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Abstract—this paper proposes and elaborates a new method 

for a path planning and obstacle avoidance in a dynamic 

environment for a RoboCup Middle Size League soccer playing 

robot. It involves the construction of Voronoi diagram and 

Delaunay triangulation, as well as using divide and conquer 

algorithm to calculate the best path towards a goal point and 

simultaneously avoiding incoming obstacles. 
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I.  INTRODUCTION 

MSL or Middle Size League is a robot soccer competition 
initiated by RoboCup. It is played on an indoor soccer field 
with goals of reduced size by teams of five fully autonomous 
soccer playing robots that compete against one another. No 
human intervention is allowed during a match with the 
exception of taking robots on and from the field or in case of 
emergency and unexpected robots behavior. 

In order to perceive objects in its world, an MSL robot has 
camera sensor (either omnivision or frontal). A stream of 
images from the camera are processed  real-time to detect 
objects such as field, ball, and other robots. Auxilliary sensors 
can also be used for localization means such as distance or 
infrared sensor, compass, and encoder from the motors that 
will turn its wheels. 

 

Fig. 1 MSL Robots from TU Eindhoven competing in the 

RoboCup. 

An important ability in this robot, which are usually 
omnidirectional, should have is obstacle avoidance. The main 
obstacle in this robot’s world are opponent robots as well as 
sometimes its teammates. 

A known obstacle avoidance algorithm is by calculating 
velocity and position vectors of both the robot and the obstacle 
and then returning a velocity vector �⃑� in which direction the 
robot should go. An example of this algorithm is explained by 
Robert L. Williams in [1]. 

Another approach proposed by the author is by utilizing 
Voronoi diagram and its corresponding Delauny triangulation. 
A Voronoi diagram and its corresponding Delaunay 
triangulation graph can be utilized to plan a path from one 
point to another point in the field with dynamic obstacles. One 
advantage of using this method is that the Voronoi diagram is 
only constructed once during the initialization, thus reducing 
the computing cost during the gameplay. 

By using Voronoi diagram and Delaunay triangulation, 
position control is used as opposed to velocity control to 
control the behavior of the robot. This,  however,  has a little 
drawback, as the motion generated by the algoritm is a bit less 
smooth than the obstacle avoidance algorithm in [1]. 

II. VORONOI DIAGRAM 

A. Definition 

The partitioning of a plane with 𝑛 points into convex 
polygons such that each polygon contains exactly one 
generating point and every point in a given polygon is closer 
to its generating point than to any other. A Voronoi diagram 
is sometimes also known as a Dirichlet tessellation. The cells 
are called Dirichlet regions, Thiessen polytopes, or Voronoi 
polygons. 
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Fig. 2 Voronoi diagram with 20 points. 

B. History 

The first recorded use of this diagram can be traced back 
to French mathematician René Descartes in 1644. In 1850, 
Peter Gustav Lejeune Dirichlet used 2-dimensional and 3-
dimensional Voronoi diagrams in his study of quadratic forms 
[2]. 

Voronoi diagram is named after the mathematician 
Georgy Fedosievych Voronoi of the Russian Empire who first 
defined and studied the general n-dimensional case of this 
problem. Some equivalent names for this concept are Voronoi 
polyhedron, Voronoi cell, domain of influence, Voronoi 
tesselation, and Dirichlet tesselation. 

C. Significance in Research and Study Fields 

Voronoi diagrams used in geophysics and meteorology to 
analyze spatially distributed data (e.g. rainfall measurements) 
are called Thiessen polygons after American meteorologist 
Alfred H. Thiessen. In condensed matter physics, such 
tessellations are also known as Wigner-Seitz unit cells. 
Voronoi tessellations of the reciprocal lattice of momenta are 
called Brillouin zones. For general lattices in Lie groups, the 
cells are simply called fundamental domains. In the case of 
general metric spaces, the cells are often called metric 
fundamental polygons. 

D. Mathematical Properties 

The mathematical properties of a Voronoi diagram, 
assuming that it is set in an Euclidean plane and space, 
according to [3] and [4] are as follows. 

