
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Binary Search Application In Exploring and

Calculating nth Root Value

Harry Setiawan Hamjaya/13516079

Program Studi Teknik Informatika

Institut Teknologi Bandung

Bandung, Indonesia

hamjaya_harry@yahoo.co.id

Abstract—Mathematical computational can’t be denied from

not only Informatics Engineering but also from Computer Science

study program. In mathematical computational, sometimes we

didn’t have an exact value such what were expected, that’s why we

need to calculate and make some formula for the worst case what

we could have from the computation. Some of the mathematical

computational we sometimes found is about calculate the value of

the square root and cubic root which we can done easily by our

hand. But for bigger root of course we need a calculator or we can

use the computer to help us to count and find out the value. In this

paper, I would like to investigate and analyze binary search

approaches for exploring the method, and also counting the value

of a nth root of a decimal value.

Keywords— Mathmematical; computational; square; cubic;

decimal; root;

I. INTRODUCTION (HEADING 1)

Root, in mathematics, a solution to an equation, usually
expressed as a number or an algebraic formula. There are two
categories of a root in Mathematics. The first one is the root of a
number. The root of a number 𝑥 is another number, which when
multiplied by itself a given number of times equals 𝑥. The other
one is the root of a polynomial are the values of the variable that
cause the polynomial to evaluate to zero. In this paper, I would
like to explain more about the root of a number which can be
vary various

About the history why we are using “root”, In the 9th century,
Arab writers usually called one of the equal factors of a number
jadhr (or in English we pronounce it “root”), and their medieval
European translators used the Latin word radix (from which
derives the adjective radical). If 𝑎 is a positive real number and
𝑛 a positive integer, there exists a unique positive real number 𝑥
such that 𝑥𝑛 = 𝑎. This number is the (principal) 𝑛th root of 𝑎,
now days, we have it written in some forms such as:

√𝑎
𝑛

 or 𝑎
1

𝑛

The integer 𝑛 is called the index of the root. For 𝑛 = 2, the

root is called the square root and is written √𝑎
2

, and for 𝑛 = 3,

the root is called the cube root and is written √𝑎
3

. If 𝑎 is negative
and n is odd, the unique negative nth root of 𝑎 is termed
principal. For example, the principal cube root of – 27 is – 3.

If a whole number (positive integer) has a rational nth root—
i.e., one that can be written as a common fraction—then this root
must be an integer. Thus, 5 has no rational square root because
22 is less than 5 and 32 is greater than 5. Exactly 𝑛 complex
numbers satisfy the equation 𝑥𝑛 = 1, and they are called the
complex nth roots of unity. If a regular polygon of n sides is
inscribed in a unit circle centred at the origin so that one vertex
lies on the positive half of the x-axis, the radii to the vertices are
the vectors representing the n complex nth roots of unity. If the
root whose vector makes the smallest positive angle with the
positive direction of the x-axis is denoted by the Greek letter
omega, 𝜔, then 𝜔, 𝜔2, 𝜔3, 𝜔4, … , 𝜔𝑛 = 1 constitute all the 𝑛th
roots of unity. For example,

𝜔 = −
1

2
 + √

−3

2

𝜔2 = −
1

2
− √

−3

2

𝜔3 = 1

are all the cube roots of unity. Any root, symbolized by the
Greek letter epsilon, 𝜀, that has the property that
𝜀, 𝜀2, 𝜀3 … , 𝜀𝑛 = 1 give all the 𝑛th roots of unity is called
primitive. Evidently the problem of finding the nth roots of unity
is equivalent to the problem of inscribing a regular polygon of 𝑛
sides in a circle. For every integer 𝑛, the 𝑛th roots of unity can
be determined in terms of the rational numbers by means of
rational operations and radicals; but they can be constructed by
ruler and compasses (i.e., determined in terms of the ordinary
operations of arithmetic and square roots) only if n is a product

of distinct prime numbers of the form 2ℎ + 1, or 2𝑘 times such

a product, or is of the form 2𝑘. If a is a complex number not 0,
the equation 𝑥𝑛 = 𝑎 has exactly 𝑛 roots, and all the 𝑛th roots of
𝑎 are the products of any one of these roots by the 𝑛th roots of
unity.

II. DIVIDE AND CONQUER

Divide and Conquer, like Greedy and Dynamic
Programming, Divide and Conquer (wellknown as DnC) is an
algorithmic paradigm. A typical Divide and Conquer algorithm
solves a problem using following three steps.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

1. Divide: Break the given problem into subproblems of
same type.

2. Conquer: Recursively solve these subproblems

3. Combine: Appropriately combine the answers.

Majority the implementation of this algorithm is applying the
recursive method, which is calling the function by it self when
still dividing it into subproblems, until the subproblems become
trivial and more ease to be solved, Finish solving the
subproblems than it will be combined into the bigger problems.

