
IF2211 Research Paper, II Semester 2017/2018

Comparison Between Brute Force and Trie in

String Matching for Autocomplete

Muhammad Fadhriga Bestari (NIM 13516154)

Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia

fadhriga.bestari@gmail.com

Abstrak— Autocomplete is arguably one of the most familiar

features today that is being implemented in a lot of applications

such as Google and Line, two of the most used applications in

Indonesia by almost everyone. Autocomplete is so commonly

used that now it has become one of the things that people

expected from any given application that offers string input from

it’s users. The most important thing to be aware of in

implementing autocomplete is how fast the system needs to

determine what the user is currently trying to type. Autocomplete

that is not being solved in a reasonable timeframe should not be

used since it will not benefit the user in any way. In this paper,

author will explain how trie data structure will improve the

performance of a system in autocomplete problem.

Keywords—string matching; trie; brute force; autocomplete

I. INTRODUCTION

Technological advancement produces various new easier
ways for people to operate their tasks. Automation of daily
tasks is one of the reasons why people continue to innovate and
develop technology. Tasks that needed heavy liftings such as
moving boxes now can be done with a push of a button.
Loading and unloading cargoes without the help of machines is
near impossible, and now, with the help of automation people
don’t need to operate the machine personally anymore.

Although automation is used in a lot of different fields,
automation in a more general sense that most people use is
string autocomplete. Autocomplete is a very subtle feature that
we can find almost everywhere, from Google to our favourite
texting applications. It is so widely used that sometimes goes
unnoticed and most people don’t realize how badly they
depend on it.

Implementing autocomplete feature, though, is not an easy
task. In this day and age, most people are good enough typers
that slow autocomplete won’t cut it anymore. Imagine having
to wait three second before the program manages to return
possible strings that you are currently typing. If an
autocomplete can’t produce any result in a reasonable
timeframe, it can’t be used. This is why implementing an
algorithm that produces the fastest result with the smallest
complexity possible is needed.

II. THEORY

String matching is a process of finding certain patterns in a
given string or text. There are many methods specifically
developed to achieve the most efficient way to match a string
with a pattern. Knuth-Morris-Pratt and Boyer-Moore are two
examples of algorithm that are developed to tackle string
matching problems. However, there also exists algorithm such
as Brute Force algorithm in string matching problems that is
easier to implements than other algorithms.

A. Brute Force Algorithm

String matching that utilizes Brute Force algorithm is
mostly straight forward. As the name implies, Brute Force
algorithm exhaust every possibility to find the best result from
a given problem. It is usually the first and easiest method to
solve any given computing problem, although most of the time
it will not return the result in a reasonable timeframe.

In string matching, Brute Force operates as such :

1. Treat a given pattern and string as an array of caharacters

2. Compare every character in string with every character in
pattern

3. If the i-th character in string is the same as the j-th character
in pattern, then traverse pattern, else traverse string.

Brute Force algorithm has a complexity of O(n.m), where n
is the length of the string, while m is the length of the pattern.
It is relatively slow, especially if the length of the string is
substantially greater than the pattern, or both of the string and
pattern have a lot of characters in them.

B. Trie Data Structure

Trie is a different more sophisticated way to string match.
Trie, pronounced “try”, comes from the word retrieval. It is
spelled similiarly to how tree is spelled, and it actually operates
as such. Trie, in a nutshell is also considered a tree data
structure.

Trie is used primarily for trees that stores characters. The
nodes in trie represents the letters of alphabets. Each nodes of
letters points to other nodes of letters. Every word that exist in

IF2211 Research Paper, II Semester 2017/2018

trie data structure is the collection of a given node’s is its
parent nodes combined with its own letter. This, in turn
facilitates a retrieval of words by traversing down a branch
path of the tree.

