
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Implementing D Star Lite as a Pathfinding Solution to

a Partially-known or Changing Grid-based Map

Seldi Kurnia Trihardja 13516042

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516042@std.stei.itb.ac.id

xeldkt@gmail.com

Abstract—Pathfinding is a common and important problem in

Computer Science. Pathfinding are used in many ways, from

GPS to games. One of the most popular ways to solve it is using

the A* algorithm, but in many cases we need to replan the route

based on the current condition of the terrain. In this paper we

discusses D* Lite, an incremental and heuristic graph search, in

comparison with A* where the information about the

environment is incomplete or the environment changes when the

entity that uses the pathfinding, moves. As a representation we

use a uniform cost grid based map as the environment

Keywords—pathfinding; A*; LPA*; D* Lite; Replanning; Grid-

based Map

I. INTRODUCTION

Pathfinding in computer science is, as its name suggest, the

plotting of a route between two points to create a path between

them. Pathfinding as a field of research primarily consists of

two problems, finding a path between two nodes in a graph or

finding the “optimal” path between two nodes. These

problems originally are solved using Breadth First Search or

Depth First Search algorithms to exhaust many or even all

possibilities of paths that are possible to find the best path

through the graph. However, in reality, graphs can be massive

in size making Depth First Search and Breadth First Search

algorithms unfeasible to use as the time it would take to go

through the possibilities would expand exponentially as the

graph got bigger. And so, strategies and new ways are created

to make an algorithm that can find the optimal path through a

graph as fast as possible.

One of the most popular algorithms that are used as a

solution to pathfinding with acceptable results are Dijkstra’s

algorithm or its closely related variation, A* algorithm.

Dijkstra’s algorithm find the shortest path by selectively

choosing the path that, in total, cost the lowest in relation to all

other paths that are open, and then expanding that path and

compare all the paths again to expand the path with minimum

cost and so on until it reaches the destination. Since Dijkstra’s

expand the minimum path, when it finds the destination, the

path will be the path with the least cost.

A* expanded on Dijkstra’s algorithm to include a heuristic

that acts as some kind of guide so the algorithm doesn’t need

to examine paths that are “roundabout” or paths that move

away from the goal. Normally, the heuristic is the estimated

distance between the node and the goal. With the cost of the

edge of the node and the heuristic, A* modify the behaviour of

Dijkstra’s algorithm to be more efficient by examining fewer

nodes on average.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Figure 1 . A* pathfinding through a grid based map (red

means examined)

Since then, many kinds of algorithm are created to cater to

specific needs of many fields. While A* is still widely used in

many software, there exist many algorithm that take advantage

of varying techniques like dynamic programming,

preprocessing the graph, exploiting the nature of grids, and so

on. Four our purposes, we are going to look at an algorithm

that saves information from the first search to use later much

like dynamic programming but also uses heuristics that are

created by Koenig and Likachev called D* Lite[2] that uses

LPA*(Lifelong Planning A*) that is also created by Koenig

and Likachev with David Furcy[3] to mimic D* algorithm

which uses dynamic programming to pathfind through

partially known environment.

II. ALGORITHM BACKGROUND

A. D*

 D* or Dynamic A* as coined by its founder Anthony

Stentz[3], is an incremental heuristic search method that are

used to address pathfinding where the environment is

unknown or partially-known. At the time, most pathfinding

algorithm assumes complete and accurate model of its

environment, while in reality many situations occur where an

environment changes without warning or the information

present are incomplete or even non-existent. Automated

machines that operate within unknown environment or

partially-unknown environment, such as an exploratory robot

in Mars or even an entity in games that have changing

environment, need the capability of fast and efficient

replanning method so it can move more intelligently

especially in difficult terrain or time critical movement.

An outline of D* algorithm is as follows. Like A*, D*

algorithm keep a list of nodes to be evaluated known as the

“OPEN list”. Nodes can be marked as several different states

such as NEW, OPEN, CLOSED, RAISE, and LOWER. NEW

means that the node has never been placed on the open list.

