
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

D* Lite Algorithm in Path Planning of Autonomous

Robot

Jose Hosea 13516027

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516027@std.stei.itb.ac.id

Abstract — Robotics is an interdisciplinary branch of

engineering and science that includes mechanical

engineering, electrical engineering, computer science, and

others. Robotics deals with the design, construction,

operation, and use of robots, as well as computer systems for

their control, sensory feedback, and information processing.

One of the branch of robotics which involve path planning

(or navigation problem) is auto-robot engineering. One must

assess the skill of understanding how the robot move, how it

must perceive its environment in the ideal way so it can move

efficiently, both in time to process its environment, and move

with minimum cost.

This paper will focus on application of D* algorithm, a

variance of A* algorithm in auto-robot path planning, and

how its derivation, D* Lite, is advantageous in terms as

stated above.

Keywords — Auto-Robot, D*, Path planning, Robot

Navigation.

I. INTRODUCTION

The term path planning was developed in many fields, such

as robotics, artificial intelligence or control theory. That is why

each scientist uses own definition of this term. In robotics, path

planning concerns with problem as how to move a robot from

one point to another point. With the advances in robotics path

planning also includes many complications such as

uncertainties, multiple robots, or dynamics. In artificial

intelligence, path planning means a search for a sequence of

logical actions that transform an initial robot state into a desired

goal state. Such planning may include many decision-theoretic

ideas such as Markov decision processes, imperfect state

information, learning methods or game-theoretic equilibrium. In

the control theory, path planning deals with issues of stability,

feedback, and optimality. As it can be seen, path planning of a

mobile robot is a wide problem and there exist many methods

and approaches to it.

Generally in robotics, path planning is focused on designing

algorithms that generate useful motions by processing simple or

more complicated geometric models. This paper is focused on

such algorithms. Path planning addresses the automation of

mechanical systems that have sensors, actuators, and

computation capabilities. Path planning is defined as a

fundamental needs in robotics that are described by algorithms

that convert high-level specification of task from humans into

low-level description of how to move. This is described by a

Piano Mover’s Problem. The task is defined with a precise

model of house and a piano as input to an algorithm. The

algorithm must determine how to move the piano from one room

to another without hitting anything. Robot’s path planning is

defined in similar way. However, path planning usually ignores

dynamics and other constraints and focuses primarily on the

translations and rotations of controlled object – robot. Recent

research in this area considers also other aspects such as

uncertainties, differential constraints, optimality, etc.

For goal-directed path planning, a robot has to move from the

given starting position towards the goal position with the

capability to avoid obstacles. The robot should also be able to

traverse in both known and unknown environments. Besides,

time to traverse from starting point to goal point is also an

important aspect emphasized by researches. It is important for

robot to plan a shortest path from starting point to goal point.

Moreover, therobot must be able to re-plan its path quickly if

there is a new obstacle in front or nearby. Some of the existing

goal-direct navigation algorithms are such as A* Algorithm, D*

Algorithm, and D* Lite Algorithm.

II. THEORIES

2.1 Robotics

2.1.1 Robots

A robot is a machine—especially one programmable by a

computer— capable of carrying out a complex series of actions

automatically. Robots can be guided by an external control

device or the control may be embedded within. Robots may be

constructed to take on human form but most robots are machines

designed to perform a task with no regard to how they look.

Robots have replaced humans in performing repetitive and

dangerous tasks which humans prefer not to do, or are unable to

do because of size limitations, or which take place in extreme

environments such as outer space or the bottom of the sea. There

are concerns about the increasing use of robots and their role in

society. Robots are blamed for rising technological

unemployment as they replace workers in increasing numbers of

functions. The use of robots in military combat raises ethical

https://en.wikipedia.org/wiki/Interdisciplinary
https://en.wikipedia.org/wiki/List_of_engineering_branches
https://en.wikipedia.org/wiki/Branches_of_science
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Sensory_feedback
https://en.wikipedia.org/wiki/Information_processing
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Technological_unemployment
https://en.wikipedia.org/wiki/Technological_unemployment

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

concerns. The possibilities of robot autonomy and potential

repercussions have been addressed in fiction and may be a

realistic concern in the future.

