
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Implementation of Breadth-First Search Web Crawler

and String Matching in Developing a Simple Search

Engine Optimization Analyzer

Manasye Shousen Bukit / 13516122

Informatics Undergraduate Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Ganesha Street 10 Bandung 40132, Indonesia

13516122@std.stei.itb.ac.id

manasyebukit@gmail.com

Abstract—Web crawlers have a long and interesting field in

computer science’s history. Early, web crawlers collected

statistics about websites. In addition to collecting statistics about

the web and indexing the applications for search engines, modern

crawlers could also be used to perform accessibility and

vulnerability checks on the application. Quick expansion of the

web, and the complexity added to web applications have made

the process of crawling more challenging. Throughout the history

of web crawling, many researchers and industrial groups

addressed different issues and challenges regarding web

crawlers. Different solutions have been proposed to reduce the

time and cost of crawling by using many different algorithm.

What follows is one of the most popular algorithm to implement

web crawler, breadth-first search. In this article, we will also

build a simple search engine optimization analyzer using crawled

data and string matching.

Keywords— crawling, algorithm, webpage, SEO

I. INTRODUCTION

 A web crawler or also known as a web spider is a program

that is capable of iteratively and automatically downloading

web pages, extracting URLs from their HTML and fetching

them. Many legitimate sites in particular search engines use

web crawling to provide up-to-date data to the users. Web

crawlers are mainly used to create a copy of all the visited

pages for later processing by a search engine, that will index

the downloaded pages to provide fast searches. [3]

 Crawlers can also be used for automating maintenance

tasks on a webpage, such as checking links or validating

HTML code. In addition, crawlers could be used to gather

specific types of information from web pages, such as

harvesting e-mail addresses (usually for spam). Knowing the

role of web crawling in modern web development, designing a

suitable web crawling is a challenging task. Several criteria

that need to be considered when building a web crawler are

quality of information taken from the webpage, speed of

gathering data without burdening the website’s traffic.

Figure 1. How web crawling works

Source: https://seopressor.com/blog/how-to-control-web-crawlers/

 Regarding crawling’s speed, algorithm play important role

in maximizing number of pages crawled in an amount of time.

Therefore, determining the right web crawler’s algorithm is an

aspect that need to considered. Since HTML is a tree-

structured data structure, algorithm’s options could be

narrowed. One of the most suitable algorithm and easy-to-

understand algorithm is breadth-first search.

 Search engine use web crawler to gather data from web

pages and decide what web page have the most match with

search keyword and display it to the users. Even though

modern search engine have many other criteria, we could

build our own search engine optimization analyzer using data

crawled from web pages (in this example all links gathered

from a homepage) and string matching to check certain

keyword’s appearance in this website.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

II. BASIC THEORIES

A. Breadth-First Search (BFS)

Breadth-first search or shortly BFS is an important graph
search algorithm that is used to solve many problems including
finding the shortest path in a graph and solving puzzle games.
Various problems in computer science can be solved by using
data structure graph. For instance, analyzing networks,
mapping routes, and scheduling are graph-related problems.
Graph search algorithms like breadth-first search are useful for
analyzing and solving this graph problems.[1]

Breadth-first search starts by searching a start node,
followed by its adjacent nodes, then all nodes that can be
reached by a path from the start node containing two edges,
three edges, and so on. Formally, the BFS algorithm visits all
vertices in a graph G that are k edges away from the source
vertex before visiting any vertex k + 1 edges away. This is
done until no more vertices are reachable from S.

For a graph G = (V, E) and a source vertex v, BFS search
traverses the edges of G to find all reachable vertices from v. It
also computes the shortest distance to any reachable vertex if
necessary. Any path between two points in a breadth-first
search tree corresponds to the shortest path from the root v to
any other node S. By definition, there are three types of
vertices in BFS: tree vertices, vertices that have been visited;
fringe vertices, those adjacent to tree vertices but not yet
visited; and undiscovered vertices, those that we have not been
encountered yet.

Figure 2. Breadth-First Search Algorithm

Source: http://mishadoff.com/images/dfs/binary_tree_search.png

B. Depth-First Search (DFS)

Depth-first Search (DFS) is an algorithm for searching a

graph or tree data structure. The algorithm starts at the root

(top) node of a tree and goes as far as it can down a given

branch (path), and then backtracks until it finds an unexplored

path, and then explores it. The algorithm does this until the

entire graph has been explored. Many problems in computer

science can be thought of in terms of graphs. For example,

analyzing networks, mapping routes, scheduling, and finding

spanning trees are graph problems. To analyze these problems,

graph search algorithms like depth-first search are useful.[2]

Depth-first searches are often used as subroutines in other

more complex algorithms. For example, the matching

algorithm, Hopcroft–Karp uses a DFS as part of its algorithm

to help find a matching in a graph. DFS is also used in tree

traversal algorithms, also known as tree searches, which have

applications in the the travelling salesman problem and the

Ford Fulkerson’s algorithm. The main strategy of depth-first

search is to explore deeper into the graph whenever possible.

