
Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

Implementation of String Matching in Network

Intrusion Detection System

Yusuf Rahmat Pratama - 13516062

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13516062@std.stei.itb.ac.id

Abstract—String Matching algorithm can be used in

implementing a Network Intrusion Detection System (NIDS). With

the String Matching algorithm and some optimizations, additional

security measures, and complementing algorithms, NIDS could

contribute in protecting systems connected by networks from

suspicious activities by detecting such activities from the network

traffic. In particular, String Matching is used in matching

incoming or outgoing traffic with some predefined known

malicious codes, which NIDS will alert if a match is positive.

Keywords—algorithm, NIDS, security, string matching

I. INTRODUCTION

With the rising dependencies of connected computer

networks systems in human’s lives, their usage has

tremendously increased in the past years. Such events

participated in the ever-increasing exposure of those systems,

resulting in many attempts of breaching them, with intentions of

personal gains, etc. These security threats therefore require

development of prevention methods to identify potential threats

that flow through the system and protect the systems.

One device type or software that is used to contribute in

accomplishing this is with an Intrusion Detection System (IDS),

which functions as a monitoring software that analyzes the

stream of traffic in a network or system for potential security

threats by recognizing pre-defined malicious patterns, checking

for policy violations, detecting deviations from regular traffic,

and many more.

Many existing algorithms can be used for implementing IDS,

with further tweaks and optimizations to fulfill IDS’ purpose.

One of the algorithms that are usable is the String Matching

algorithm, which is the algorithm to find a defined set of strings

in a larger text or string. This algorithm can be used by IDS as a

checker for malicious patterns that are pre-defined, in which

when a traffic or program contains one or more of the patterns

defined, the system will notify the management system of the

detection of potential security threat.

The String Matching algorithm itself is one of the most

general algorithms in computer science. The algorithm has a

general purpose of finding patterns, whether exact-matching or

defined otherwise, in a larger set of texts or strings, i.e. in a

document, paper, etc. String Matching algorithm has many

various algorithms with different approaches in string matching,

which can be classified according to its input type of text and

pattern, the number of patterns that are used, etc.

Therefore, the rest of the paper is organized as follows:

Section II presents the definition of the string matching

algorithm. Then, Section III describes the Intrusion Detection

System and specifically the Network Intrusion Detection

System as the example of implementation of string matching.

Finally, Section IV discusses the implementation of string

matching algorithms in the Network Intrusion Detection

System.

II. STRING MATCHING

According to [1], string matching can be defined as a basic

pattern matching problems, in which given text T = t1t2…tn and

pattern P = p1p2…pn, string matching is defined as to verify

whether string P is a substring of T.

The approaches to string matching can be classified based on

many criteria. String matching can be classified based on the

preprocessing of the text and/or pattern, in which preprocessing

can be used to achieve faster string matching. The classification

can be divided into four categories [1]:

1. Neither the pattern nor the text are preprocessed.

Example of algorithm in this category is the Elementary

algorithms, which is the most basic algorithms used, such

as Brute Force.

2. The pattern is preprocessed. Example of this category is

the Pattern Matching automata.

3. The text is preprocessed. Factor automata, and index

methods belongs in this category.

4. Both the pattern and the text is preprocessed. The pattern

matching automata and factor automata also belongs in

this category, and also signature methods.

String matching algorithm can also be classified based on the

number of patterns used in each iteration of the algorithm. This

classification is divided into three categories:

1. Single pattern algorithm.

Example of this algorithm is the Brute force search, the

Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

Knuth-Morris-Pratt algorithm [2], the Boyer-Moore

string search algorithm [3], and the Rabin-Karp

algorithm [4].

2. Finite set of patterns algorithm.

The Aho-Corasick string matching algorithm [5], and the

Commentz-Walter algorithm [6] are examples of this

category.

3. Infinite set of patterns algorithm.

This category can be accomplished using regular

expression (Regex), in which the patterns cannot be

enumerated finitely.

Another classification of the string matching algorithm is by

their matching strategy, as categorized in [7] into four

categories:

1. Prefix matching, which matches patterns starting from

the prefix. Knuth-Morris-Pratt algorithm and the Aho-

Corasick string matching algorithm are prefix matching.

2. Suffix matching, which matches patterns starting from

the suffix. Boyer-Moore algorithm and Commentz-

Walter algorithm are suffix matching.

3. Best factor matching, which matches patterns with the

best factor first.

4. Other strategy, such as Brute Force which checks the

pattern one by one.

