
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Application Of Branch And Bound Algorithm In

Character Balancing For Online Game

M Aditya Farizki 13516082

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13516082@std.stei.itb.ac.id

Abstract—Game balancing has been a main problem for some

many game developer. With the many stats and variation in

characters ability in a game, balancing a character has become

harder than ever. Introducing variation in the game by releasing

new character which is a central part of a game development has

been stagnant for some games. Many games also does not realize

that their characters are too weak in a point of a game to the point

that the characters cannot develop further in a match. It is

necessary to develop a certain method or way to ensure that the

balancing process can fix the overpowered and underpowered

character problem. Branch and bound implementation for the

given problem can inform us on when a character is strong and

when the character is too weak, which will help a lot in the

balancing process. Even though that the result of the program does

not match linearly with the win rate of each character, but the

result is good enough to the point that it can be a consideration to

the balancing process.

Keywords—character, balance, strength, branch, bound, cost,

game.

I. INTRODUCTION

Character balancing has been a big problem for most player
versus player game in the world. The demand of new character
for every season has made the previous or old character become
either obsolete or suddenly too powerful. Some games have been
reported to lose players or even gone bankrupt because of the
lack of understanding in character balancing division.

The essence of releasing new character or new item is to
introduce variation in the game. But more problem raise as more
characters get released. Some characters become too powerful
and some characters get too powerless or useless. In most player
versus player games, players spend money on each character,
either it’s for cosmetics or to get the access to play the character.
The payment method may be in the form of in game currency or
even real money.

One example of such game is DoTA2 or Defense of The
Ancient 2. DoTA2 has been reported to gradually lose their
player over time. The developer and creative team are having
trouble releasing new character, or specifically in this game
called heroes, without making the old heroes obsolete, useless
or too powerful.

The problem in character balancing are not only how strong
a character can get, or how strong a character initially is, but also
how strong is a character at a given point in game compared to
another characters. Some game characters like Caitlyn from

League of Legends is a really strong character (League of
Legends use the term Champion to refer to their in game
characters), but the problem is she is really weak in mid game
(when the game has last only 15 – 25 minutes) that most players
cannot play her into her full potential. This is the main problem
that this paper will address.

II. GAME BALANCE

In game design, balance is the concept and the practice of
tuning a game's rules, usually with the goal of preventing any of
its component systems from being ineffective or otherwise
undesirable when compared to their peers. An unbalanced
system represents wasted development resources at the very
least, and at worst can undermine the game's entire ruleset by
making important roles or tasks impossible to perform,
(Newheiser, Mark (9 March 2009). "Playing Fair: A Look at
Competition in Gaming". Strange Horizons. Archived from the
original on 12 March 2009.).

Game Balance is an extremely important factor in a non “pay
to win” game to give the player the sense of fairness. Game also
needs to give the player the illusion or the impression that the
game is winnable, it needs to give the player a motivation to keep
playing, no matter it is for beginner, amateur, or professional
player. An unbalanced game will destroy the motivation to play
because an overwhelmingly strong characters can be abused to
win games.

There’s another issue in balancing a game. A game’s
learning curve influence on the balancing process is very
significance. Some characters may feels really unbalanced for
beginner players but actually balanced for amateur and
professional players. Some characters also may be considered as
niche pick, where the condition to play that character is very
specific and many players disregard such fact.

To measure how balanced a game is or rather how balanced
the characters and items in the game is, we can see through the
win rate and performance rate of each character. Many games
provide an API to get match data. From that data we then can
calculate the average win rate of each character and the items
they use.

A character can be called perfectly balanced if and only if its
win rate is 50%, which mean using that character in overall has
the same chance to win or lose the game. To accommodate real
life condition we will say a character is justifiably balanced if

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

and only if its win rate is 50% + Δ, where the delta factor will be
decided based on the game.

For further analysis, this paper will use a game called League
of Legends, a Multiplayer Online Battle Arena game (MOBA)
where there are 10 players, each with a single character fight on
two teams of 5 trying to destroy the enemy’s base. The reason to
use this game as a basis are :

1. Huge player base

A post from Forbes website shows that the number of
League of Legends player in 2014 was at least 67
million players.

(https://www.forbes.com/sites/insertcoin/2014/01/27/ri
ots-league-of-legends-reveals-astonishing-27-million-
daily-players-67-million-monthly/#4a9b1ce46d39)

Some other sources said that currently League of
Legends have more than 100 million players.

2. Accurate and easily available match data

Riot Games (League of Legend developer) officially
released an API to get match data from their server.
Some websites also provide full data description and
analysis to be used. This paper will use data provided
from http://www.champion.gg (accessed on 11th May
2018) as basis. The website has been proved to be
accurate by the gaming community itself.

3. Scheduled and frequent new character release

League of Legends releases at around 5 new characters
per year which is considered to be a lot for a MOBA
game, compared to 1 from DoTA2. League of Legends
also has a scheduled update and balance patch at every
end of the year so the change can be measured easier.