There are a lot different types of robots that can be made, but

the basic similarities of their construction is the most important

part in creating a robot, with the rest of the process after it are

left to engineers’ creativities and goals.

They are used in many different environments and for many

different uses, although being very diverse in application and

form they all share three basic similarities when it comes to their

construction:

1. Robots all have some kind of mechanical

construction, a frame, form or shape designed to

achieve a particular task. For example, a robot designed

to travel across heavy dirt or mud, might use caterpillar

tracks. The mechanical aspect is mostly the creator's

solution to completing the assigned task and dealing

with the physics of the environment around it. Form

follows function.

2. Robots have electrical components which power and

control the machinery. For example, the robot with

caterpillar tracks would need some kind of power to

move the tracker treads. That power comes in the form

of electricity, which will have to travel through a wire

and originate from a battery, a basic electrical circuit.

Even petrol powered machines that get their power

mainly from petrol still require an electric current to

start the combustion process which is why most petrol

powered machines like cars, have batteries. The

electrical aspect of robots is used for movement

(through motors), sensing (where electrical signals are

used to measure things like heat, sound, position, and

energy status) and operation (robots need some level of

electrical energy supplied to their motors and sensors

in order to activate and perform basic operations)

3. All robots contain some level of computer

programming code. A program is how a robot decides

when or how to do something. In the caterpillar track

example, a robot that needs to move across a muddy

road may have the correct mechanical construction and

receive the correct amount of power from its battery,

but would not go anywhere without a program telling

it to move. Programs are the core essence of a robot, it

could have excellent mechanical and electrical

construction, but if its program is poorly constructed its

performance will be very poor (or it may not perform

at all). There are three different types of robotic

programs: remote control, artificial intelligence and

hybrid. A robot with remote control programing has a

preexisting set of commands that it will only perform

if and when it receives a signal from a control source,

typically a human being with a remote control. It is

perhaps more appropriate to view devices controlled

primarily by human commands as falling in the

discipline of automation rather than robotics. Robots

that use artificial intelligence interact with their

environment on their own without a control source, and

can determine reactions to objects and problems they

encounter using their preexisting programming. Hybrid

is a form of programming that incorporates both AI and

RC functions.

2.1.2 Autonomous Robots

An autonomous robot performs behaviors or tasks with a high

degree of autonomy, which is particularly desirable in fields

such as spaceflight, household maintenance (such as cleaning),

waste water treatment and delivering goods and services.

Some modern factory robots are "autonomous" within the

strict confines of their direct environment. It may not be that

every degree of freedom exists in their surrounding

environment, but the factory robot's workplace is challenging

and can often contain chaotic, unpredicted variables. The exact

orientation and position of the next object of work and (in the

more advanced factories) even the type of object and the

required task must be determined. This can vary unpredictably

(at least from the robot's point of view).

One important area of robotics research is to enable the robot

to cope with its environment whether this be on land,

underwater, in the air, underground, or in space.

A fully autonomous robot can:

 Gain information about the environment.

 Work for an extended period without human

intervention.

 Move either all or part of itself throughout its operating

environment without human assistance.

 Avoid situations that are harmful to people, property, or

itself unless those are part of its design specifications.

An autonomous robot may also learn or gain new knowledge

like adjusting for new methods of accomplishing its tasks or

adapting to changing surroundings. Like other machines,

autonomous robots still require regular maintenance.

2.2 Path planning
2.2.1 Definitions

Path planning (also known as the navigation problem or the

piano mover's problem) is a term used in robotics for the process

of breaking down a desired movement task into discrete motions

that satisfy movement constraints and possibly optimize some

aspect of the movement.

For example, consider navigating a mobile robot inside a

building to a distant waypoint. It should execute this task while

avoiding walls and not falling down stairs. A path planning

algorithm would take a description of these tasks as input, and

produce the speed and turning commands sent to the robot's

wheels. Path planning algorithms might address robots with a

larger number of joints (e.g., industrial manipulators), more

complex tasks (e.g. manipulation of objects), different

constraints (e.g., a car that can only drive forward), and

https://en.wikipedia.org/wiki/Caterpillar_tracks
https://en.wikipedia.org/wiki/Caterpillar_tracks
https://en.wikipedia.org/wiki/Caterpillar_tracks
https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Machines
https://en.wikipedia.org/wiki/Electrical_energy
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Remote_control
https://en.wikipedia.org/wiki/Artificial_intelligence

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

uncertainty (e.g. imperfect models of the environment or robot).

