
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Dynamic Obstacle Avoidance and Path Planning for

an Omnidirectional Robot Using 2-Dimensional

Voronoi Diagram and Delaunay Triangulation
This paper is to fulfill IF2211 Algorithm Strategies course assignment, Informatics program,

Institut Teknologi Bandung

Dionesius Agung Andika P.

Informatics Department

School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Bandung, Indonesia

13516043@std.stei.itb.ac.id

Abstract—this paper proposes and elaborates a new method

for a path planning and obstacle avoidance in a dynamic

environment for a RoboCup Middle Size League soccer playing

robot. It involves the construction of Voronoi diagram and

Delaunay triangulation, as well as using divide and conquer

algorithm to calculate the best path towards a goal point and

simultaneously avoiding incoming obstacles.

Keywords—Delaunay triangulation; divide and conquer;

soccer robot; omnidirectional robot; Voronoi diagram

I. INTRODUCTION

MSL or Middle Size League is a robot soccer competition
initiated by RoboCup. It is played on an indoor soccer field
with goals of reduced size by teams of five fully autonomous
soccer playing robots that compete against one another. No
human intervention is allowed during a match with the
exception of taking robots on and from the field or in case of
emergency and unexpected robots behavior.

In order to perceive objects in its world, an MSL robot has
camera sensor (either omnivision or frontal). A stream of
images from the camera are processed real-time to detect
objects such as field, ball, and other robots. Auxilliary sensors
can also be used for localization means such as distance or
infrared sensor, compass, and encoder from the motors that
will turn its wheels.

Fig. 1 MSL Robots from TU Eindhoven competing in the

RoboCup.

An important ability in this robot, which are usually
omnidirectional, should have is obstacle avoidance. The main
obstacle in this robot’s world are opponent robots as well as
sometimes its teammates.

A known obstacle avoidance algorithm is by calculating
velocity and position vectors of both the robot and the obstacle
and then returning a velocity vector �⃑� in which direction the
robot should go. An example of this algorithm is explained by
Robert L. Williams in [1].

Another approach proposed by the author is by utilizing
Voronoi diagram and its corresponding Delauny triangulation.
A Voronoi diagram and its corresponding Delaunay
triangulation graph can be utilized to plan a path from one
point to another point in the field with dynamic obstacles. One
advantage of using this method is that the Voronoi diagram is
only constructed once during the initialization, thus reducing
the computing cost during the gameplay.

By using Voronoi diagram and Delaunay triangulation,
position control is used as opposed to velocity control to
control the behavior of the robot. This, however, has a little
drawback, as the motion generated by the algoritm is a bit less
smooth than the obstacle avoidance algorithm in [1].

II. VORONOI DIAGRAM

A. Definition

The partitioning of a plane with 𝑛 points into convex
polygons such that each polygon contains exactly one
generating point and every point in a given polygon is closer
to its generating point than to any other. A Voronoi diagram
is sometimes also known as a Dirichlet tessellation. The cells
are called Dirichlet regions, Thiessen polytopes, or Voronoi
polygons.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Fig. 2 Voronoi diagram with 20 points.

B. History

The first recorded use of this diagram can be traced back
to French mathematician René Descartes in 1644. In 1850,
Peter Gustav Lejeune Dirichlet used 2-dimensional and 3-
dimensional Voronoi diagrams in his study of quadratic forms
[2].

Voronoi diagram is named after the mathematician
Georgy Fedosievych Voronoi of the Russian Empire who first
defined and studied the general n-dimensional case of this
problem. Some equivalent names for this concept are Voronoi
polyhedron, Voronoi cell, domain of influence, Voronoi
tesselation, and Dirichlet tesselation.

C. Significance in Research and Study Fields

Voronoi diagrams used in geophysics and meteorology to
analyze spatially distributed data (e.g. rainfall measurements)
are called Thiessen polygons after American meteorologist
Alfred H. Thiessen. In condensed matter physics, such
tessellations are also known as Wigner-Seitz unit cells.
Voronoi tessellations of the reciprocal lattice of momenta are
called Brillouin zones. For general lattices in Lie groups, the
cells are simply called fundamental domains. In the case of
general metric spaces, the cells are often called metric
fundamental polygons.

D. Mathematical Properties

The mathematical properties of a Voronoi diagram,
assuming that it is set in an Euclidean plane and space,
according to [3] and [4] are as follows.

 The dual graph for a Voronoi diagram corresponds to
the Delaunay triangulation for the same set of points.

 The closest pair of points corresponds to two adjacent
cells in the Voronoi diagram.

 Two points are adjacent on the convex hull if and only
if their Voronoi cells share an infinitely long side.

 If the space is a normed space and the distance to each
site is attained, each Voronoi cell can be represented as
a union of line segments emanating from the sites.