OPEN means that it is currently on the open list. CLOSED

means that it is no longer on the open list. RAISE means that

the node cost is higher than the last time it was on the open

list. While LOWER means that the node cost is lower than the

last time it was on the open list. The algorithm works by

expanding nodes from the goal until it reaches the start node.

every node has a backpointer so that every node knows the

way to the target. Every node also knows the exact cost to the

target. This way we know all paths that lead to the target by

using the backpointers. When an obstacle presents itself where

it obstructs the original path, the nodes that are affected are

put in the open list again with the state RAISE and reevaluated

on whether its neighbor can reduce its cost or not. If it can, the

backpointer is updated and it passes the LOWER state to its

neighbor. If it cant, it passes the RAISE state to its neighbor.

The passing of states then continue forming a “wave” of

RAISE and LOWER

Figure 2 . Visualization of D* algorithm (Red is obstacle, blue

are nodes with the brightness indicating cost, cyan is the path,

green are lower states, and yellow are raise states)

B. LPA*

Most of the search methods available mainly focus on one-

shot type of planning, where you plan the path once at the

beginning. However, in reality, often times algorithms need to

adapt their planning continuously as the model of the world

changes. Without a technique to specifically deal with

replanning, an algorithm needs to be ran again from scratch to

change its planning. This approach might not be preferable as

if there are many changes then the performance of the

algorithm decreases significantly. Sometimes, we also need to

run a pathfinding algorithm repeatedly to a series of similar

world, or if the path needs to be continuously refined or

learned.

LPA*(Lifelong Planning A*), also known as Incremental

A*, is an incremental heuristic search that combines

DynamicSWSF-FP and A*. LPA*, unlike the original A*,

can adapt to changes to the graph without planning all the way

from scratch. LPA* does this by using two estimates of

distances g(n) and rhs(n), where g is the previously calculated

cost and rhs is the minimum value of the g of its “parents”, or

formally known as predecessors, plus the cost of moving from

that predecessor to the node. LPA* also uses heuristics in

determining which nodes to update or expand using a system

of two dimensional keys as the determining factor for its

priority queue.

LPA* expands its nodes with the following rule. If the rhs-

value of a node equals its g-value, the node is “locally

consistent” and is removed from the queue. If the rhs-value of

a node is less than its g-value , the node is “locally

overconsistent” and the g-value is changed to match the rhs-

value, making the node locally consistent. The node is then

removed from the queue. If the rhs-value of a node is greater

than its g-value, the node is a “locally underconsistent” node

and the g-value is set to infinity (which makes the node either

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

locally overconsistent or locally consistent). If the node is then

locally consistent, it it removed from the queue, else its key is

updated by recalculating its rhs-value and inserting it back to

the queue. Since changing the g values can cause the rhs

values of other nodes to change, the nodes that are changed

are also considered and updated. When an aspect of the graph

changes, like the edges cost, LPA* recognize all the nodes that

are affected by the change and updates its values to the proper

value and nodes that are locally consistent are removed from

the queue and those that are inconsistent added back to the

queue to be updated . The algorithm finishes if the goal is

locally consistent or the node to examine next according to the

queue has a key bigger than the goal, where it means that the

goal is unreachable.

Figure 3 . Visualization of LPA* Algorithm

The following are LPA* pseudocode:

procedure CalculateKey(s)

{01} return [min(g(s), rhs(s)) + h(s); min(g(s),

rhs(s))];

procedure Initialize()

{02} U = ∅;

{͡3} ΗΠΣ aΝΝ Τ ∈ ΄ ΣΙΤ͙Τ͚ ͮ Θ͙Τ͚ ͮ ∞ͬ

{04} rhs(sstart) = 0;

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

{05} U.Insert(sstart, [h(sstart); 0]);

procedure UpdateVertex(u)

{06} if (u != sstart) rhs(u) =

ΞΚΟΤ͡∈ΡΣΖΕ͙Φ͚͙Θ͙Τ’) + c(s’, u));

{ͨ͡} ΚΗ ͙Φ ∈ Ά͚ Ά.΃ΖΞΠΧΖ͙Φ͚ͬ

{08} if (g(u) != rhs(u)) U.Insert(u,

CalculateKey(u));

procedure ComputeShortestPath()