Path planning has several robotics applications, such as

autonomy, automation, and robot design in CAD software, as

well as applications in other fields, such as animating digital

characters, video game artificial intelligence, architectural

design, robotic surgery, and the study of biological molecules.

A motion planner is said to be complete if the planner in finite

time either produces a solution or correctly reports that there is

none. Most complete algorithms are geometry-based. The

performance of a complete planner is assessed by its

computational complexity.

Resolution completeness is the property that the planner is

guaranteed to find a path if the resolution of an underlying grid

is fine enough. Most resolution complete planners are grid-

based or interval-based. The computational complexity of

resolution complete planners is dependent on the number of

points in the underlying grid, which is O(1/hd), where h is the

resolution (the length of one side of a grid cell) and d is the

configuration space dimension.

Probabilistic completeness is the property that as more

“work” is performed, the probability that the planner fails to find

a path, if one exists, asymptotically approaches zero. Several

sample-based methods are probabilistically complete. The

performance of a probabilistically complete planner is measured

by the rate of convergence.

Incomplete planners do not always produce a feasible path

when one exists. Sometimes incomplete planners do work well

in practice.

2.2 D* Algorithm
2.2.1 Definitions

D*(read as D star) is an incremental search algorithm to solve

the same assumption-based path planning problems, including

planning with the freespace assumption, where a robot has to

navigate to given goal coordinates in unknown terrain. It makes

assumptions about the unknown part of the terrain (for example:

that it contains no obstacles) and finds a shortest path from its

current coordinates to the goal coordinates under these

assumptions. The robot then follows the path. When it observes

new map information (such as previously unknown obstacles),

it adds the information to its map and, if necessary, replans a

new shortest path from its current coordinates to the given goal

coordinates. It repeats the process until it reaches the goal

coordinates or determines that the goal coordinates cannot be

reached. When traversing unknown terrain, new obstacles may

be discovered frequently, so this replanning needs to be fast.

Incremental (heuristic) search algorithms speed up searches for

sequences of similar search problems by using experience with

the previous problems to speed up the search for the current one.

Assuming the goal coordinates do not change, this search

algorithm is more efficient than repeated A* searches.

D* and its variants have been widely used for mobile robot

and autonomous vehicle navigation. Current systems are

typically based on D* Lite rather than the original D* or

Focussed D*. In fact, even Stentz's lab uses D* Lite rather than

D* in some implementations. Such navigation systems include

a prototype system tested on the Mars rovers Opportunity and

Spirit and the navigation system of the winning entry in the

DARPA Urban Challenge, both developed at Carnegie Mellon

University.

The original D* was introduced by Anthony Stentz in 1994.

The name D* comes from the term "Dynamic A*", because the

algorithm behaves like A* except that the arc costs can change

as the algorithm runs.

A* Algorithm (Lester, 2009) is an early developed popular

graph search algorithm which finds the shortest path from a

given initial start node to the goal node. A* Algorithm uses

distance plus path cost function to determine the shortest path to

the goal node. In A* Algorithm, node or square notation is used

rather than coordinate because a map is divided into small grids

or squares and nodes represent the center point of each grid D*

Algorithm, which is also known as Stentz algorithm or Dynamic

A* Algorithm, is developed by Anthony Stentz in 1994. It is

better than A* Algorithm because it could be used in partially or

completely unknown and also dynamic environment. Dynamic

environment means there might contain moving obstacles. A*

Algorithm is a simple algorithm which could be only used in

static environment. But D* Algorithm is able to repair or update

the map of the dynamic environment and it can re-plan quickly

whenever it detects there is a new obstacle or an obstacle is

removed on the way to goal node (Stentz, 1994).