 Under relatively general conditions, Voronoi cells
enjoy a certain stability property: a small change in the
shapes of the sites, e.g., a change caused by some
translation or distortion, yields a small change in the

shape of the Voronoi cells. This is the geometric
stability of Voronoi diagrams.

III. DELAUNAY TRIANGULATION

A. Definition

In mathemtics and computational geometry, a Delaunay
triangulation is a triangulation 𝐷𝑇(𝑃) for a given set 𝑃 of
discrete points in a plane such that no point in 𝑃 is inside the
circumcircle of any triangle in 𝐷𝑇(𝑃).

Delaunay triangulations maximize the minimum angle of
all the angles of the triangles in the triangulation, i.e. they tend
to avoid skinny triangles.

Fig. 3 Delaunay triangulation for a set of 10 points.

B. Mathematical Properties

The mathematical properties of a Delaunay triangulation
for n number of points in d-dimension according to [5], [6],
[7], and [8] as follows.

 The union of all simplices in the triangulation is the
convex hull of the points.

 The Delaunay triangulation contains 𝑂(𝑛⌈𝑑 2⁄ ⌉)
simplices.

 In the plane, if there are 𝑏 vertices on the convex hull,
then any triangulation of the points has at most 2𝑛 −
2 − 𝑏 triangles, plus one exterior face.

 If points are distributed according to a Poisson process
in the plane with constant intensity, then each vertex
has on average six surrounding triangles.

 In the plane, the Delaunay triangulation maximizes the
minimum angle. Compared to any other triangulation
of the points, the smallest angle in the Delaunay
triangulation is at least as large as the smallest angle in
any other. However, the Delaunay triangulation does
not necessarily minimize the maximum angle. The
Delaunay triangulation also does not necessarily
minimize the length of the edges.

 A circle circumscribing any Delaunay triangle does not
contain any other input points in its interior.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

 If a circle passing through two of the input points
doesn't contain any other of them in its interior, then
the segment connecting the two points is an edge of a
Delaunay triangulation of the given points.

 Each triangle of the Delaunay triangulation of a set of
points in d-dimensional spaces corresponds to a facet
of convex hull of the projection of the points onto a
(𝑑 + 1)-dimensional paraboloid, and vice versa.

 The closest neighbor 𝑏 to any point 𝑝 is on an edge 𝑏𝑝
in the Delaunay triangulation since the nearest
neighbor graph is a subgraph of the Delaunay
triangulation.

 The Delaunay triangulation is a geometric spanner: the
shortest path between two vertices, along Delaunay

edges, is known to be no longer than
4𝜋

3√3
 times the

euclidean distance between them.

C. Relationship with Voronoi Diagram

Actually, the Voronoi diagram is just the straight-line dual
graph of the Delaunay triangulation, i.e. we can go from the
Voronoi diagram to the Delaunay triangulation by drawing in
the edges which are perpendicular to the region boundaries
and vice versa.

The Delaunay triangulation of a discrete point set 𝑃 in
general position corresponds to the dual graph of the Voronoi
diagram for 𝑃. Special cases include the existence of three
points on a line and four points on circle.

Fig. 4 Voronoi diagram in red lines (a) and its corresponding

Delaunay triangulation in dashed lines (b).

IV. DIVIDE AND CONQUER STRATEGY

In computer science, divide and conquer is a problem
solving method that works by breaking down a problem into
smaller sub-problems of the same type, solving the sub-
problems independently, then combining the sub-problems’
solutions into a whole solution for the original problem [9].

Precisely, divide and conquer algorithm is comprised of 3
main processes:

1. divide: breaking down the problem into smaller sub-
problems of the same type,

2. conquer: solving each and every sub-problem
recursively, and

3. combine: combining solutions of each sub-problem
into one whole solution for the original problem.

A. Advantages

The divide and conquer method gives 2 main advantages
[9]. Firstly, this method provides a simpler approach for more
conceptually complex problems such as the classic Tower of
Hanoi problem by recursively reducing the size of the problem
until it becomes sub-problems that can be solved trivially.

Secondly, even if the exact solution is known (e.g. sorting,
polynomial problems in brute force), divide and conquer
method can substantially decrease a problem’s complexity.
For instance, a problem with 𝑂(𝑛2) time complexity and size
𝑛, and combining two sub-problems requires 𝑂(𝑛) time,
divide and conquer decreases the time complexity into
𝑂(𝑛 log 𝑛).

B. Design and Schematics of Divide and Conquer

Details of divide and conquer is characterized by (1)
threshold of sub-problem size 𝑛0, the size of which cannot be
broken down anymore, (2) sub-problem size, (3) total number
of sub-problems, and (4) the algorithm to combine all sub-
problem solutions.