{͡9} ΨΙΚΝΖ ͙Ά.΅ΠΡKΖΪ͙͚ͭ˙ CaΝΔΦΝaΥΖKΖΪ͙ΤΘΠaΝ͚

OR rhs(sgoal) != g(sgoal))

{10} u = U.Pop();

{11} if (g(u) > rhs(u))

{12} g(u) = rhs(u);

{͢3} ΗΠΣ aΝΝ Τ ∈ ΤΦΔΔ͙Φ͚ ΆΡΕaΥΖ·ΖΣΥΖΩ͙s);

{14} else

{ͦ͢} Θ͙Φ͚ ͮ ∞ͬ

{ͧ͢} ΗΠΣ aΝΝ Τ ∈ ΤΦΔΔ͙Φ͚ ∪ {Φ}

UpdateVertex(s);

procedure Main()

{17} Initialize();

{18} forever

{19} ComputeShortestPath();

{20} Wait for changes in edge costs;

{21} for all directed edges (u, v) with

changed edge costs

{22} Update the edge cost c(u, v);

{23} UpdateVertex(v);

III. D* LITE

At the time, even though D* have the attractive capability

as a real-time pathfinding algorithm to artificial intelligence

that can handle the difficult problem of a changing world

model, D* is infamous as a complex algorithm and as such

didn’t get much popularity outside of specialized fields.

Intending to combine the capability of D* to replan paths in an

unknown or partially-known model of the world and the

replanning robustness of LPA* that they created, Koenig and

Likhachev proposed D* Lite in 2005.

As a result D* Lite uses LPA* to mimic the searching

behavior of D* algorithm, but algorithmically much simpler

and at least as fast as D* algorithm, making it easier to analyse

understand and extend the algorithm itself opening many more

possibilities.

Figure 4 . Visualization of navigation strategy

D* Lite mimics D* using LPA* , in short, by making the

start position the current position of the robot. However, since

LPA* uses the estimate of the distance to the start position as

an integral part of its algorithm while the start position always

moves around, we need to reverse how LPA* works so that it

pathfinds from the goal to the start position. In effect, the g(n)

in LPA* now becomes the distance to the goal and since the

goal position doesn’t change it is able to work. After

computing the shortest path using it, we can find the shortest

path by following the minimum cost and g(n). While running

the reversed LPA*(D* Lite), if it notices any changes in the

costs of the graph the algorithm need to reorder its priority

queue every time it notices any changes.

Because the difference of D* and LPA*, other than it’s

algorithm, is slight (since D* can be considered as the map to

change everytime the entity that uses the algorithm discovers

new information that affect the path and LPA* deal with

changing paths, it’s just that D* doesn’t care about the original

start position but instead the current position of the entity)

LPA* can be derived from and to a D* variant in D* lite with

little difficulty. Further details for the D* Lite algorithm can

be read on the reference papers written in the reference

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

IV. IMPLEMENTATION

For the implementation, we use C as the programming

language. The model that are used are a grid based map that

are visualized onto the command prompt using the stdout

functions.

Figure 5 . An example of complete map, in this case we

assume R only knows the spaces that are adjacent and

towards the goal

Figure 6 . The first iteration, unknown spaces are considered

without obstacles until set otherwise

 From Figure 6, we can see that D* Lite works by first

swiftly finding a shortest path between R(Start position) and

G(Goal position) where if there is unknown information we

consider it passable for the time being. In implementing

graph-search algorithm, we usually need to break ties. Ties are

situations when we uses search algorithm in a graph, and we

find more than one shortest path to get to a specific place.

Since computers are deterministic, we need to decide which

path to go through(expand) first. To do that, we do what is

known as Tie Breaking where we put a specific mechanism of

choosing, in this case the implementation favors path that have

larger g-values. For example in figure 6 there are two path

with equal cost, either going left first then going up or going

up first and then going left as in figure 6.