Like Dijkstra's algorithm and A*, D* maintains a list of nodes

to be evaluated, known as the "OPEN list". Nodes are marked

as having one of several states:

 NEW, meaning it has never been placed on the OPEN

list

 OPEN, meaning it is currently on the OPEN list

 CLOSED, meaning it is no longer on the OPEN list

 RAISE, indicating its cost is higher than the last time it

was on the OPEN list

 LOWER, indicating its cost is lower than the last time

it was on the OPEN list

For D*, it is important to distinguish between current and

minimum costs. The former is only important at the time of

collection and the latter is critical because it sorts the OPEN list.

The function which returns the minimum cost is always the

lowest cost to the current point since it is the first entry of the

OPEN list.

2.2.1 D* Lite

D* Lite Algorithm is a reverse or backward searching method

and it is able to re-plan from current position when there is a

new obstacle blocking the path. It determines the same paths as

D* Algorithm and moves the mobile robot the same way but it

is algorithmically different from D* Algorithm. D* Lite

Algorithm is developed by Koenig and Likhachev (Koenig &

Likhachev, 2002; Likhachev & Koenig, 2002; Koenig &

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

Likhachev, 2005) based on Lifelong Planning A* (Koenig et al.,

2004) Algorithm in 2002. It has been widely used for mobile

robot navigation in unknown environment. Similarly, it divides

the environment into grids and path finding and robot’s

movement are from grid to grid.

The pseudo-code is given below:

Figure 1. D* Lite Algorithm

Source : D* Lite by Sven Koenig and Maxim Likhachev.

III. D* LITE IN PATH PLANNING

3.1 Overview

Consider a goal-directed robot-navigation task in unknown

terrain, where the robot always observes which of its eight

adjacent cells are traversable and then moves with cost one to

one of them. The robot starts at the start cell and has to move to

the goal cell. It always computes a shortest path from its current

cell to the goal cell under the assumption that cells with

unknown blockage status are traversable. It then follows this

path until it reaches the goal cell, in which case it stops

successfully, or it observes an untraversable cell, in which case

it recomputes a shortest path from its current cell to the goal cell.

Figure 2 shows the goal distances of all traversable cells and

the shortest paths from its current cell to the goal cell both before

and after the robot has moved along the path and discovered the

first blocked cell it did not know about. Cells whose goal

distances have changed are shaded gray. The goal distances are

important because one can easily determine a shortest path from

its current cell of the robot to the goal cell by greedily decreasing

the goal distances once the goal distances have been computed.

Notice that the number of cells with changed goal distances is

small and most of the changed goal distances are irrelevant for

recalculating a shortest path from its current cell to the goal cell.

Thus, one can efficiently recalculate a shortest path from its

current cell to the goal cell by recalculating only those goal

distances that have changed (or have not been calculated before)

and are relevant for recalculating the shortest path. This is what

D* Lite does. The challenge is to identify these cells efficiently.

Figure 2. An Example of Path planning with D * Lite

Source : D* Lite by Sven Koenig and Maxim Likhachev.

3.2 Execution

The experiment is to simulates the dynamic replanning ability

of the path planning algorithm by allowing the user to add

obstacles by clicking on cells in the grid. The robot is the red

circle, while the goal cell is green. The robot has a visibility

range, shown by the thin black lines, and added obstacles are not

taken into account by the robot until they are visible and change

to darker grey. Pressing space bar makes the robot observe new

obstacles, replan if necessary, and advances on the current best

path until the goal is reached.

The experiment here merely showing how the D* Lite

algorithm works in a grid-based environment(with the

assumption that the robot holds sufficient processing power) and

its replanning capabilities when the robot ‘see’ the manually-

added obstacle. The experiment will be simulated by a

visualization program.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

Figure 3 shows the initial state of the robot, its knowledge

about the environment, and the pre-defined goal cell.

Figure 3. Initial Position of Robot (red circle), Its Vision

Range (thin line), and the Goal (green cell)

The first step of the experiment is done by pressing the space

bar once. This step simulates what the robot does when there is

no obstacle known.

Figure 4. Step Taken by The Robot

Figure 4 shows what happened after space bar is pressed. As

seen in it, when there is no obstacle ‘seen’ by the robot, it

chooses a path, move to the next minimum-cost cell and mark

the last cell as a costly path.

The second step is to press space bar repeatedly until the robot

reaches the goal cell.