For League of Legends the Δ value to decide how balanced
a character is will be determined by the following function

Where

n = the number of character of the role

20 is arbitrary number taken from the given statistic that it is
very common for players to feel that the character is balanced
around that score. It is also intuitive to think that the more
characters are there for a role then the more biased the win rate
will be.

For example if there are 40 characters for mage roles, then
every character in the role is justifiably balanced if and only if
their win rate is between 48% and 52 %.

III. BRANCH AND BOUND ALGORITHM

Branch and bound is an optimization algorithm used to

minimized the number of state to be search for from a given
number of possibilities. To put it simply, branch and bound
algorithm is breadth first search with least cost search involved.

Common application of branch and bound algorithm is in
pathfinding problem such as A* algorithm, 0/1 knapsack
problem, 15 puzzle problem, Feature selection in machine
learning, etc.

The idea of branch and bound is rather than expanding a state
based on their order of expansion, the algorithm expand a state
based on the cost of expanding that state. The cost function is a
combination of the previous cost plus expected cost to reach the
goal, or mathematically written as :

Where

Below is the pseudocode for common branch and bound
algorithm

PriorityQueue Q
SetOfOptions Option <- [options for a given
problem]
SetOfNode expand(Node N, SetOfOptions O){
 SetOfNode temp
 For(Options Op in O){
 temp.add(Make a new state based on option
Op and Node N and then use CostFunction to
calculate the cost of the new Node)
 }
 return temp
}
Node CurrentState <- InitialState
Node GoalState <- Goal
Q.insert(InitialState)
While(CurrentState != GoalState){
 Node ExpandState <- Q.dequeue()
 for(Node temp in expand(ExpandState,
Option){
 Q.enqueue(temp)
 }
 CurrentState = Q.dequeue()
}

https://www.forbes.com/sites/insertcoin/2014/01/27/riots-league-of-legends-reveals-astonishing-27-million-daily-players-67-million-monthly/#4a9b1ce46d39
https://www.forbes.com/sites/insertcoin/2014/01/27/riots-league-of-legends-reveals-astonishing-27-million-daily-players-67-million-monthly/#4a9b1ce46d39
https://www.forbes.com/sites/insertcoin/2014/01/27/riots-league-of-legends-reveals-astonishing-27-million-daily-players-67-million-monthly/#4a9b1ce46d39
http://www.champion.gg/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

The expected cost to reach the goal (or sometimes called
heuristic function) state function is different for each problem.
In the A* algorithm the expected cost is the direct length from
the current point to the goal, in 15 puzzle problem the expected
cost is the Manhattan distance of each tile to where they’re
supposed to be.

We use priority queue data structure to make the process of
sorting every node based on its cost easier, we assume that the
priority queue has method called enqueue() to insert a new Node
into the queue and retain its rules where the item is sorted based
on the cost, we also assume that the priority queue has a method
called dequeue where the queue will return the Node with
smallest cost value and then erase it from the queue. The
CostFunction(Node N) part is relative to what kind of problem
is being solved by the algorithm. SetOfOptions Option is the set
of possible option that can be taken. The expand function is a
function to expand a Node based on a given SetOfOptions, the
function will also decide if a Node can be expanded to a certain
state or not, for example in 15 puzzle problem case, the expand
function will decide if the hole can be moved to a given direction
or not, if the puzzle is on the bottom left part of the puzzle then
the expand function will not expand to bottom and left option.
Then we declare the initial state and the goal state and insert the
initial state to the queue. Now the program will expand the Node
with the smallest cost and then switch the current Node to the
Node with smallest cost until current Node is the goal state.

In pathfinding problem, there is an additional requirement
for the heuristic function.

If the heuristic function, h always underestimate the true cost
(h(n) is smaller than h*(n)), then A* is guaranteed to find an
optimal solution admissible; and also has to be consistent.
(Rinaldi Munir, slide kuliah IF2211, “ A*, Best FS, and UCS
(2018)”).

IV. GAME BASIC EXPLANATION

Generally speaking, how balanced a character is depended

on how the players think. Some characters may be balanced on
paper but the players may find playing the character still too hard
or too easy. There are many cases on how a character ability and
statistic is considered to be balanced but a lot of beginner players
rant about how unbalanced a character is. One of the case is
Rikimaru in DoTA and DoTA2, the characters ability to become
invisible for most of the match is deemed to be unbalanced for
beginner player, where the amateur and professional layer
knows that by simply buying item that can reveal invisible object
on the map, they can counter Rikimaru pretty easily and the
items are considerably cheap. However the mentioned condition
will not be considered as unbalanced in this paper.

The goal of this approach of balance checking is to make
sure that a character can keep up with most other character in the
same role throughout a match. So the character should not be too
weak or too strong in any point of time in the game. The
characters will be given points on how much advantage they
have (can be negative) compared to other characters in the same
role for all point in the match. For the chosen game (League of
Legends) we will consider how strong a character is on every
level. Since every character in League of Legends can get up to

level 18, then there will be 18 steps of comparison. Items are
also will be considered in the application of the algorithm. Other
than only basic stat like how much hit damage a character has,
or how much ability point a character has, or how much health
a character has, the calculation will grouped on some categories
given by the game itself.