Figure 7 . The Robot encounters an obstacle in its original

path and replan the path starting from the current position

 As told before in the explanation of the algorithms,

when the algorithm detects a change in the environment, in

this case the new obstacle that R detected means that

particular space g value has become infinity(impassable), D*

Lite replan the path from the goal to the current position, now

with the added information that a once empty space is now

impassable. On the second picture of Fig.7. we see that the

original direction is actually a dead end and the algorithm

successfully changes its own route to reach the goal using the

priority queue. R will continue moving towards the goal

according to the previously planned path until it find a

complication where it is unable to follow the original path or it

detect a change in the cost of its path and need replanning to

make sure it is the shortest path where it will replan. D* Lite

will continue to run until R current position are locally

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

consistent

Figure 8 . R found a clear path

 On Fig.8. we can see that R planned a path with no

obstacles when using the complete map to manually determine

it.. To get the shortest path, all we need to do is traceback R

steps through the graph and get the optimal path. However,

even though it is not shown here, it is very possible to not

have a valid path to the goal, in fact when the implementation

generated a random maze and random position for the goal

and start position it surprisingly happens somewhat often.

Another observation that we can see from figure 8 are overall

D* Lite does not need to examine that many nodes even

though the grid is a 20x20 grid

In General, D* Lite can solve pathfinding problems

where the pathfinding knows the current position and the goal

(goal-directed navigation). The advantages of D* Lite

compared to other goal-directed navigation are obviously the

capability to replan and adapt according to the information it

has about the model of the world, whether it is partially-

known, changes, or even unknown. Because of this D* Lite

can also be used to solve mazes since mazes are generally

assumed as having an unknown interior. The above

example(Figure 5-8) can also be considered a maze. The only

factor limiting it is if it knows where the exit is, if the exit is

unknown then we cannot use the aforementioned D* Lite. The

following is an example of a grid-based maze where the start

position is considered the entrance and the goal position is the

exit

.

Figure 8 . A maze with D* Lite, initial plan, and final plan

V. CONCLUSION

 D* Lite is a very good alternative to traditional graph-

search methods like A* , especially when the world model

often changes or it is an unknown environment. However it

still has its own limitation with specific scenarios where

papers have shown that D* Lite struggle to solve in terms of

performance such as if the goal is also always changing. In

general D* Lite can be implemented to any kind of

pathfinding problem, from mazes, automated robot navigation,

to games pathfnding.

ACKNOWLEDGMENT

The author firstly would like to thank God for

helping me give the power and will to finish this writing. I

would like to also thank my parents for all the support they

give so i can finish this paper

REFERENCES

[1] Sven Koenig and Maxim Likhachev, " D* Lite, " Proceedings of the

Eighteenth National Conference on Artificial Intelligence (AAAI), pp.

476-483, 2002.

[2] Sven Koenig and Maxim Likhachev, " Fast Replanning for Navigation

in Unknown Terrain, " IEEE Transactions on Robotics (TRO), 21(3), pp.

354-363, 2005.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

[3] Stentz, Anthony (1994), "Optimal and Efficient Path Planning for

Partially-Known Environments", Proceedings of the International

Conference on Robotics and Automation: 3310–3317

[4] Sven Koenig, Maxim Likhachev, and David Furcy, " Lifelong Planning

A*, " Artificial Intelligence Journal (AIJ), 155(1-2), pp. 93-146, 2004.

[5] Moving Target D* Lite, X. Sun, W. Yeoh and S. Koenig, Proc.

of 9th Int. Conf. on Autonomous Agents and Multiagent Systems

(AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and

Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp. XXX-XXX

[6] http://idm-lab.org/ (diakses 11 Mei 2018)

[7] https://cstheory.stackexchange.com/questions/11855/how-do-the-state-

of-the-art-pathfinding-algorithms-for-changing-graphs-d-d-l (diakses 13

Mei 2018)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 14Mei 2018

Seldi Kurnia Trihardja 13516042

http://idm-lab.org/
https://cstheory.stackexchange.com/questions/11855/how-do-the-state-of-the-art-pathfinding-algorithms-for-changing-graphs-d-d-l
https://cstheory.stackexchange.com/questions/11855/how-do-the-state-of-the-art-pathfinding-algorithms-for-changing-graphs-d-d-l

	I. Introduction
	II. Algorithm Background
	A. D*
	B. LPA*

	III. D* Lite
	IV. Implementation
	V. Conclusion
	Acknowledgment
	References