As usage in the implementation of the string matching in this

paper, the algorithms that will be discussed are the Brute Force

algorithm, the Knuth-Morris-Pratt algorithm, and the Boyer-

Moore algorithm.

 2.1 Brute Force Algorithm
The brute force algorithm is the simplest and relatively

inefficient approach to the string matching algorithm.

The algorithm simply iterates the text per character,

comparing it to the character in the pattern. If there is a

character difference, the algorithm moves one character

in the text ahead and re-compare the text with the pattern.

Fig. 1. A brute force algorithm example

In the average case, the brute force algorithm normally

only has to iterate one or two characters to determine if

it is in the right or wrong position, therefore the average

complexity of the algorithm is O(n + m), with n as the

length of the text and m as the length of the pattern.

However, when the number of the character variation

is small, such as bit matching, the brute force algorithm

doesn’t work efficiently, as there are many redundancies

that the algorithm does. The worst-case scenario results

in a complexity of O(mn) which is very inefficient

compared to the average case.

Fig. 2. A bit matching which results in worst-case

scenario for brute force algorithm

2.2 Knuth-Morris-Pratt Algorithm
The Knuth-Morris-Pratt Algorithm is an improvement

of the brute force algorithm, which decreases the

redundancy matching by storing information of the

pattern to determine where the next match could begin,

without storing the previously scanned text itself.

Therefore, the algorithm could bypass the redundancy

checking, while only taking O(m) memory without

remembering the previously scanned characters [2].

The main differentiator of this algorithm is that the

Knuth-Morris-Pratt Algorithm uses the next table or

failure function which is pre-computed before the

searching algorithm takes place. Each element with index

i in the next table stores the size of the largest prefix of

the pattern until the ith character (pattern[0..i]) which is

also a suffix of the pattern until the ith character excluding

the first index (pattern[1..i]). The function ensures that

the algorithm won’t match any character in the text more

than once.

Fig. 3. Difference of efficiency between Brute Force

and Knuth-Morris-Pratt algorithm

From Fig. 3, when the scanning of the pattern and the

text resulted in a difference, the brute force algorithm

Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

directly shifts the pattern once and restart the comparison

from the beginning. In the Knuth-Morris-Pratt algorithm,

it ensures that every character in the text is only

compared once, so in Fig. 3, the algorithm know that the

last character of the text that was checked was a b c x

with x ≠ a. From this, the algorithm deduces that no

matter what the value of x is (as long as it is not a), the

pattern can be shifted immediately four places to the

right. The efficiency of the Knuth-Morris-Pratt compared

to brute force algorithm can be seen more clearly when

the failure function is bigger.

The complexity of the Knuth-Morris-Pratt algorithm is

O(n + m), with n as the length of the text and m as the

length of the pattern. This complexity is relatively more

efficient than brute force algorithm’s, which could rise

up to O(nm). As the previous definition suggests, the

Knuth-Morris-Pratt algorithm is especially efficient for

processing very large text and with relatively small

variation of the characters because the algorithm ensures

that every character in the text is only compared once,

not redundantly compared as with brute force algorithm.

However, the Knuth-Morris-Pratt could be considered

inefficient when the text contains very large variation of

characters, because such events would lead to a lot of

mismatch (with relatively small amount of failure

function), so the algorithm will work similarly as the

brute force algorithm, with additional memory

complexity of O(m) to store the table function.

2.3 Boyer-Moore Algorithm
 According to [3], the idea behind the Boyer-Moore

algorithm is that more information is gained by matching

the pattern from the right than from the left. This results

in the possibility of the Boyer-Moore Algorithm to make

a bigger jump while minimizing the amount of checking

required, especially if the text and the pattern resemble

natural language.

Fig. 4. Boyer-Moore algorithm matches pattern from

the right

The Boyer-Moore algorithm uses a last occurrence

function which is pre-processed before the matching

algorithm takes place. The last occurrence function maps

all the characters variation from the text, then it saves the

last index of each character in the pattern, with a -1 value

if the character doesn’t exist.

The algorithm starts by comparing normally from right

to left. However, when it detects a mismatch, the

algorithm checks between the three possible cases in

order:

1. If the character x from the text that is mismatched

exists in the pattern and has a last occurrence index

that is smaller than the current pointer of the

pattern, then the algorithms shifts the pattern such

that the last occurrence of x in the pattern is aligned

with x. The algorithm then starts comparing

normally from the rightmost of the pattern.

Fig. 5. First case of the Boyer-Moore algorithm

mismatch

2. If the character x from the text that is mismatched

exists in the pattern but has a last occurrence index

that is larger than the current pointer of the pattern,

then the algorithm shifts the pattern by one

character of the text. Then the algorithm starts

comparing normally from the rightmost of the

pattern.