Picture 1 : Example of trie data structure

In the example shown in picture 1, we have a trie with an
empty root which has references to it’s children nodes. To
implement a trie, each node consists of :

1. Value

2. Array of pointers to children nodes, which means
characters that starts after the collection of all its
parents nodes

3. Boolean to determine if a given node combined with the
collection of its parents nodes is a complete word,
indicated by (*)

In accordance to picture 1, we can see that there are
multiple words that represented in the trie : a, as, ask, pi, pie,
pen. Observe how a boolean to determine whether a node is a
complete word or not, because all three child node of the root
that starts with a is a complete word. Boolean can be ignored if
all the words in trie cannot continue from the trie’s leaf as all
leaves would indicate an end of a word.

Notice how a in trie data structure there can be multiple
nodes that originates from the same parent. Pi, pie, and pen all
have p as their parent. As a result there not need be the same
amount of nodes as characters in a given list of strings. The
more words that share the same prefix, the fewer nodes needed
to be generated.

Trie data structure also change the process of adding new
strings to a database. To add a new word to the list of words
represented in the trie in picture 1, do :

1. Traverse down the branch where the word should exist

2. If the node doesn’t exist, create a new node

For example, let ash be a new string that is inserted into the
trie in accordance to picture 1. Start from the root of the trie
and determine whether the root has a as its child node. Because
a already exists, traverse down the branch. Next, check
whether s is a child node of a. Because it is, we also traverse
down the s node. Now, because h is not a child node of s, we
need to create a new node that originates from s. Finally, add a
boolean in node h to indicate that ash is a complete word in the
trie. The result of ash addition to the trie is as such :

Piture 2 : Addition of new words in trie

Deletion process in a trie data structure also behaves
differently than normal. To delete a word from a list of words
in a trie data structure, do :

1. Find the node that contains the last character of the word

2. If the node has pointers to other node, simply set the
boolean to false, indicating that the node doesn’t represent
a complete word, else delete the node

3. Move to the parent node, if it doesn’t point to any other
node, delete that node, else stop.

IF2211 Research Paper, II Semester 2017/2018

Picture 3 : Deleting as, a word that is also a prefix in other words in trie

Picture 4 : Deleting ask and pen from trie

Trie data structude has a complexity of O(n.m) to create,
where n is the number of words that exist and m is the longest
word in the trie. This is the worst case scenario where all the
words doesn’t share the same parrent, basically creating the
same amount of nodes as characters in the list of words present.
To search, insert, or delete from a trie, it needs O(a.n) time
where a is the length of word, and n the total number of words.

Notice how it has similar complexity to a Brute Force
algorithm, but keep in mind that trie data structure operates in a
linear manner with n as the total of strings in the list, whereas
Brute Force O(n.m) calculated from matching a single text. So
if there were more than one string, to match a given pattern
with Brute Force algorithm it will need O(a.n.m) where a is the
total number of words, n is the length of the longest string, and
m is the length of the pattern.

III. AUTOCOMPLETE PROBLEM

Autocomplete is one of many real world application to
string matching program we encounter almost everyday.
Autocomplete, although can be used to autocomplete a
sentence, such as autocompletes that’s implemented in Google
and Youtube, here author is going to simplify the problem and
mainly focus on autocomplete that operates in a single word
only, such as autocompletes found in texting application like
Line.

Limiting the problem to a single word drastically decrease
the amount of time needed to compute the problem, both with
Brute force and Trie data structure. This is due to both
algorithm’s heavy dependence on the length of the longest
string present in the database.

Most applications that implements autocomplete in some
form or another will also input the user’s commonly used
words into the database. The problem discussed in this paper
will not account this feature because the patterns used is only
the beginning of a word, not the actual word itself. Also, we
only focused on autocomplete with exact prefix match,

meaning autocorrect will not be accounted for when finding
possible words from the database.

Keep in mind that autocomplete emphasizes on how fast a
system can determine words that has the same prefix as a given
pattern, not where a pattern is located in the string. This is why
author use Brute Force algorithm and compare it with Trie data
structure, as determining a prefix from a string will be faster
with Brute Force algorithm rather than KMP or BM, since both
of them would need to create additional data before matching,
prolonging its execution time.