Value of 𝑛0 is usually referred to as base value (where the
recursive ends). Sub-problem size is the ratio of the original
problem to the sub-problem size, which is usually 2 or, for
more complex problems, 4.

Below is a c-style pseudocode for general schematics of
divide and conquer.

void d_and_c(int n, Type sub_problem) {

 int r;

 int k;

 if (n < n0) {

 // sub-problems are small enough to

be solved

 solve(sub_problem);

 }

 else {

 sub_problem = divide(sub_problem);

 s1 = d_and_c(n/2, sub_problem[0]);

 s2 = d_and_c(n/2, sub_problem[1]);

 combine(s1, s2);

 }

}

V. CONSTRUCTING VORONOI DIAGRAM USING DIVIDE AND

CONQUER

A. Algorithm Description

In divide and conquer approach for this problem, first, the
set of points 𝑃 is broken down into subsets 𝑃𝐿 and 𝑃𝑅 of
roughly the same size by a dividing line. Then, the Voronoi
diagram 𝑉𝑜𝑟(𝑃𝐿) of subset 𝑃𝐿 and 𝑉𝑜𝑟(𝑃𝑅) of subset 𝑃𝑅 are
computed recursively.

The vital part of algorithm consists of finding the split line,
and merging 𝑉𝑜𝑟(𝑃𝐿) and 𝑉𝑜𝑟(𝑃𝑅), to obtain 𝑉𝑜𝑟(𝑃) of

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

original set 𝑃. If computing the split line and merging of two
Voronoi diagrams could carried out in time 𝑂(𝑛) then the
overall running time is 𝑂(𝑛 log 𝑛).

Calculation of vertical or horizontal split lines is
straightforward during recursion if the points in 𝑃 are sorted
by their 𝑥 and 𝑦 coordinates beforehand. Any optimal sorting
algorithm such as heap sort does this task in 𝑂(𝑛 log 𝑛) time.

The merge step involves computing the set of
perpendicular bisector s of sets 𝑃𝐿 and 𝑃𝑅, i.e. 𝐵(𝑃𝐿 , 𝑃𝑅), of all
Voronoi edges of 𝑉𝑜𝑟(𝑃) that separates the sites in 𝑃𝐿 from
regions of sites in 𝑃𝑅. The idea of merging based on the fact
that the edges of 𝐵(𝑃𝐿 , 𝑃𝑅) form a single y-monotone
polygonal chain. This can be proved by taking any edge b of
𝐵(𝑃𝐿 , 𝑃𝑅) and two points 𝑙 belongs to 𝐿 and 𝑟 belongs to 𝑅 of
two regions adjacent to 𝑏. The smaller xcoordinate of 𝑙 with
respect to xcoordinate of 𝑟 implies that 𝑏 cannot be
horizontal. Thus, stitch together the part of 𝑉𝑜𝑟(𝑃𝐿) to the left
of 𝐵(𝑃𝐿 , 𝑃𝑅) with the part of 𝑉𝑜𝑟(𝑃𝑅) to the right of
𝐵(𝑃𝐿 , 𝑃𝑅) to get 𝑉𝑜𝑟(𝑆). Find a starting edge at infinity, and
by tracing 𝐵(𝑃𝐿 , 𝑃𝑅) through 𝑉𝑜𝑟(𝑃𝐿) and 𝑉𝑜𝑟(𝑃𝑅) in order
to construct the polygonal chain 𝐵(𝑃𝐿 , 𝑃𝑅).

B. Support Line Computation

This algorithm requires convex polygons and calculation
of common support line. The algorithm runs in 𝑂(𝑛) time. In
fact, there has already been an 𝑂(log 𝑛) algorithm for finding
the common support by Overmars and Leevwen [10]. But
since this sub-problem is not a bottleneck of the total time
complexity, following 𝑂(𝑛) algorithm is quite enough.

VI. PATH PLANNING WITH VORONOI DIAGRAM AND

DELAUNAY TRIANGULATION

A. Design Motivation

It is possible to design a path planning with dynamic
obstacle using Voronoi diagram and Delaunay triangulation.
The field on which the robots are playing can be considered
as a 2-dimensional plane with x and y coordinates and a
Voronoi diagram can be layered on top of it.

The Voronoi diagram will describe regions on which the
objects exist on the field and every point is closest to a
particular point 𝑝 in a predefined subset of points 𝑃 which lies
on the field. The Delaunay triangulation will describe the
actual path the robot will take in navigating the field of play
during gametime.

B. Algorithm Design

Assuming the coordinates of robot and obstacle are known
relative to the world, firstly plot the coordinates of starting
point, goal point, and positions of robot and obstacle on the
world then mark the regions which the four points are on.
These regions can either be overlapping or disjoint.