Fig. 6. Second case of the Boyer-Moore algorithm

mismatch

3. If the first and second case doesn’t apply, which is

if x doesn’t exist in the pattern, then the algorithm

shifts the pattern such that the first character of the

pattern aligns with the character of the text after x.

Fig. 7. Third case of the Boyer-Moore algorithm

mismatch

The Boyer-Moore algorithm is very efficient in text

Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

with large characters variation compared to brute force

algorithm. However, the algorithm suffers in text with

small variation of characters, as it implies less “jump”

capability of the algorithm, and because of the

possibilities of the algorithm to check on a character

multiple times, the redundancy can increase dramatically

in this situation. The worst-case scenario of Boyer-

Moore algorithm is O(nm), with n as the length of the

text, and m as the length of the pattern.

III. INTRUSION DETECTION SYSTEM

According to [8], “Intrusion Detection Systems (IDS) are

security tools that, like other measures such as antivirus

software, firewalls and access control schemes, are intended to

strengthen the security of information and communication

systems.”

An Intrusion Detection System achieve this by monitoring a

network or system for malicious activity or potential security

threat. The system then raises an alarm if it detects such activity.

Intrusion Detection System serves mainly as monitoring

software, which alert other security components that could

handle such problems. However, there are some variations of

Intrusion Detection System which also has the protection

aspects without external software.

Reference [9] defined the Common Intrusion Detection

Framework (CIDF) as a generalized structure of an intrusion

detection system. According to CIDF, an Intrusion Detection

System can be decomposed into four types of components:

1. Event generators

2. Analyzers

3. Databases

4. Response units

Consequently, a hypothetical Intrusion Detection System

could be designed with CIDF which takes form of the schematic

on Fig. 8.

Fig. 8. An example of a hypothetical IDS according to CIDF

architecture

Each of the component in the Common Intrusion Detection

Framework can be defined as follows [9]:

1. Configuration and Directory Service

Labeled C in Fig. 8, the configuration and directory

service ties the other components together in the CIDF

interface. However, this component is optional, as if a

component can address its target directly than this service

component is not necessary.

2. Event Generators

Event generators functions as sensors that acquire events

such as data flow or traffic from the target system outside

of the intrusion detection system environment, convert

them to IDS-supported format, and provide the data to

the rest of the system. The event generators are labeled

as Ei in Fig. 8.

3. Event Analyzers

Labeled as Ai in Fig. 8, their function is to receive the

data from other components, analyze them according to

the specified requirements, and return data to other

components containing the summary of the input,

whether it is considered safe or potentially hazardous.

4. Event Databases

Event databases simply store data and push queried data.

The component is sometimes unnecessary, but it could

give persistence to the system’s data. Databases can also

store pre-defined malicious codes or functions for the

system to intrude. Event databases are labeled Di in Fig.

8.

5. Response units

Response units function as a reaction unit to the events

monitored by the system. They carry out various tasks

based on the events identified. Some functions that could

be added to response units are killing process, blocking

access, resetting connection, etc. They could also

function to notify other security systems of the intrusion

that is detected by the system. The response units are

labeled R in Fig. 8.

Generally, Intrusion Detection Systems can be classified

according to the place of implementation. As such, it is

categorized into two types:

1. Network Intrusion Detection Systems

Network intrusion detection systems are usually placed

inside the network (typically in the strategic points of

traffic within the network) and monitors the traffic. The

systems analyze the traffic by matching the traffic to pre-

defined data of malicious activity, which usually contains

known and previous implemented attacks on the system.

The systems could also analyze for deviations of traffic

Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

from normal conditions for detecting malicious activity.

When a potentially dangerous activity is detected, the

systems will raise an alarm to the administrator, or

directly resolve the activity, according to the

implementation the systems.

2. Host Intrusion Detection Systems

Host intrusion detection systems are placed inside

individual hosts or devices inside a network. The systems

only monitor traffic from the particular device only. The

functionalities are similar to the network intrusion

detection systems.

IV. STRING MATCHING IN NETWORK INTRUSION

DETECTION SYSTEMS

String matching algorithms are particularly useful for some

aspects of the implementation of Network Intrusion Detection

Systems. Recall that Network Intrusion Detection Systems

function by matching the traffic with pre-defined known

malicious activities, which could be applied using string

matching algorithms using pre-defined code data as patterns.