A. Brute Force

In Brute Force algorithm, the list of possible words that is
available in the database is represented with an array of string.
In order to autocomplete a problem, the system needs only to
check the prefix of each string. Because this problem is strictly
an autocomplete will discount any words that differs ever so
slightly from a given pattern.

Due to how different Brute Force stores its available list of
words than Trie, author will also measure the time each
algorithm create their database respectively. Asuming that each
word is inserted one by one, the system would need O(n) time,
where n is the total number words that needs to be inserted.

The worst case scenario for Brute Force algorithm that
match the prefix of a collection of string will take O(a.n) time,
where a is the length of the pattern and n is the total number of
words in the database. In Brute Force algorithm, the program
has to traverse all possibility before determining the result. The
best case scenario for Brute Force algorithm is still take O(n)
time, where n is the total number of words.

B. Trie data structure

In order to utilize trie as a method of string matching, first
we need to create the trie data structure itself from a collection
of words that we will consider as possible words that the user
inserted.

To create a trie from scratch, it will take O(n.m) time,
where n is the total number of words and m is the longest word
in the list of words. Although it is very unlikely that we would
reach this number, since realistically, there are tons of words
that begins with the same letter.

Nodes in trie data structure will be implemented as follow :

TrieNode :

1. Array of children node with the length of alphabet
size

2. Boolean to indicates if the word is a complete word

In order to create a trie, there need be an insert algorithm
that’s implemented as follow :

Insert :

1. Traverse each level of trie sistematically

2. If supposed node is not yet created, create new child

IF2211 Research Paper, II Semester 2017/2018

node

3. If supposed node is a prefix of an already existed
word, mark node as complete word

Now to determine whether a word exist in a trie, we need to
implement a search algorithm as follow :

Search :

1. Convert the first character of the pattern into ascii

2. Traverse the root the next node that it referenced and
repeat for the next character in pattern until the end of
pattern is reached

3. If the pointer to a character does not exist, then the
prefix does exist in the database

Notice how author does not implement value in the trie
node. This is because we only concerned ourselves with
whether or not a the pattern exist in the list of text in the
database, and all value in the nodes in this particular trie is null.

A node’s value can be used in autocomplete problems as a
mean to indicate how likely it is for someone to type in that
particular word. When implementing a real autocomplete
program, with a trie that spread out into a lot of branches, there
will be hundreds of possible words that say, starts with the
prefix as, such as ask, aspalt, ash, asia, asus, ascii, ascott, etc.
Determining which word is most likely is currently being typed
can be very useful to the user because it will be inconvenient
for the user if an autocomplete show all possible words.

This type of implementation also shows how a single node
actually has an array of pointers to other node that has the
length of alphabet size. This algorithm works similiarly to how
last occurance table works in Boyer-Moore algorithm in string
matching. Most of these pointers will have a null value, since
from the total of 26 of available letters in the alphabet, there
will only be 5 to 10 character that any given word can expand
towards.

After creating the trie data structure, all is left to do is to
search a given pattern inside the trie. Searching a prefix from a
list of words with trie will take O(a.n) time, where a is the
length of the pattern and n is the total number of words.

C. Brute Force and Trie data structure

If we do a direct comparisons between the two algorithm
just from what we have previously discussed, it’s difficult to
clearly see which algorithm is better. Both of these algorithm
needs O(a.n) time to compute, due to how both algorithm needs
to, in the worst case scenario possible, traverse all the words in
the database.

One thing to keep in mind when determining an algorithm
is how different algorithm works better in certain environment
than other algorithm. Big O notation is used to calculate the
worst time possible for an algorithm to compute a given
problem. It does not, however, reflect the average nor the
expected compute time for any given problem.

In the best case scenario, it will take Brute Force n amount
of checking to autocomplete a given pattern, because Brute
Force algorithm needs to check all words at least once no
matter what, whereas trie will only compute once to determine
if such prefix exist in the database or not, if the first letter of
the prefix searched is not referenced by the root. Trie data
structure also works similarly to how perm algorithm works,
where due to how it traverse down the trie, most of the time trie
would not need to traverse all possible node.