Depth-first search explores edges that come out of the most

recently discovered vertex, s. Only edges going to unexplored

vertices are explored. When all of s’s edges have been

explored, the search backtracks until it reaches an unexplored

neighbor. This process continues until all of the vertices that

are reachable from the original source vertex are discovered. If

there are any unvisited vertices, depth-first search selects one

of them as a new source and repeats the search from that

vertex. The algorithm repeats this entire process until it has

discovered every vertex. This algorithm is careful not to repeat

vertices, so each vertex is explored once.

Figure 3. Depth-First Search Algorithm
Source: http://mishadoff.com/images/dfs/binary_tree_search.png

C. Hypertext Markup Language (HTML)

HTML is the common markup language for creating and

developing a web pages. A markup language is a language

used for communication to a web browser about how the

contents of a web page will be displayed. HTML is written in

the form of "tags" that are surrounded by angle brackets like

start tag <html> and end tag </html>. An HTML file have an

.htm or .html file extension as in index.html , about_us.htm,

which can identify that the page is a web page or HTML

Documents. [4]

Each HTML document can actually be referred to as a

document tree. We describe the elements in the tree like we

would describe a family tree. There are ancestors,

descendants, parents, children and siblings. It is important to

understand the document tree because CSS selectors use the

https://brilliant.org/wiki/algorithm/
https://brilliant.org/wiki/depth-first-search-dfs/(https:/brilliant.org/wiki/graphs/)
https://brilliant.org/wiki/trees-basic/
https://brilliant.org/wiki/spanning-trees/
https://brilliant.org/wiki/graph-search-algorithm/?wiki_title=graph%20search%20algorithms
https://brilliant.org/wiki/matching-algorithms/
https://brilliant.org/wiki/matching-algorithms/
https://brilliant.org/wiki/hopcroft-karp/
https://brilliant.org/wiki/matching/
https://brilliant.org/wiki/traversals/
https://brilliant.org/wiki/traversals/
https://brilliant.org/wiki/travelling-salesman-problem/
https://brilliant.org/wiki/ford-fulkerson-algorithm/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

document tree. Use the sample HTML document below for

these examples. The <head> section of the document is

omitted for brevity. Use the sample HTML document below

for these examples. The <head> section of the document is

omitted for brevity.

A diagram of the above HTML document tree would look like

this.

Figure 4. Tree-structure HTML

Source: https://www.w3schools.com/js/pic_htmltree.gif

 An ancestor refers to any element that is connected but

further up the document tree, no matter how many levels

higher. In the diagram above, <body> element is the ancestor

of all other elements on the page. A descendant refers to any

element that is connected but lower down the document tree,

no matter how many levels lower. In the diagram above, all

elements that are connected below the <div> element are

descendants of that <div>.

 A parent is an element that is directly above and connected

to an element in the document tree. In the diagram above, the

<div> is a parent to the . A child is an element that is

directly below and connected to an element in the document

tree. In the diagram above, the is a child to the <div>. A

sibling is an element that shares the same parent with another

element. In the diagram above, the 's are siblings as they

all share the same parent, the .

D. Search Engine Optimization(SEO)

Search engine optimization or SEO for short is the practice

used to increase traffic to website by using search engine

results. Search engine like google, yahoo, bing has a web

crawler that gather information about all content of web pages

on the internet.

 After gathering data they needed, search engine have a

formula to check how suitable that web pages’ content with

search keyword user typed. This formula, however vary

according to search engine. That is the reason why you could

see the same keyword input but search result vary in different

search engine. However, we can establish a simple formula to

calculate the value of a web page.

Tag Value

h1 10

h2 5

h3 2

p 1

Table 1. Tag value in our SEO analyzer

Source: author’s documentation

 Understanding how search engine works could help

website developer to gain advantages in term of business. A

website that tend to be at top of the search result have a bigger

chance to get visited, and therefore optimizing website’s

business.

