is the rules that
defines a regular language.

While EBNF tries to match sequences of tokens to grammar
and make trees out of it, Regex tries to find matches in string
that match the defined pattern.

A few examples of regex patterns are:

• a matches to string “a”,
• ab matches to string “ab”,
• a* matches to zero or more “a”,
• a+ matches to one or more “a”,
• a? matches to zero or one “a”,
• a|b matches to “a” “b”,
• ˆa matches to one “a” at the start of the string.

Usually regex matches only show the start and end position of
the matching string. But using parentheses “()” we also could
have the thing that we are matching for in the parentheses
to be matched too, and we could have multiple and nesting
parentheses to get multiple part of the results. This is known
as capture groups. For example, (a*) will return the position
of matching string, and also the contents of the parentheses.

As we could see, the regex system is really flexible and
really adequate for our need in lexing, that is to match part of
string and get the results of that match.

2) Utilizing Regular Expression in Lexing: To use regex
in our lexer, first we have to list the tokens that we needed
for mathematical expression. An example of a mathematical
expression that use all of the available features is (1 + 2) ˆ
5 / 3 * 4 - 6. From that example, we could see that the
tokens that we use are lparen, rparen, caret, number,
slash, plus, star, minus.

To make it more clear, the lexer result for our examples is
listed in figure 4.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

[l p a r e n] (
[number] 1
[p l u s] +
[number] 2
[r p a r e n])
[c a r e t] ^
[number] 5
[s l a s h] /
[number] 3
[s t a r] ∗
[number] 4
[minus] −
[number] 6
[EOF]

Figure 4: Lexer result for (1 + 2) ˆ 5 / 3 * 4 - 6

We will refer this result of tokens for later examples.
The tokens are pretty self-explanatory, with the addition of

“EOF” to marks the end of the tokens.
After we know what are the tokens that will be use, we have

to write the definition in regex. As for the operators which
are single character long, we could use regex (\+) to match
for +, the \is used because + is a special character in regex,
so we have to use the backslash to escape it. We will call the
regex patterns that we defined for our tokens type as rules. We
will store this rules as an dictionary, where the keys is the rule
name, and the value is the regex pattern.

After we defined the rules, we will do our lexing according
to this pseudocode:

r e s u l t s ← empty l i s t o f t o k e n s
r u l e s ← d e f i n e d d i c t i o n a r y o f r e g e x r u l e s
i n p u t ← s o u r c e code
w h i l e i n p u t i s n o t empty

f i n d t h e r u l e t h a t have t h e l o n g e s t
match and s t a r t s a t t h e s t a r t o f
i n p u t
i f have match :

add t h e c o r r e s p o n d i n g t o k e n t o r e s u l t s
remove t h e match ing p a r t from i n p u t

e l s e :
th row e r r o r t h a t no r u l e s match

r e t u r n r e s u l t s

Figure 5: Pseudocode for our lexer

We first search rules that will have a match at the start of the
string. We could just use ˆ in all of our rules definition, but we
know that we always try to match at the start of the string, so
rather than adding ˆ, we could takes the matches that starts at 0
(or 1 if our language 1-based). From those matches that match
our criteria, we will take the longest match. It is because there
might be some ambiguities, like if we defined a token for to
be used in for-loops and reserved, and token identifier for
any other keywords that is not in the reserved keywords, when
we get input foreign, if we just take the first rule that match,

we will get [for] for and [keyword] ign while what
we wanted is [keyword] foreign. That is why when we
get multiple matches, we should take the longest match. If
after that we still have multiple matches, then the rules should
be revised so that there are no multiple possible result for a
string.

So the regex rules for our tokens are

Token Type Regex
Number (\d+(\.\d+)?)
Plus (\+)
Minus (\-)
Star (*)
Slash (/)
Caret (\^)
Lparen (\()
Rparen (\))

Figure 6: Tokens and their regex definition

C. Parsing

After lexing, the next step is parsing. Parsing is the process
of taking a sequences of tokens and with a set of grammars
turns them into an abstract syntax trees that have meanings
and could be parsed by computer. The trees that we talk about
is the same kind of the trees in graph theory, which have a
node, and zero or more children.