 The dual graph for a Voronoi diagram corresponds to 
the Delaunay triangulation for the same set of points. 

 The closest pair of points corresponds to two adjacent 
cells in the Voronoi diagram. 

 Two points are adjacent on the convex hull if and only 
if their Voronoi cells share an infinitely long side. 

 If the space is a normed space and the distance to each 
site is attained, each Voronoi cell can be represented as 
a union of line segments emanating from the sites. 

 Under relatively general conditions, Voronoi cells 
enjoy a certain stability property: a small change in the 
shapes of the sites, e.g., a change caused by some 
translation or distortion, yields a small change in the 

shape of the Voronoi cells. This is the geometric 
stability of Voronoi diagrams. 

III. DELAUNAY TRIANGULATION 

A. Definition 

In mathemtics and computational geometry, a Delaunay 
triangulation is a triangulation 𝐷𝑇(𝑃) for a given set 𝑃 of 
discrete points in a plane such that no point in 𝑃 is inside the 
circumcircle of any triangle in 𝐷𝑇(𝑃). 

Delaunay triangulations maximize the minimum angle of 
all the angles of the triangles in the triangulation, i.e. they tend 
to avoid skinny triangles. 

 

Fig. 3 Delaunay triangulation for a set of 10 points. 

B. Mathematical Properties 

The mathematical properties of a Delaunay triangulation 
for n number of points in d-dimension according to [5], [6], 
[7], and [8] as follows. 

 The union of all simplices in the triangulation is the 
convex hull of the points. 

 The Delaunay triangulation contains 𝑂(𝑛⌈𝑑 2⁄ ⌉) 
simplices. 

 In the plane, if there are 𝑏 vertices on the convex hull, 
then any triangulation of the points has at most 2𝑛 −
2 − 𝑏 triangles, plus one exterior face. 

 If points are distributed according to a Poisson process 
in the plane with constant intensity, then each vertex 
has on average six surrounding triangles. 

 In the plane, the Delaunay triangulation maximizes the 
minimum angle. Compared to any other triangulation 
of the points, the smallest angle in the Delaunay 
triangulation is at least as large as the smallest angle in 
any other. However, the Delaunay triangulation does 
not necessarily minimize the maximum angle. The 
Delaunay triangulation also does not necessarily 
minimize the length of the edges. 

 A circle circumscribing any Delaunay triangle does not 
contain any other input points in its interior. 
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 If a circle passing through two of the input points 
doesn't contain any other of them in its interior, then 
the segment connecting the two points is an edge of a 
Delaunay triangulation of the given points. 

 Each triangle of the Delaunay triangulation of a set of 
points in d-dimensional spaces corresponds to a facet 
of convex hull of the projection of the points onto a 
(𝑑 + 1)-dimensional paraboloid, and vice versa. 

 The closest neighbor 𝑏 to any point 𝑝 is on an edge 𝑏𝑝 
in the Delaunay triangulation since the nearest 
neighbor graph is a subgraph of the Delaunay 
triangulation. 

 The Delaunay triangulation is a geometric spanner: the 
shortest path between two vertices, along Delaunay 

edges, is known to be no longer than 
4𝜋

3√3
 times the 

euclidean distance between them. 

C. Relationship with Voronoi Diagram 

Actually, the Voronoi diagram is just the straight-line dual 
graph of the Delaunay triangulation, i.e. we can go from the 
Voronoi diagram to the Delaunay triangulation by drawing in 
the edges which are perpendicular to the region boundaries 
and vice versa. 

The Delaunay triangulation of a discrete point set 𝑃 in 
general position corresponds to the dual graph of the Voronoi 
diagram for 𝑃. Special cases include the existence of three 
points on a line and four points on circle. 

 

Fig. 4 Voronoi diagram in red lines (a) and its corresponding 

Delaunay triangulation in dashed lines (b). 

IV. DIVIDE AND CONQUER STRATEGY 

In computer science, divide and conquer is a problem 
solving method that works by breaking down a problem into 
smaller sub-problems of the same type, solving the sub-
problems independently, then combining the sub-problems’ 
solutions into a whole solution for the original problem [9]. 