Secondly, calculate the ideal path of the robot if there is no
obstacle to avoid. This can be done by generating a graph with
Delaunay triangulation sides as the edges and set of points 𝑃
as the vertices then calculating the shortest path between the

starting region and goal region. Many path finding algorithms
can do this task easily such as A* algorithm.

Thirdly, iterate every period of time. In every iteration,
check whether the current region of the robot and region of
obstacle is within a certain threshold. The threshold is defined
based on the velocity of both objects.

If the objects are within a certain region (or even
overlapping), divert the path of the robot to another region
farther from the region of the obstacle. The direction of
diversion can be adopted from [1]. Again, it depends on the
direction of both the robot and the obstacle as well as their
respective velocity vector.

If the objects are beyond a certain region, this means it is
safe for the robot to go on its initial course. Repeat this step
until the robot reaches the goal region or it switches its state.

C. Voronoi Diagram Design

As stated in the rulebook of RoboCup Middle Size League
[11], the maximum width and height of the robot is 52 × 52
centimeters. Draw points on the field 52 centimeters apart
from each other. See figure below for details.

Fig. 5 Each point of the triangles represent 1 point in set P.

Generate the Voronoi diagram of this set of points 𝑃. The
cells in the said Voronoi diagram will mark the regions that
will be used.

Construct a Delaunay triangulation for the Voronoi
diagram and it will be used as the discrete path of the robot.

VII. CONCLUSION

It is possible to construct a robust path planning and
dynamic obstacle avoidance algorithm with the help of
Voronoi diagram and Delaunay triangulation. Using this
technique is also simpler than calculating velocity vector for
every iteration.

That being said, however, it is still not so effective to use
it as the path will be rough and a high amount of diversion and
changes of direction is to be expected.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

VIII. FURTHER WORKS

The author hopes to optimize this algorithm in order to
improve the robot movement on the field as well as minimize
the amount of changes of direction as it might harm the robot’s
actuators.

ACKNOWLEDGMENT

The author would like to thank God Almighty for helping
him and giving him the strength to pull an all-nighter to finish
this paper after an exhausting 3 days of robotics competition
in Jakarta, and thus not being able to finish or even do this
paper beforehand. The author would also like to thank the
entire Dagozilla ITB MSL Robotics team for the support and
ideas given to the author during the production process of this
paper. Lastly, the author would like to thank his trusty friend
Michael and his printer for helping the author in printing this
paper so that it can be submitted.

REFERENCES

[1] R. L. Williams II and J. Wu, "Dynamic Obstacle

Avoidance for an Omnidirectional Mobile Robot,"

Journal of Robotics, vol. 2010, p. 14, 2010.

[2] G. L. Dirichlet, "Über die Reduktion der positiven

quadratischen Formen mit drei unbestimmten ganzen

Zahlen (On the Reduction of Positive Quadratic Forms

with Three Indefinite Integers)," Journal für die reine

und angewandte Mathematik (Journal for Pure and

Applied Mathematics), vol. 40, pp. 209-227, 1850.

[3] D. Reem, "An Algorithm for Computing Voronoi

Diagrams of General Generators in General Normed

Spaces," in Proceedings of the sixth International

Symposium on Voronoi Diagrams in science and

engineering (ISVD 2009), Copenhagen, 2009.

[4] D. Reem, "The geometric stability of Voronoi

diagrams with respect to small changes of the sites," in

Proceedings of the 27th Annual ACM Symposium on

Computational Geometry (SoCG), Paris, 2011.

[5] R. Seidel, "The upper bound theorem for polytopes: an

easy proof of its asymptotic version," Computational

Geometry, vol. 5, no. 2, pp. 115-116, 1995.

[6] R. A. Dwyer, "Higher-dimensional Voronoi diagrams

in linear expected time," Discrete and Computational

Geometry, vol. 6, no. 3, pp. 343-367, 1991.

[7] H. Edelsbrunner, T. S. Tan and R. Waupotitsch, "An

O(n2 log n) time algorithm for the minmax angle

triangulation," SIAM Journal on Scientific and

Statistical Computing, vol. 13, no. 4, pp. 994-1008,

1992.

[8] J. M. Keil and C. A. Gutwin, "Classes of graphs which

approximate the complete euclidean graph," Discrete

and Computational Geometry, vol. 7, no. 1, pp. 13-28,

1992.

[9] R. Munir, Diktat Kuliah IF2211 Strategi Algoritma,

Bandung: Program Studi Teknik Informatika ITB,

2007.

[10] M. H. Overmars and J. v. Leeuwen, "Maintenance of

configurations in the plane," Journal of Computer and

System Sciences, vol. 23, no. 2, pp. 166-204, 1981.

[11] MSL Technical Commitee 1997-2018, Middle Size

Robot League Rules and Regulations for 2018,

RoboCup MSL, 2017.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 14 Mei 2018

Dionesius Agung Andika Perkasa

13516043