1) Abstract Syntax Tree: Abstract Syntax Tree (AST) is a
tree that represents the abstract syntactic nature of a source code.
Each node of the tree represents a structure in the programs.
An example is an if-else condition could be a tree with three
children, first is the condition, second is the if part, and third
is the else part. The children could be another tree, or just a
single value of number, expression, or statements.

To express mathematical expression, we need three kinds of
AST. First is Value, it represents a single number or value
like 9, so it only has one child, which is the number itself.
Second is Binary, that represents binary operation between
two expressions like 1 + 2, so it has three children, the left
expression, operator, and the right expression, where operator
is only storing the token that used for operator. And the last
is Grouping, that the represents the grouping when we used
parentheses to force precedence. It only has one child, that is
the expression inside the parentheses.

We could express the trees with EBNF

〈Expression〉 ::= 〈Binary〉 | 〈Grouping〉 | 〈Value〉 ;
〈Binary〉 ::= 〈Expression〉 operator 〈Expression〉 ;
〈Grouping〉 ::= lparen 〈Expression〉 rparen ;
〈Value〉 ::= number ;

Figure 7: Basic AST of math expression

Where 〈Expression〉 acts as our starting symbol.
Then we could express (1 + 2) ˆ 5 / 3 - 4 * 6

(I’ve changed the operators to make it more interesting) in
AST as:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

-

/

ˆ

+

1 2

5

3

*

4 6

Figure 8: AST representation of (1 + 2) ˆ 5 / 3 - 4
+ 6

And the AST in figure 8 also applies the correct precedence.
But our grammar in figure 7 doesn’t have any information
about operator precedence, so we have to fix that. While for
AST we will use the grammar in figure 7, we will modify that
we could easily translate it to recursive descent parser, and
also able to force precedence.

There is other way of parsing mathematical expression like
Shunting-Yard Algorithm, but we will not talk about it, since
in only applies to mathematical expression alone, and won’t
applies to general programming language parsing.

2) Operator Precedence: While the AST in figure 7 could
represent a mathematical expression, it is still full of ambiguity
since our grammar could not force operator precedence.

To solve this problem first we look at operator precedence
table

Name Operators
Unary -
Exponent ˆ
Multiplication / *
Addition + -

Figure 9: Operator precedence table

Where the first row is the highest precedence, while the last
row has the lowest precedence.

What the table in figure 9 tells us is when we got an
expression with mixed precedence, we should prioritize the
one with higher precedence. So from our binary grammar
which is <Binary> ::= <Expression> op <Expression> ;,
we could make a special grammar for multiplication like
<Multiplication> ::= <Exponent> (’/’ | ’*’) <Exponent> ;,
where we use unary to to tell that our grammar should prioritize
exponent over multiplication and that we only accept slash or
star as the operator.

Then we would like for our grammar to be able to express
chains of binary expression like 1 + 2 + 3 but our grammar
only seems to be able to express binary expression with two
number. We could use repetition to repeat the operator and
right expression. So our multiplication grammar turns into
<Multiply> := <Exponent> ((’/’ | ’*’) <Exponent>)*;, which
means that a multiplication expression is a unary expression
followed by zero or more (’/’ | ’*’) <Unary> sequences. So

we do this process to our grammar, incorporating all of the
operator precedence that results in:

〈Expression〉 ::= 〈Addition〉 ;
〈Addition〉 ::= 〈Multiply〉 ((plus | minus) 〈Multiply〉)* ;
〈Multiply〉 ::= 〈Exponent〉 ((star | slash) 〈Exponent〉)* ;
〈Exponent〉 ::= 〈Unary〉 (caret 〈Exponent〉)? ;
〈Unary〉 ::= (minus 〈Unary〉) | 〈Primary〉 ;
〈Primary〉 ::= number | 〈Grouping〉 ;
〈Grouping〉 ::= lparen 〈Expression〉 rparen ;

Figure 10: Grammar with precedence, adapted from [3]

There might be other way to write the grammar, but writing it
this way makes it easier to be adapted to the parsing algorithm
that we will use, that is recursive descent.

3) Recursive Descent Parsing: There is a lot of algorithm
that could be used for parsing, like LALR, which used by Yacc
or GNU Bison. The advantages of using LALR are the limit
of the grammar that we could use is less than using recursive
descent parser, and the aforementioned Yacc and GNU Bison
is a “compiler-compiler”, a program that creates a compiler.
But the disadvantages are it is complex, we can’t really control
what happen in the parsing, and by using finished tools we
can’t really learn things.