Imagine a trie with the same structure as that of picture 4,
let the prefix be a, then the trie would only traverse the words
that starts with a, therefore, it would only return ask. Trie
would not need to traverse the node that starts with P, reducing
the search time, in this case, by half in regards to Brute Force
algorithm. Time reduction in search time may vary, but it is not
outrageous to asume that on average, it trie search time would
be twice as faster as Brute Force’s time.

IV. EXPERIMENT RESULTS

In this section, author will show the difference between
using Brute Force algorithm and Trie data structure in tackling
autocomplete problem. This experiment is primarily done to
highlight the difference in execution time between the two
algorithm. The program is developed and tested in Windows 10
and Core i7 – 6700 HQ CPU @2.60 GHz with 16 GB of RAM.

To determine the faster algorithm, we need to see how both
algorithm perform with the same testcase and the same
database. All tests are done with 2000 randomly generated
words in the database. There are two tests conducted in total.
The first execution time result is the sum of data structure
creation and prefix matching in said data structure. Whereas
the second test is just the execution time needed for each
algorithm to search a given prefix from list of word.

Table 1 : Trie data structure accounting data structure creation time

Prefix Execution Time

a 0,011035 s

pu 0,011029 s

sup 0,009021 s

trie 0,00855 s

freak 0,008984 s

Table 2 : Brute Force algorithm accounting data structure creation time

Prefix Execution Time

a 0,006014 s

pu 0,006982 s

sup 0,006014 s

IF2211 Research Paper, II Semester 2017/2018

trie 0,006016 s

freak 0,006022 s

Table 3 : Trie data structure search time

Prefix Execution Time

a 0,001002 s

pu 0,00014 s

sup 0,00001 s

trie 0,000001 s

freak 0,000001 s

Table 4 : Brute Force algorithm search time

Prefix Execution Time

a 0,00205 s

pu 0,00204 s

sup 0,00301 s

trie 0,002018 s

freak 0,002005 s

Table 5 : Brute Force and trie comparison

 Trie Brute Force

Average Data
Structure

Creation Time
0,0095234 s 0,00288234 s

Average Search
Time

0,0002012 s 0,0022246 s

V. RESULT ANALYSIS

In the world of programmers, the term “Brute Force” is
usually associated with slow algorithm that should be pushed
aside for other more comprehensive algorithm. The result of
the first experiment, however, where author calculate the total
run time of the program for both Brute Force and Trie data
structure surprisingly shows that Brute Force actually
outperform a Trie data structure in term of overall speed.

In accordance to table 1 and 2, the difference between
searching prefix that rarely words starts with, such as “pu” and
“sup”, the increase in performase almost doubled between Trie
data structure and Brute Force algorithm. Also, prefix that a lot
of english words originates from, such as “a”, shows that Brute

Force algorithm still manages to came out on top. Table 1 and
2 shows how a Brute Force algorithm manages to perform
better than other algorithm in some situations.

For the second experiment, we calculate only the time it
takes for each algorithm to search and determine whether a
string matches the given prefix. As expected, Trie data
structure search time is significantly lower than that of Brute
Force’s. The consistency of the experiment result shows that
the use of Trie data structure generally will always give faster
result.

The experiments also shows how taxing a trie data structure
can be. To create a trie that consist of 2000 different randomly
generated words, we will need 0,0095234 second, in contrast of
0,00288234 second needed for a regular program to fill 2000
different array index with a string. That is 230% increase in
time consumed just to create the data structure needed to
compute the prefix matching. However, consider also that a trie
data structure is more taxing memory-wise, it decreases the
search time needed to determine a prefix in a list of word by
91%.

The significant increase of computing time that needed for
trie in creating its data structure is due to how every node has
to create an array of pointers with the same exact length as the
total letter available in the alphabet. Author specifically used
english alphabet for ease of use and author’s familiarity with
the alphabet. The experiments also did not take account the use
of numbers and symbols. Trie data structure needs a lot of
memory, significantly greater than that of other data structure,
so much so that the machine that author used to conduct these
experiments did not allow for more than 2250 words. Inserting
each words into an index in an array, however, allow for more
words to be inserted into the data structure.