Picture I: Illustration of apply the Divide and Conquer Algorithm[1]

Following are some standard algorithms that are Divide and
Conquer Algorithms:

1. Binary Search

2. Quick Sort

3. Merge Sort

4. Closest Pair of Points

5. Strassen’s Algorithm

6. Cooley-Tukey Fast Fourier Transform (FFT)
Algorithms

7. Karatsuba Algorithm for Fast Multiplication

Since from the title and the explanation in the abstraction, we
only will focus discussing about the 1st topic which is Binary
Search in the next chapter.

III. BINARY SEARCH

Binary search is an efficient algorithm for finding an item
from a sorted list of items. It works by repeatedly dividing in
half the portion of the list that could contain the item, until
you've narrowed down the possible locations to just one.

Picture I: Illustration of apply the Divide and Conquer Algorithm[5]

One of the most common ways to use binary search is to find
an item in an array. For example, the Tycho-2star catalog
contains information about the brightest 2,539,913 stars in our
galaxy. Suppose that you want to search the catalog for a
particular star, based on the star's name. If the program examined
every star in the star catalog in order starting with the first, an
algorithm called linear search, the computer might have to
examine all 2,539,913 stars to find the star you were looking for,
in the worst case. If the catalog were sorted alphabetically by
star names, binary search would not have to examine more than
22 stars, even in the worst case.

When describing an algorithm to a fellow human being, an
incomplete description is often good enough. Some details may
be left out of a recipe for a cake; the recipe assumes that you
know how to open the refrigerator to get the eggs out and that
you know how to crack the eggs. People might intuitively know
how to fill in the missing details, but computer programs do not.
That's why we need to describe computer algorithms
completely.

In order to implement an algorithm in a programming
language, you will need to understand an algorithm down to the
details. What are the inputs to the problem? The outputs? What
variables should be created, and what initial values should they
have? What intermediate steps should be taken to compute other
values and to ultimately compute the output? Do these steps
repeat instructions that can be written in simplified form using a
loop?

Let's look at how to describe binary search carefully. The
main idea of binary search is to keep track of the current range
of reasonable guesses. Let's say that I'm thinking of a number
between one and 100, just like the guessing game. If you've
already guessed 25 and I told you my number was higher, and
you've already guessed 81 and I told you my number was lower,
then the numbers in the range from 26 to 80 are the only
reasonable guesses. Here, the red section of the number line
contains the reasonable guesses, and the black section shows the
guesses that we've ruled out:

Picture II: The Step and Illustration of apply the Binary Search
Algorithm[6]

In each turn, you choose a guess that divides the set of
reasonable guesses into two ranges of roughly the same size. If
your guess is not correct, then I tell you whether it's too high or
too low, and you can eliminate about half of the reasonable

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

guesses. For example, if the current range of reasonable guesses
is 26 to 80, you would guess the halfway point,

(26 + 80)

2
= 53

If I then tell you that 53 is too high, you can eliminate all
numbers from 53 to 80, leaving 26 to 52 as the new range of
reasonable guesses, halving the size of the range.

Picture III: The Step and Illustration of apply the Binary Search Algorithm[6]

For the guessing game, we can keep track of the set of
reasonable guesses using a few variables. Let the variable 𝑚𝑖𝑛
be the current minimum reasonable guess for this round, and let
the variable 𝑚𝑎𝑥 be the current maximum reasonable guess. The
input to the problem is the number 𝑛, the highest possible
number that your opponent is thinking of. We assume that the
lowest possible number is one, but it would be easy to modify
the algorithm to take the lowest possible number as a second
input.

Here's a step-by-step description of using binary search to
play the guessing game:

1. Let 𝑚𝑖𝑛 = 1 and 𝑚𝑎𝑥 = 𝑛.

2. Guess the average of 𝑚𝑎𝑥 and 𝑚𝑖𝑛 rounded down so
that it is an integer.

3. If you guessed the number, stop. You found it!

4. If the guess was too low, set 𝑚𝑖𝑛 to be one larger than
the guess.

5. If the guess was too high, set 𝑚𝑎𝑥 to be one smaller than
the guess.

6. Go back to step two.

We could make that description even more precise by clearly
describing the inputs and the outputs for the algorithm and by
clarifying what we mean by instructions like "guess a number"
and "stop." But this is enough detail for now.

We know that linear search on an array of 𝑛 elements might
have to make as many as 𝑛 guesses. You probably already have
an intuitive idea that binary search makes fewer guesses than
linear search. You even might have perceived that the difference
between the worst-case number of guesses for linear search and
binary search becomes more striking as the array length
increases. Let's see how to analyze the maximum number of
guesses that binary search makes.