Precisely, divide and conquer algorithm is comprised of 3 
main processes: 

1. divide: breaking down the problem into smaller sub-
problems of the same type, 

2. conquer: solving each and every sub-problem 
recursively, and 

3. combine: combining solutions of each sub-problem 
into one whole solution for the original problem. 

A. Advantages 

The divide and conquer method gives 2 main advantages 
[9]. Firstly, this method provides a simpler approach for more 
conceptually complex problems such as the classic Tower of 
Hanoi problem by recursively reducing the size of the problem 
until it becomes sub-problems that can be solved trivially. 

Secondly, even if the exact solution is known (e.g. sorting, 
polynomial problems in brute force), divide and conquer 
method can substantially decrease a problem’s complexity. 
For instance, a problem with 𝑂(𝑛2) time complexity and size 
𝑛, and combining two sub-problems requires 𝑂(𝑛) time, 
divide and conquer decreases the time complexity into 
𝑂(𝑛 log 𝑛).  

B. Design and Schematics of Divide and Conquer 

Details of divide and conquer is characterized by (1) 
threshold of sub-problem size 𝑛0, the size of which cannot be 
broken down anymore, (2) sub-problem size, (3) total number 
of sub-problems, and (4) the algorithm to combine all sub-
problem solutions. 

Value of 𝑛0 is usually referred to as base value (where the 
recursive ends). Sub-problem size is the ratio of the original 
problem to the sub-problem size, which is usually 2 or, for 
more complex problems, 4. 

Below is a c-style pseudocode for general schematics of 
divide and conquer. 

void d_and_c(int n, Type sub_problem) { 

  int r; 

  int k; 

 

  if (n < n0) { 

    // sub-problems are small enough to 

be solved 

    solve(sub_problem); 

  } 

  else { 

    sub_problem = divide(sub_problem); 

    s1 = d_and_c(n/2, sub_problem[0]); 

    s2 = d_and_c(n/2, sub_problem[1]); 

    combine(s1, s2); 

  } 

} 

V. CONSTRUCTING VORONOI DIAGRAM USING DIVIDE AND 

CONQUER 

A. Algorithm Description 

In divide and conquer approach for this problem, first, the 
set of points 𝑃 is broken down into subsets 𝑃𝐿  and 𝑃𝑅 of 
roughly the same size by a dividing line. Then, the Voronoi 
diagram 𝑉𝑜𝑟(𝑃𝐿) of subset 𝑃𝐿  and 𝑉𝑜𝑟(𝑃𝑅) of subset 𝑃𝑅 are 
computed recursively. 

The vital part of algorithm consists of finding the split line, 
and merging 𝑉𝑜𝑟(𝑃𝐿) and 𝑉𝑜𝑟(𝑃𝑅), to obtain 𝑉𝑜𝑟(𝑃) of 
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original set 𝑃. If computing the split line and merging of two 
Voronoi diagrams could carried out in time 𝑂(𝑛) then the 
overall running time is 𝑂(𝑛 log 𝑛). 

Calculation of vertical or horizontal split lines is 
straightforward during recursion if the points in 𝑃 are sorted 
by their 𝑥 and 𝑦 coordinates beforehand. Any optimal sorting 
algorithm such as heap sort does this task in 𝑂(𝑛 log 𝑛) time. 

The merge step involves computing the set of 
perpendicular bisector s of sets 𝑃𝐿  and 𝑃𝑅, i.e. 𝐵(𝑃𝐿 , 𝑃𝑅), of all 
Voronoi edges of 𝑉𝑜𝑟(𝑃) that separates the sites in 𝑃𝐿  from 
regions of sites in 𝑃𝑅. The idea of merging based on the fact 
that the edges of 𝐵(𝑃𝐿 , 𝑃𝑅) form a single y-monotone 
polygonal chain. This can be proved by taking any edge b of 
𝐵(𝑃𝐿 , 𝑃𝑅) and two points 𝑙 belongs to 𝐿 and 𝑟 belongs to 𝑅 of 
two regions adjacent to 𝑏. The smaller xcoordinate of  𝑙 with 
respect to xcoordinate of 𝑟 implies that 𝑏 cannot be 
horizontal. Thus, stitch together the part of 𝑉𝑜𝑟(𝑃𝐿) to the left 
of  𝐵(𝑃𝐿 , 𝑃𝑅) with the part of 𝑉𝑜𝑟(𝑃𝑅) to the right of  
𝐵(𝑃𝐿 , 𝑃𝑅) to get 𝑉𝑜𝑟(𝑆). Find a starting edge at infinity, and 
by tracing  𝐵(𝑃𝐿 , 𝑃𝑅) through 𝑉𝑜𝑟(𝑃𝐿) and 𝑉𝑜𝑟(𝑃𝑅) in order 
to construct the polygonal chain 𝐵(𝑃𝐿 , 𝑃𝑅). 