Figure 5. Robot reaches the Goal

As seen in Figure 5, this step shows that the robot can reach

its goal, given its current knowledge on the environment. The

robot is proven to be able to plan a shortest path and

consistently follows it.

Next, the program is restarted, and then an obstacle is added

by clicking a cell, marking it grey. After the space bar is pressed,

the robot ‘sees’ the obstacle and mark it as untraversable. See

Figure 6.

Figure 6. The Robot Marks The Obstacle

In the next step, the program simulates how the robot

responds, if the current known paths are untraversable because

of obstacles.

As seen in Figure 7, the robot will expand its current known

paths, by expanding and updating its cost graph.

Figure 7. Expanded Graph in the Map

For the next step, the program simulates how the robot

responds the fact that no paths can reach the goal.

As seen in Figure 8, the robot calculates paths a few times

before it decides that there is no path that leads to the goal cell.

Figure 8. No Path to the Goal

This step shows that D* Lite algorithm is a complete

algorithm, which can observe in a finite amount of time(or

iterations) that there is no path available to its destination. This

step also shows that D* Lite does not depends on probabilistic

event. It determines the path based on its knowledge of the

environment.

As we can see in the experiment, D* Lite algorithm is a

viable option for auto-robot path planning. It dynamically

updates the path when obstacle is found, and it is a complete

algorithm in terms of deciding whether there exists path to the

destination or not.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2017/2018

IV. CONCLUSION

D* Lite algorithm is a fast replanning method for robot

navigation in unknown terrain that implements the same

navigation strategies as Dynamic A* (D*). The algorithm

search from the goal vertex towards the current vertex of the

robot, use heuristics to focus the search, and use a way to

minimize having to reorder the priority queue.

D* Lite builds on our LPA*, a strong similarity to A*, is

efficient (since it does not expand any vertices whose values

were already equal to their respective goal distances) and has

been extended in a number of ways. It is algorithmically

different from D*, easier to understand and extend, yet at least

as efficient as D*.

D* Lite can provide auto-robot an efficient way to plan its

path and reach its goal, by determining, dynamically as it

makes its move, the shortest path available, and replans when

the path is not traversable because of obstacles.

V. ACKNOWLEDGMENT

A special note of thanks to Dr. Ir. Rinaldi Munir, MT., the

most inspiring lecturer at Bandung Institute of Technology for

this interesting assignment that has broaden my knowledge on

appliance of D* algorithm in robotics.

I would also like to thank ScienceDirect for the readings and

other sources of my inspirations that helped me get this paper

done.

REFERENCES

[1] Anonymous, 2000, The Interplay between Mathematics and Robotics,

National Science Foundation Arlington, Virginia.

[2] Munir, R., 2007, Diktat Kuliah: Strategi Algoritma, Departemen Teknik

Informatika, Institut Teknologi Bandung.

[3] https://www.sokanu.com/careers/robotics-engineer/
[4] https://robotics.stackexchange.com/questions/9337/suitable-d-star-

variant-is-for-non-holonomic-motion-planning-of-mobile-robots

[5] Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T.,
Jurišica, L., 2014, Path planning with modified A star algorithm for a

mobile robot, Modelling of Mechanical and Mechatronic Systems

MMaMS.
[6] Ferguson, D., Stentz, A., The Field D* Algorithm for Improved Path

planning and Replanning in Uniform and Non-Uniform Cost

Environments, Carnegie Mellon University, Pittsburgh.
[7] Guruji, A.K., Agarwal, H., Parsediya, D.K., 2016, Time-Efficient A*

Algorithm for Robot Path planning, 3rd International Conference on

Innovations in Automation and Mechatronics Engineering, ICIAME 2016.
[8] Koenig, S., Likhachev, M., 2002, D* Lite, American Association for

Artificial Intelligence.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 14 Mei 2018

Jose Hosea 13516027

https://www.sokanu.com/careers/robotics-engineer/
https://robotics.stackexchange.com/questions/9337/suitable-d-star-variant-is-for-non-holonomic-motion-planning-of-mobile-robots
https://robotics.stackexchange.com/questions/9337/suitable-d-star-variant-is-for-non-holonomic-motion-planning-of-mobile-robots