Most autocomplete program are used frequently with a data
structure that only needed to be created once and improved as
used. It is not unreasonable to say that inefficiency in data
structure creation will not cause any noticable problem.
Moreover, data structure creation does not necessarily impact
how fast a program can determine a prefix in a given list of
words in the data structure itself.

In section 1, author explained how an autocomplete
program needs to return a result in a reasonable timeframe. In
accordance to the experiments results that is shown in the
previous section, both Brute Force algorithm and Trie data
structure compute in under one hundreth of a second. Consider
now if we asume that the data for both Brute Force and Trie is
already created, the most time it took to compute 2000 testcase
is one thousandth of a second.

Although all four of the experiment conducted resulted in a
reasonable timeframe for an autocomplete program, we need to
keep in mind that the total number of words that author
provided only consist of 2000 words. The english vocabulary
consists of hundreds of thousands words, which all needed to
be inserted in the data structure for a proper autocomplete
program to operates.

IF2211 Research Paper, II Semester 2017/2018

VI. CONCLUSION

Data from the experiments that previously shown indicates
that the use of either Brute Force algorithm or Trie data
structure, is very dependent on the situation. Dismissing brute
force and opting to use other algorithm without proper
examination is obviously an ill advised action.

Brute Force algorithm benefits from its use of arrays to
store a single word in each index, whereas Trie data structure
benefits from its use of pointers to other nodes making it easy
to retrieve any data just by traversing its branch from node to
node.

Although in accordance to the data experiments in section 4
it is possible to use Brute Force algorithm to be used in
autocomplete program, it is generally better to use Trie data
structure, due to how much of a decrease in total search time if
the database only created once and the autocomplete program
is used frequently enough.

Trie data structure as a whole is a great data structure
intended for ease of data retrieval. As mentioned before, trie is
a tree like structure that works similarly to hash table. This is
due to how each word stored in trie can be viewed as a key,
and because every node in trie can store a value if
implemented, it will work similarly to how keys work in a hash
table. The versitality of trie data structure is what makes it a
very good way to store data, where it is especially true when
the data stored is a collection of words, waiting to be retrieved
from the database to be processed.

ACKNOWLEDGMENT

Firstly, author would like to thank Allah SWT for His
blessigs, so that author has the strength and delligence to finish
this paper wholeheartedly. Without His blessings, author would
no have been able to finish this paper properly.

Author also would like to express author’s deepest gratitude
to Dr. Masayu Leylia Khodra, S.T., M.T., Dr. Nur Ulfa

Maulidevi, S.T., M.Sc., and Dr. Ir. Rinaldi Munir, M.T. for the
help and care they have given author for the past year in class
IF211. Without their guidance, author would not have the
knowledge to write this paper.

Lastly, author would like to thank author’s friends and
family for their undying support, and how they have helped me
through thick and thin for the past year and especially this past
month during the making of this paper.

REFERENCES

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifforn
Stein, “Introduction to Algorithms, 3rd Edition (MIT Press)”.

[2] Dan Gusfield, “Algorithms on Strings, Trees and Sequences : Computer
Science and Computational Biology, 1st Edition”.

[3] Munir, Rinaldi “Slide of IF2211 : Strategi Algoritma, Pencocokan String
(String Matching)”.

[4] https://www.cs.cmu.edu/~avrim/451f11/recitations/rec0921.pdf,
accessed on May 10, 2018.

[5] https://algs4.cs.princeton.edu/lectures/52Tries.pdf, accessed on May 10,
2018.

DECLARATION

I hereby certify that this paper is my own writing, neither a

copy nor from another paper, and not an act of plagiarism.

Bandung, May 13, 2018

Muhammad Fadhriga Bestari - 13516154

https://www.cs.cmu.edu/~avrim/451f11/recitations/rec0921.pdf
https://algs4.cs.princeton.edu/lectures/52Tries.pdf