The key idea is that when binary search makes an incorrect
guess, the portion of the array that contains reasonable guesses
is reduced by at least half. If the reasonable portion had 32
elements, then an incorrect guess cuts it down to have at most
16. Binary search halves the size of the reasonable portion upon
every incorrect guess.

If we start with an array of length 8, then incorrect guesses
reduce the size of the reasonable portion to 4, then 2, and then

1. Once the reasonable portion contains just one element, no
further guesses occur; the guess for the 1-element portion is
either correct or incorrect, and we're done. So with an array of
length 8, binary search needs at most four guesses.

What would happen with an array of 16 elements? If you
said that the first guess would eliminate at least 8 elements, so
that at most 8 remain, you're getting the picture. So with 16
elements, we need at most five guesses.

By now, you're probably seeing the pattern. Every time we
double the size of the array, we need at most one more guess.
Suppose we need at most 𝑚 guesses for an array of length 𝑛.
Then, for an array of length 2𝑛 the first guess cuts the reasonable
portion of the array down to size 𝑛, and at most 𝑚 guesses finish
up, giving us a total of at most 𝑚 + 1 guesses.

Let's look at the general case of an array of length 𝑛. We can
express the number of guesses, in the worst case, as "the number
of times we can repeatedly halve, starting at 𝑛, until we get the
value 1, plus one." But that's inconvenient to write out.

Fortunately, there's a mathematical function that means the
same thing as the number of times we repeatedly halve, starting
at n nn, until we get the value 1: the base-2 logarithm of 𝑛.
That's most often written as log2 𝑛, but sometimes in computer
science we have it written in log 𝑛.

Also we can plot a table to compare the number of
executions needed when we are comparing a linear search
algorithm and a binary search algorithm.

𝑛 log2 𝑛

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512 9

1024 10

1,048,576 20

2,097,152 21

Table I: The Comparison of Linear Search and Binary Search

We can view this same table as a graph:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Picture IV: The Curve for Binary Search Apply [6]

 Or zooming in on smaller values of 𝑛:

Picture V: The Curve for Binary Search Apply [6]

The logarithm function grows very slowly. Logarithms are
the inverse of exponentials, which grow very rapidly, so that
iflog2 𝑛 = 𝑥 then 𝑛 = 2𝑥. For example, becauselog2 128 = 7,
and we know 27 = 128.

That makes it easy to calculate the runtime of a binary search
algorithm on an 𝑛 that's exactly a power of 2. If 𝑛 is 128, binary
search will require at most 8 (log2 128 + 1) guesses.

What if 𝑛 isn't a power of 2? In that case, we can look at the
closest lower power of 2. For an array whose length is 1000, the
closest lower power of 2 is 512, which equals 29. We can thus
estimate that log2 1000 is a number greater than 9 and less than
10, or use a calculator to see that its about 9.97. Adding one to
that yields about 10.97. In the case of a decimal number, we
round down to find the actual number of guesses. Therefore, for
a 1000-element array, binary search would require at most 10
guesses.

For the Tycho-2 star catalog with 2,539,913 stars, the
closest lower power of 2 is 221 (which is 2,097,152), so we
would need at most 22 guesses. Much better than linear search!

Another graphic when we need to show the comparison of
linear search and binary search is below:

Picture VI: The Comparison between Linear Search and Binary Search [6]

IV. SOLVING THE NTH ROOT USING BINARY SEARCH APPROACH

As Written in the title and described well in the abstract, we
will have to analysis, evaluate and calculate the value of the nth
root using binary search approach in order to make the
computation is fast for all possible decimal value in the root
form.

A. Method Analysis

Before using the binary search approach in some problems,
we have to know how the step of decomposition the problems
into small parts such the Divide and Conquer algorithm teach us.
At first we have to define an Error 𝑒 in our program, in my
experiments I would like to use 0.0000001. Hence we can step
to the next step which is the main of our algorithm method for
calculating the 𝑛th root of a number:

1) Initialize The border of our searching range.

Let says it is Start = 0 and End = 𝑛

2) Calculate the guess which will be tried.

In the experiment I used to use a variable

𝑚𝑖𝑑 =
𝑆𝑡𝑎𝑟𝑡 + 𝐸𝑛𝑑

2

3) Check The mid Value.

The next step is checking whether the mid is the

answer or we need to do more recursive in case it

doesn’t satisfy:

𝑛 − 𝑝𝑎𝑛𝑔𝑘𝑎𝑡(𝑝, 𝑚𝑖𝑑) < 𝑒

But if the condition is fulfilled and satisfied, then we

just need return the value of mid

4) The First Condition from 3)

If we have such this condition:

𝑛 > 𝑝𝑎𝑛𝑔𝑘𝑎𝑡(𝑝, 𝑚𝑖𝑑)

Then we need to do a removal border which is:

𝐸𝑛𝑑 = 𝑚𝑖𝑑

5) The Second Condition from 3)

If we have such this condition:

𝑛 < 𝑝𝑎𝑛𝑔𝑘𝑎𝑡(𝑝, 𝑚𝑖𝑑)

Then we need to do a removal border which is:

𝑆𝑡𝑎𝑟𝑡 = 𝑚𝑖𝑑

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

6) Repetition

If we have either the first condition or the second

condition, then we will need to repeat the recursive

steps from step 2), until we have the condition where

we only need to return the value.