By using recursive descent, we could understand how a
parser works, able to tune the parser with our hands. Also, by
conforming our grammar to some rule (which called LL(k)
grammars), we could just turns the grammar into code with
the same structure. The GNU C Compiler (GCC) at one time
used Bison, but then later changed back to using recursive
descent.[4]

The way recursive descent works, like the name implies, is by
using recursion. Each rule in our grammar turns into functions,
which the contents is like the rule. The function then returns
the corresponding AST, like the Addition, Multiply,
Exponent and Unary will return Binary AST, Grouping
will return Grouping AST, and the Primary might return a
Literal or Grouping AST.

One example of the function is:

d e f a d d i t i o n () :
exp r = m u l t i p l y ()
w h i l e n e x t t o k e n i s p l u s o r minus :

op = n e x t t o k e n
r i g h t = m u l t i p l y
exp r = b i n a r y e x p r e s s i o n from

expr , op , and r i g h t
r e t u r n exp r

Figure 11: Example recursive descent code for addition rule

Now, we have the tools to generate an AST like in figure 8.
The next step to do is to evaluate the AST and get the value.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

D. Evaluation
For each kind of AST we have, we have to define how to

evaluate it. Here we use the Divide and Conquer algorithm
where we could separate the task of evaluating an expression
into few smaller expression recursively.

1) Literal: Literal AST is an AST that only has one child,
that is a value. So the evaluation of Literal will return the value
of that child.

2) Grouping: Grouping AST is an AST that only has one
child, the expression begin grouped. So evaluation of Grouping
will evaluate the expression inside it, the returns the result.

3) Binary: Binary AST is an AST that has three children,
the left expression, operator, and the right expression. First we
evaluate the left expression, the we evaluate the right expression,
and finally we combine the results using the operator that is
has, and returns that result.

To note, we could express and unary grammar like -5 as
Binary AST of 0 - 5. This is to simplify the amount of AST
we use, but in real life implementation, it makes sense to have
a separate unary operator since there might be other unary
operator than - like ! or ~.

E. Miscellaneous
The way of doing an evaluation like described before is

commonly called Tree-Walk Interpreter, because it is just
walking the AST and evaluating the values to get the results.
This method is easy to understand, but have drawbacks like
slow evaluation time. But for this paper we will only use this
method.

But there are some ways to make the evaluation step faster,
but it will have it’s own advantages and disadvantages, and also
could affect the way the language is designed. These ways is
usually used for real programming language, and don’t really
make sense when used for mathematical expression evaluation
where the AST generated usually is not that large.

Also, we could also do some steps before evaluation,
like resolving for variables, and do type checking. And in
Rust Programming Language, the borrow checker runs before
evaluation.

1) Generating Machine Code: Rather than blindly doing
tree-walking, we could use the evaluation step to generate
machine code, like x86 assembly, or the ARM code. The
advantage of this method is that the program produced will
be the fastest than other method, but the disadvantages are
generating machine code (compiling) takes time, and for every
machine architecture that a programming language, we have
to write separate program to generate the machine code. The
second disadvantages could be solved by using VM, or LLVM,

2) Virtual Machine: Rather than generating machine code,
we could create a certain bytecode specification (like Java
bytecode), and then write program that could run that bytecode
(like JVM). This is the path taken by Java, Python, and many
other languages, albeit Java being a bit different where the
bytecode is saved as .class file which could be ran later, rather
than Python that generate the bytecode, and the immediately
run the bytecode that is saved in the runtime environment (look
at Python’s Language Service Library). The program generated
by this method will be slower than generating machine code.

III. IMPLEMENTATION

The example of implementation will use Python.