B. Support Line Computation 

This algorithm requires convex polygons and calculation 
of common support line. The algorithm runs in 𝑂(𝑛) time. In 
fact, there has already been an 𝑂(log 𝑛) algorithm for finding 
the common support by Overmars and Leevwen [10]. But 
since this sub-problem is not a bottleneck of the total time 
complexity, following 𝑂(𝑛) algorithm is quite enough. 

VI. PATH PLANNING WITH VORONOI DIAGRAM AND 

DELAUNAY TRIANGULATION 

A. Design Motivation 

It is possible to design a path planning with dynamic 
obstacle using Voronoi diagram and Delaunay triangulation. 
The field on which the robots are playing can be considered 
as a 2-dimensional plane with x and y coordinates and a 
Voronoi diagram can be layered on top of it. 

The Voronoi diagram will describe regions on which the 
objects exist on the field and every point is closest to a 
particular point 𝑝 in a predefined subset of points 𝑃 which lies 
on the field. The Delaunay triangulation will describe the 
actual path the robot will take in navigating the field of play 
during gametime. 

B. Algorithm Design 

Assuming the coordinates of robot and obstacle are known 
relative to the world, firstly plot the coordinates of starting 
point, goal point, and positions of robot and obstacle on the 
world then mark the regions which the four points are on. 
These regions can either be overlapping or disjoint. 

Secondly, calculate the ideal path of the robot if there is no 
obstacle to avoid. This can be done by generating a graph with 
Delaunay triangulation sides as the edges and set of points 𝑃 
as the vertices then calculating the shortest path between the 

starting region and goal region. Many path finding algorithms 
can do this task easily such as A* algorithm. 

Thirdly, iterate every period of time. In every iteration, 
check whether the current region of the robot and region of 
obstacle is within a certain threshold. The threshold is defined 
based on the velocity of both objects. 

If the objects are within a certain region (or even 
overlapping), divert the path of the robot to another region 
farther from the region of the obstacle. The direction of 
diversion can be adopted from [1]. Again, it depends on the 
direction of both the robot and the obstacle as well as their 
respective velocity vector. 

If the objects are beyond a certain region, this means it is 
safe for the robot to go on its initial course. Repeat this step 
until the robot reaches the goal region or it switches its state. 

C. Voronoi Diagram Design 

As stated in the rulebook of RoboCup Middle Size League 
[11], the maximum width and height of the robot is 52 × 52 
centimeters. Draw points on the field 52 centimeters apart 
from each other. See figure below for details. 

 

Fig. 5 Each point of the triangles represent 1 point in set P. 

Generate the Voronoi diagram of this set of points 𝑃. The 
cells in the said Voronoi diagram will mark the regions that 
will be used. 

Construct a Delaunay triangulation for the Voronoi 
diagram and it will be used as the discrete path of the robot. 

VII. CONCLUSION 

It is possible to construct a robust path planning and 
dynamic obstacle avoidance algorithm with the help of 
Voronoi diagram and Delaunay triangulation. Using this 
technique is also simpler than calculating velocity vector for 
every iteration. 

That being said, however, it is still not so effective to use 
it as the path will be rough and a high amount of diversion and 
changes of direction is to be expected. 
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VIII. FURTHER WORKS 

The author hopes to optimize this algorithm in order to 
improve the robot movement on the field as well as minimize 
the amount of changes of direction as it might harm the robot’s 
actuators. 
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