III. IMPLEMENTATION

A. Breadth-First Search Web Crawler

 The first thing that we need to do is search for a web page

that wanted to be crawled and search keyword within the

website. To simplify, we choose one website that we would

like to gather links and heading from that website and crawl

that links again until no more links to be crawled. Since, the

links could be in a huge number, it’s better to save links that

already crawled and want to be crawled in a text file because

we could resume the crawling anytime we want.

 Before implementing the BFS, we need to make a

LinkFinder class that handle what information we want crawl.

In our own web crawler, we only care if the tag is an anchor

tag or a heading tag, so we can later process this information.

When we call HTMLParser feed() this function is called
def handle_starttag(self, tag, attrs):
 # Search other link
 if tag == 'a':
 for (attribute, value) in attrs:
 if attribute == 'href':
 url = parse.urljoin(self.base_url,
value)
 self.links.add(url)
 # Gather all heading tag for SEO purposes
 if tag == 'h1' or tag == 'h2'or tag == 'h3':
 for (attribute, value) in attrs:
 if attribute == 'title':
 if not os.path.exists('heading.txt'):
 write_file('heading.txt', '' +
tag + ' ||| ' + value)
 else:

When we call HTMLParser feed() this function is called
def handle_starttag(self, tag, attrs):

 # Search other link
 if tag == 'a':
 for (attribute, value) in attrs:
 if attribute == 'href':
 url = parse.urljoin(self.base_url,value)
 self.links.add(url)

 # Gather all heading tag for SEO purposes
 if tag == 'h1' or tag == 'h2'or tag == 'h3':
 for (attribute, value) in attrs:
 data = '' + tag + ' ||| ' + value
 if attribute == 'title':
 if not os.path.exists('heading.txt'):
 write_file('heading.txt', data)
 else:
 append_to_file('heading.txt', data)

<body>

 <div id="content">

 <h1>Heading</h1>

 <p>Paragraph 1</p>

 <p>Another Paragraph </p>

 <hr>

 </div>

 <div id="nav">

 item 1

 item 2

 item 3

 </div>

</body>

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

 If the tag is a heading (in our example we only count h1,

h2, and h3), we append it directly to a file heading.txt . If we

encounter an anchor tag , we add it to a set data structure

named links because with set it will automatically be unique

and we just want to crawl an url once.

 After we finish implementing LinkFinder, we create Spider

class. This class is responsible for gathering links and heading

by initiating LinkFinder and also added links to the set of

crawled and queue. Spider have a method called gather_link

that is responsible for requesting a website url and decode it to

human-readable string.

Converts raw response data into readable information
and checks for proper html formatting
@staticmethod
def gather_links(page_url):

 html_string = ''
 try:
 response = urlopen(page_url)
 header = response.getheader('Content-Type')
 if 'text/html' in header:
 html_bytes = response.read()
 html_string = html_bytes.decode("utf-8")
 finder = LinkFinder(Spider.base_url, page_url)
 finder.feed(html_string)

 except Exception as e:
 print(str(e))
 return set()

 return finder.page_links()

 In Spider class, we also implementing breadth-first search

in crawling and adding links to crawled.txt and queue.txt.

Once we have all the links gathered from a web page, we first

check whether that page already been crawled (we know this

by searching in crawled.txt). If it’s not yet been crawled,

append it to last line of queue.txt. We could already see this

crawling web page is using breadth-first search algorithm. The

next link to crawled is taken from the head of the queue.

Saves queue data to project files
@staticmethod
def add_links_to_queue(links):

 for url in links:
 if(url in Spider.queue) or (url in Spider.crawled):
 continue

 if Spider.domain_name != get_domain_name(url):
 continue

 Spider.queue.add(url)

 We also limit links that want to be crawled if it has the

same domain name as first web page crawled. We do this

because we could encounter social media links, advertisement

links, and other links that is not related to that website. The

last thing we need is main file that generate first spider ,crawl

that url. In this file, we also could implement multi-threading

to our web crawler if we want to since all resources and static

and could be accessed by many spiders. This could speed up

the crawling, but we couldn’t see exactly how the BFS works,

but more like parallel searching. So for our program, we set

number of threads to be 1.

 import threading
 from queue import Queue
 from spider import Spider
 from domain import *
 from general import *

 PROJECT_NAME = 'Links'
 HOMEPAGE = 'http://www.goal.com/id'
 DOMAIN_NAME = get_domain_name(HOMEPAGE)
 QUEUE_FILE = PROJECT_NAME + '/queue.txt'
 CRAWLED_FILE = PROJECT_NAME + '/crawled.txt'
 NUMBER_OF_THREADS = 1
 queue = Queue()
 Spider(PROJECT_NAME, HOMEPAGE, DOMAIN_NAME)