A. Lexer

r u l e s = {} # t y p e : D i c t [s t r , s t r]
r u l e s [’ number ’] = r ’ (\ d + (\ . \ d +) ?) ’
r u l e s [’ p l u s ’] = r ’ (\ +) ’
r u l e s [’ minus ’] = r ’ (\−) ’
r u l e s [’ s t a r ’] = r ’ (\ ∗) ’
r u l e s [’ s l a s h ’] = r ’ (/) ’
r u l e s [’ c a r e t ’] = r ’ (\ ^) ’
r u l e s [’ l p a r e n ’] = r ’ (\ () ’
r u l e s [’ r p a r e n ’] = r ’ (\)) ’

def Lex (to_match : s t r) −> L i s t [Token] :
to_match = to_match . s t r i p ()
r e s u l t s = [] # t y p e : L i s t [Token]
whi le l e n (to_match) > 0 :

max_ru le = ’ ’
m a x _ l i t = ’ ’
to_match = to_match . s t r i p ()
f o r r u l e in r u l e s . keys () :

p = r e . compi le (r u l e s [r u l e])
m = p . match (to_match)
i f m i s not None :

i f l e n (m. group (0)) > l e n (
m a x _ l i t) :
m a x _ l i t = m. group (0)
max_ru le = r u l e

i f max_ru le == ’ ’ :
r a i s e NoMatchExcept ion (

to_match)
to_match = to_match [l e n (m a x _ l i t)

:]
r e s u l t s . append (Token (m a x _ l i t ,

max_ru le))
r e s u l t s . append (Token (’ ’ , ’EOF ’))
re turn r e s u l t s

B. Parser

c l a s s P a r s e E r r o r (E x c e p t i o n) :
def _ _ i n i t _ _ (s e l f , msg) :

s e l f . msg = msg

c l a s s P a r s e r :
def _ _ i n i t _ _ (s e l f , t o k e n s : L i s t [Token

]) −> None :
s e l f . t o k e n s = t o k e n s
s e l f . c u r r e n t = 0

def a d d i t i o n (s e l f) −> expr . B ina ry :
e = s e l f . m u l t i p ()
whi le s e l f . match ([’ p l u s ’ , ’ minus ’

]) :

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

op = s e l f . p r ev ()
r i g h t = s e l f . m u l t i p ()
e = exp r . B in a r y (e , op , r i g h t)

re turn e

def m u l t i p (s e l f) −> expr . B ina ry :
e = s e l f . expon ()
whi le s e l f . match ([’ s t a r ’ , ’ s l a s h ’

]) :
op = s e l f . p r ev ()
r i g h t = s e l f . expon ()
e = exp r . B in a r y (e , op , r i g h t)

re turn e

def expon (s e l f) −> expr . Expr :
l e f t = s e l f . una ry ()
i f s e l f . match ([’ c a r e t ’]) :

op = s e l f . p r ev ()
r i g h t = s e l f . expon ()
l e f t = exp r . B ina ry (l e f t , op ,

r i g h t)
re turn l e f t

def una ry (s e l f) −> expr . Expr :
i f s e l f . match ([’ minus ’]) :

op = s e l f . p r ev ()
r i g h t = s e l f . una ry ()
re turn exp r . B i na ry (exp r .

L i t e r a l (0) , op , r i g h t)
re turn s e l f . p r i m a r y ()

def p r i m a r y (s e l f) −> expr . Expr :
i f s e l f . match ([’ number ’]) :

t r y :
re turn exp r . L i t e r a l (f l o a t

(s e l f . p r ev () . l i t e r a l))
e xc ep t :

p r i n t (" n {} " . format (s e l f .
p r ev ()))

e x i t ()
e l i f s e l f . match ([’ l p a r e n ’]) :

e = s e l f . e x p r e s s i o n ()
s e l f . consume (’ r p a r e n ’ , "

Expec ted ’) ’ a f t e r group
e x p r e s s i o n . ")

re turn exp r . Grouping (e)
e l s e :

t = s e l f . peek ()
r a i s e P a r s e E r r o r (" Syn tax

e r r o r : { } . " . format (t))

C. Evaluation

c l a s s C a l c u l a t o r () :
def c a l c u l a t e (s e l f , e : exp r . Expr) −>

f l o a t :
i f i s i n s t a n c e (e , exp r . L i t e r a l) :

re turn e . v a l u e

e l i f i s i n s t a n c e (e , exp r . Grouping)
:
re turn s e l f . c a l c u l a t e (e . exp r)

e l i f i s i n s t a n c e (e , exp r . B i na ry) :
l v a l = s e l f . c a l c u l a t e (e . l e f t)
r v a l = s e l f . c a l c u l a t e (e . r i g h t