B. Source Code

1. Powers Function

In this function, we have two input parameters which is

integer 𝑛 and double 𝑝 which return a value of 𝑝𝑛 and evaluated
using a looping for

2. Diff Function

In this function, we have three input parameters which is
double 𝑛, integer 𝑝, and double 𝑚𝑖𝑑 which return the absolute
value of the difference between 𝑛 and the powers(p,mid) which
is 𝑚𝑖𝑑𝑝

3. PowerRoot Function

In this function, we have two input parameters which is int
𝑠𝑞𝑟𝑡 or as known as the root power and the double value 𝑛 which
is needed to be found. Set the border with 𝑠𝑡𝑎𝑟𝑡 = 0 and 𝑒𝑛𝑑 =
𝑛 also the precision number 𝑒 = 0.0000001 and then do the
iterations while the different between 𝑛 and 𝑚𝑖𝑑 is greater than
𝑒 then repeat the iteration, while if the different less than 𝑒 then
we will return the value 𝑚𝑖𝑑.

4. Main Program

The Main Program, ask for the base root operation and the
main number, and then call the powerRoot function and then
output the value and the time execution.

double powers(int n, double p)

{

 double res=1;

 for(int i=0; i<n; i++){

 res*=p;

 }

 return res;

}

double diff(double n,int p, double

mid)

{

 if (n > powers(p,mid))

 return (n-powers(p,mid));

 else

 return (powers(p,mid) - n);

}

double powerRoot(int sqrt, double

n)

{

 double start = 0, end = n;

 double e = 0.0000001;

 while (true)

 {

 double mid = (start +

end)/2;

 double error = diff(n,

sqrt, mid);

 if (error <= e)

 return mid;

 if (powers(sqrt, mid) > n)

 end = mid;

 else

 start = mid;

 }

}

int main()

{

 double n, p;

 cout<<"The Base Root:";

 cin>>n;

 cout<<"\nThe Main Number:";

 cin>>p;

 auto start =

chrono::steady_clock::now();

 cout<<"\nThe Result Is

"<<powerRoot(n,p);

 auto end =

chrono::steady_clock::now();

 auto diff = end - start;

 cout << "\nTime Execution in

NanoSeconds: "<<chrono::duration

<double, nano> (diff).count() << "

ns" << endl;

 return 0;

}

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

C. Program Experiments

1. √345987
697

Picture VII: Program Test

Picture VIII: Online Calculator Scientific

2. √96847312
20

Picture IX: Program Test

Picture X: Online Calculator Scientific

3. √992436543
5

Picture XI: Program Test

Picture XII: Online Calculator Scientific

D. Conclusion

In the picture above, we could see that the value given

by the program is exactly the same as the calculations of the

online scientific calculator in three experiments with various

base and very big main numbers. The execution time too is very

small since it is printed in nanoseconds.

From this we can conclude that to make 𝑛th root solver

such in many scientific calculator we could use one of the most

powerful and fastest searching algorithm which is known by

Binary Search Algorithm, since not only accurate for the

decimal form it is also very fast since it solved it in

nanoseconds.

ACKNOWLEDGMENT

The author wants to say thank you as big to God Almighty,
thanks to his mercy, the author could finish this paper. Also to
the lecturer of Design Algorithm Subjects in ITB that has been
guiding for one semester so I could get a lot of knowledge from
this lecture, that is Mrs. Masayu Leylia Khodra. Also everyone
which has assited to the process of completion of this paper such
that the author could finish this paper on time.

REFERENCES

[1] R. Munir, “Algoritma Divide and Conquer” retrieved 10 May 2018 from
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-
2018/Algoritma-Divide-and-Conquer-(2018).pdf

[2] R. Munir, “Algoritma Divide and Conquer” retrieved 10 May 2018 from
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-
2018/Algoritma-Divide-and-Conquer-(2018).pdf

[3] https://www.mathopenref.com/root.html accessed in 10 May 2018

[4] https://www.britannica.com/science/root-mathematics accessed in 10
May 2018

[5] https://www.geeksforgeeks.org/divide-and-conquer-introduction/
accessed in 10 May 2018

[6] https://www.khanacademy.org/computing/computer-
science/algorithms/binary-search/a/binary-search accessed in 11 May
2018

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Mei 2018

Ttd

Harry Setiawan Hamjaya / 13516079