 # Create worker threads (will die when main exits)
 def create_workers():
 for _ in range(NUMBER_OF_THREADS):
 t = threading.Thread(target = work)
 t.daemon = True
 t.start()

 # Do the next job in the queue
 def work():
 while True:
 url = queue.get()
 Spider.crawl_page(threading.current_thread().
 name, url)
 queue.task_done()

 # Each queued link is a new job
 def create_jobs():
 for link in file_to_set(QUEUE_FILE):
 queue.put(link)
 queue.join()
 crawl()

 # Check if there are items in the queue
 def crawl():
 queued_links = file_to_set(QUEUE_FILE)
 if len(queued_links) > 0:
 print(str(len(queued_links))
 + ' links in the queue')
 create_jobs()

 create_workers()
 crawl()

If we run main.py, it will start gathering all links and heading

until no links is there to be found.

Figure 5. The process of the crawling

Source: author’s documentation

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Figure 6. Header.txt content’s example

Source: author’s documentation

Figure 7. Links’ example in crawled.txt

Source: author’s documentation

 Figure 8. Links’ example in queue.txt
Source: author’s documentation

B. String Matching and SEO Analyzer

After gathering heading data in the crawled page, we could

implement string matching to search given keyword. String

matching algorithm may vary, we could use bruteforce,

Knuth-Morris-Pratt, Boyer-Moore or regular expression. We

use regular expression because by regular expression we could

make our own pattern without having the boundary of exact

matching like in Knuth-Morris-Pratt, Boyer-Moore, or

bruteforce.

 import re

 def generate_pattern(pat):
 # Trim each word when encounter space
 pat_split = (pat.lower()).split(" ")
 pattern = ""

 # Add all between words
 for i in range(len(pat_split)):
 pattern += (".*" + pat_split[i])
 pattern += ".*"

 # Compile pattern into regex pattern
 regex = re.compile(pattern)

 return regex

In generating pattern, we first lower case the keyword

because we want the matching to be case-insensitive. After

that, we split keyword when encounter space and add .* in

between the splitted keyword. For instance, string “i buy” will

find match in text “Therefore, I want to buy”.

Figure 8. String matching

Source: author’s documentation

 According to our value in table 1, we could compute value

of that web pages by summing each content matched with it’s

tag. This tag’s value define how important this heading in

search engine. Even though the formidable search engine’s

formula is more complex, we could use this program to check

how “valueable” a web page is when search with a certain

search keyword.

Figure 9. Non-exact string matching and page value

Source: author’s documentation

IV. CONCLUSION

 Web crawling is useful to have a better understanding in

analyzing a web page regarding search engine optimization

value. An algorithm for web crawling and string matching is

discussed and implemented in this paper. However, the current

implementation leaves much room for implementation, both to

to the quality of the result and its efficiency.

V. APPENDIX

The author’s implementation of the algorithm discussed in this

paper and the sample data crawled can be accessed on Github

(https://github.com/manasye/SEO_Analyzer) . It is written in

python and require a html.parser, urllib, and re module to run.

import re

def generate_pattern(pat):
 # Split each word when encounter space
 pat_split = (pat.lower()).split(" ")
 pattern = ""

 # Add all between words
 for i in range(len(pat_split)):
 pattern += (".*" + pat_split[i])
 pattern += ".*"

 # Compile pattern into regex pattern
 regex = re.compile(pattern)

 return regex

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

ACKNOWLEDGMENT

 The author thanks Dr. Nur Ulfa Maulidevi, S.T., M.Sc

and Dr. Rinaldi Munir,M.T greatly as the instructors of

IF2211 for giving the opportunity to write this paper. The

author also thanks the author’s parents for providing moral

support throughout the writing process. The author thanks the

authors of the references below, and numerous others, for their

contributions to computer science and for giving insights to

the author.

REFERENCES

[1] https://brilliant.org/wiki/breadth-first-search-bfs/ (Retrieved May 4,
2018, 16:54)

[2] https://brilliant.org/wiki/depth-first-search-dfs/ (Retrieved May 6, 2018,
16:29)

[3] https://www.sciencedaily.com/terms/web_crawler.htm (Retrieved May
9. 2018, 20:40)

[4] http://selfstudyathome.blogspot.co.id/2011/10/html-tutorial-theory-part-
1.html (Retrieved May 9, 2018, 21:59)

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Mei 2018

Manasye Shousen Bukit / 13516122