)
o p r u l e = e . o p e r a t o r . r u l e
i f o p r u l e == ’ p l u s ’ :

re turn l v a l + r v a l
e l i f o p r u l e == ’ minus ’ :

re turn l v a l − r v a l
e l i f o p r u l e == ’ s t a r ’ :

re turn l v a l ∗ r v a l
e l i f o p r u l e == ’ s l a s h ’ :

re turn l v a l / r v a l
e l i f o p r u l e == ’ c a r e t ’ :

re turn l v a l ∗∗ r v a l

D. Main Code

p r i n t (’> ’ , end= ’ ’)
to_match = input () . s t r i p ()
p r i n t (" I n p u t : { } \ n " . format (to_match))

t r y :
r e s u l t s = l e x e r . Lex (to_match)

e xc ep t l e x e r . NoMatchExcept ion as e :
p r i n t (" E r r o r : {} " . format (e))
e x i t ()

p r i n t (’ P r i n t i n g t o k e n s : ’)
f o r t in r e s u l t s :

p r i n t (t)

p r i n t (’ ’)

p r i n t e r = P r i n t e r ()
c = C a l c u l a t o r ()

p r i n t (" E x p r e s i o n Tree f o r : {} " . format (
to_match))

p = p a r s e r . P a r s e r (r e s u l t s)
t r y :

ex = p . p a r s e ()
e xc ep t p a r s e r . P a r s e E r r o r a s e :

p r i n t (" P a r s e e r r o r : {} " . format (e))
e x i t ()

p r i n t e r . p r i n t (ex)
p r i n t (" R e s u l t : {} " . format (c . c a l c u l a t e (ex)

))

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

IV. EXPERIMENT

V. CONCLUSION

In conclusion, to be able to turn source code into program,
a compiler have to go through three steps.

First is Lexing, where the source code in the form of
sequences of characters is turned into sequences of tokens
that has the information of token type and the part of the string
that corresponds to that token. To do this easily we could use
Regular Expression so that we could write and makes change
to the lexer easily.

Second is Parser, where the sequences of tokens is turned
into AST which represents the abstract structure of the code.
We could use EBNF to describe the syntax, and then convert
the EBNF into recursive descent parser easily.

Third and the last is Evaluation, where we use divide and
conquer to evaluate the children of the AST.

The methods described in this paper could be expanded to
parse and evaluate a proper programming language.

ACKNOWLEDGMENT

First, author would like to thanks God for His blessing so
that the author is able to write this paper.

Then, author would like to thanks his parents for supporting
author.

Next, author wants to thanks Dr. Ir. Rinaldi Munir, MT., Dr.
Nur Ulfa Maulidevi, ST. M.Sc, and Dr. Masayu Leylia Khodra,
ST., MT for guiding author in IF2211 Strategi Algoritma course.
Their willingness to teach and share their knowledges able the
author to write this paper.

Finally, author also thanks author’s friends for supporting
author that enables author to write this paper.

REFERENCES

[1] N. Chomsky, “Three models for the description of language.” IRE
Transactions on information theory, vol. 2, pp. 113–124, September 1956.

[2] S. Scheinberg, Note on the Boolean Properties of Context-Free Languages.
Information and Control, 1960.

[3] B. Nystorm. (2017) Crafting interpreters. [Online]. Available: http:
//www.craftinginterpreters.com/

[4] (2006) Gcc 4.1 release series: Changes, new features, and fixes. Free
Software Foundation. Accessed 25 April 2018. [Online]. Available:
https://gcc.gnu.org/gcc-4.1/changes.html

[5] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation. Pearson, 2006.

STATEMENT

With this I state that the paper that I wrote is my own
writing, not an adaptation, or a translation of others papers,
and is not plagiarized.

Bandung, 13th May, 2018

Ridho Pratama, 13516032

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

http://www.craftinginterpreters.com/
http://www.craftinginterpreters.com/
https://gcc.gnu.org/gcc-4.1/changes.html

	Introduction
	Theory
	Formal Language and Grammar
	Formal Language
	Context-Free Grammar
	Extended Backus-Naur Form

	Lexing
	Regular Expression
	Utilizing Regular Expression in Lexing

	Parsing
	Abstract Syntax Tree
	Operator Precedence
	Recursive Descent Parsing

	Evaluation
	Literal
	Grouping
	Binary

	Miscellaneous
	Generating Machine Code
	Virtual Machine

	Implementation
	Lexer
	Parser
	Evaluation
	Main Code

	Experiment
	Conclusion
	References