Using the CIDF architecture, a simple Network Intrusion

Detection System implementing string matching module can be

modeled as such in Fig. 9.

Fig. 9. A Network Intrusion Detection System model with

string matching implementation

Fig. 9. describes the string matching algorithms as an Event

Analyzer, which receives input of the data traffic that has been

pre-processed by the Event Supervisor, matching the data with

the malicious code data that are pre-defined and stored in the

Databases, and returns whether the data contain malicious

activities or if they are acceptable.

The Response Unit then labels the data according to the

results from the analyzer. If the data is an intrusion data, the

response unit will also send alerts to the management software

for further action on the labelled data.

Realization of the simple Network Intrusion Detection

System is done using the Knuth-Morris-Pratt algorithm and

Boyer-Moore algorithm for the string matching analyzer.

Because both algorithms are exact pattern matching, every data

traffic has to be detected and intruded by the system.

Furthermore, the traffic has to be processed by the system before

analyzed by the algorithm.

Experiments suggested that for the simple string matching

analyzer to work effectively, the data have to be processed such

that:

1. The redundancies both in the data traffic that are

monitored and the malicious data pattern stored are

minimalized or removed completely. This is because data

redundancy could lead to incorrect matching result when

using exact pattern matching algorithm.

2. The stored malicious data are written as simple as

possible without sacrificing the meaning and the

matching of the data, because complex-written stored

data could increase the complexity of the algorithm,

slowing the systems down.

However, ultimately the usage of exact pattern matching as

analyzer for the network intrusion detection system is limited,

as further modifications of the malicious code implemented

within the traffic could bypass the analyzer completely.

Consequently, other methods of pattern matching could be

implemented, such as using regular expression, where patterns

are matched according to the expression defined, eliminating the

need of exact match, and with the right expression, could

identify malicious code whatever the modifications might be.

Furthermore, to increase the effectiveness of the systems,

other forms of analyzers could also be used concurrently with

the string matching module, such as deviation recognition, or

other varieties of secure analyzers.

V. ACKNOWLEDGMENT

The writer would like to thank God for without Him nothing

could ever be achieved. The writer would also like to thank Mr.

Rinaldi Munir as the coordinator of the Algorithm Strategies

lectures and initiator of the task, as well as Mrs. Ulfa as

Algorithm Strategies’ lecturer. The writer thanks every author

in which his or her works are referenced in the writer’s paper.

Last but not least, the writer thanks his parents for continually

supporting the writer’s journey in life.

REFERENCES

[1] Melichar, Borivoj, Jan Holub, and J. Polcar. Text Searching Algorithms.

 Vol. 1. 2 vols., 2005.
[2] Knuth, D.E., Morris, J.H., and Pratt, V.R. Fast pattern matching in strings.
 SIAM Journal on Computing Vol. 6, No. 2. Philadelphia: SIAM, 1977

Makalah IF2211 Strategi Algoritma– Sem. II Tahun 2017/2018

[3] Boyer, R.S., and Moore, J.S., A fast string searching algorithm. ACM

 Vol. 20, No. 10. New York: Association for Computing Machinery,

 1977.

[4] Karp, R.M.; Rabin, M.O. "Efficient randomized pattern-matching

 algorithms". IBM Journal of Research and Development Vol. 31, No. 2.
 New York: IBM, 1987

[5] Aho, A.V., and Corasick, M.J. Fast pattern matching: An aid to

 bibliographic search. ACM Vol. 18, No. 6. New York: Association for

 Computing Machinery, 1975.

[6] Commentz-Walter, Beate (1979). A String Matching Algorithm Fast on
the Average. International Colloquium on Automata, Languages and

 Programming. LNCS. 71. Graz, Austria: Springer. pp. 118–132.

[7] Navarro, G., and Raffinot, M. Flexible Pattern Matching in Strings:

 Practical On-Line Search Algorithms for Texts and Biological Sequences.

 New York: Cambridge University Press New York, 2002
[8] Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.

 “Anomaly-based network intrusion detection: Techniques, systems, and

 challenges.”. Computers & Security, Vol 28, Issues 1-2, 18-28. New York:

 Elsevier, 2009

[9] Staniford-Chen S., Tung B., Porrar P., Kahn C., Schnackenberg D.,
 Feiertag R., et al. The common intrusion detection framework. Internet

 draft, 1998.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 13 May 2018

Yusuf Rahmat Pratama - 13516062

	I. Introduction
	II. String Matching
	III. Intrusion Detection System
	IV. String Matching in Network Intrusion Detection Systems
	V. Acknowledgment
	References
	PeRNYATAAN