In League of Legends, there are 7 basic stat for any character.

1. Health

This stat represent how much damage a character can
take before they die.

2. Health Regen

This stat represent how much health gained through
time while a character is alive.

3. Attack Damage (AD)

This stat represent how much damage can a character
deal to another object with basic attack. Attack damage
is a form of physical attack unless described as magical
attack by some passive ability given by the character or
item.

4. Armor

Armor stat represent how much protection a character
has against physical attack. The calculation on how
much protection a level of armor can give is interpreted
to Effective Health.

For example if a character has 100 armor points, then
the character’s effective health against physical attack is
doubled.

5. Attack Speed (AS)

This stat represents how many basic attack a character
can do in a second. So if a character has 0.5 attack speed
point, then the character can do 1 basic attack for every
2 seconds. The maximum value for Attack Speed point
is 2.50, but some items allow the character to exceed this
limitation for a limited period.

6. Magic Resist (MR)

Magic resist is a similar stat to armor, but magic resist
work against magic damage instead of physical damage.

7. Movement Speed (MS)

The length of two point in the game is represented in the
term of “units” the map of the game itself has 19600
units on its diagonal. The movement speed is basically
how many units can a character travel for one second.
So 325 MS means a character can travel through 325
units per second.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

(picture 1, the map of League of Legends, taken from
https://boards.euw.leagueoflegends.com on 12th May
2018)

V. BRANCH AND BOUND APPLICATION

Branch and bound algorithm is used to find the optimum
build (item pick) for each champion. Then from the optimum
build we can decide if a champion is unbalanced or not. The
algorithm will also inform us of the maximum strength of a
character for a given state.

A. Stat Grouping

For the algorithm implementation, we need to group the

explained stat before using them as parameter because the basic
stat doesn’t represent the full game experience as it is. The
grouping of the basic stats are as follow

1. The character’s ability to deal damage to another
character (Damage)

The damage will be calculated based on how much
damage can character deal in 1 second and how much
damage a character can deal in 6 second. The difference
is how damage a character can deal in 1 second is mostly
called “burst damage” or sudden damage, mostly mage
and some marksman character in League of Legend has
a high affinity for this kind of damage. The 6 seconds
damage is to measure the consistency of damage a
character can output in a prolonged fight, this is an
important factor for most hitter or shooter character that
has high damage but not burst damage. The damage is a
combination of damage from ability and basic attack.

2. The character’s ability to absorb damage from another
character (Toughness)

Toughness score will be based on 4 stats, health, health
regen, armor, and magic resist. The point from this
parameter is basically how much damage a character
can sustain in 6 seconds. The calculation will use real
health rather than effective health.

3. The character’s ability to apply harmful effect such as
slow, or stun the enemy’s character (Crowd Control)

This is a pretty peculiar parameter to be considered. The
calculation for this parameter is by the following rule :

1. Crowd control value point is based on how far the
distance can a character nullify from another
characters. If a character can stun 2 enemy’s
character for 2 seconds, then the character’s crowd
control point is average character’s movement
speed (325) times how many character can be
stunned at a time.

2. The point calculation will be multiplied by how
long the enemy character will be affected by the
ability.

3. If it is a continuous ability then the time
multiplication factor is 5.

4. If there are multiple abilities, then every ability will
count.

4. The character’s ability to move around the map and
dodge attack (Mobility)

Mobility score will be based from the character’s
movement speed and the character’s ability to dash or
jump from a point to another.

5. Character’s ability to provide useful ability for the team
(Utility)

Utility score will be based on how much shield and heal
a character can give for 5 seconds in the match. Other
ability such as movement speed buff and damage
increase will be judged accordingly.

B. State Definition

A state in the algorithm implementation is a combination of
picked items and the value of all parameters discussed in the
previous point. The depth of the tree will represents the level of
the character, it is guaranteed that an optimum solution for each
character has at least 17 steps to reach the goal (optimum state).

C. Cost Function

The goal of the branch and bound application in the character

balancing problem is to make sure that a character is viable for
most of the time in a match. So it is important to measure how
good a character is compared to another character.

The cost function for this problem is defined as follow

Where

https://boards.euw.leagueoflegends.com/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Rather than expanding the state with least cost, the
implementation of branch and bound in this problem will expand
a state with the most cost. In the program implementation
because the value of c function will be multiplied by -1, because
the priority queue data structure available in most programming
language is sorted ascending and not descending.

The problem raise when we’re trying to calculate the g
function. The value of average character strength for the given
role is not acquired in the initial calculation, we don’t have the
data for another champion strength in the initial calculation. So
we have to settle with given statistic from https://champion.gg.
To calculate the initial character strength, the program will use
the given highest win rate build from https://champion.gg.

(picture 2, example stat from https://champion.gg for
a character)

D. Program Execution And Data Interpretation

To calculate how strong a character is I’ve created a
program that calculate which item a character should take and
the program will show the strength of a character at every given
point in game.

Here is the program pseudocode that cover the basic logic
of the program.

(I’ve created a database beforehand to store the information
of each character and how every item interacts with each
character)

The program will show what items should a character buy
throughout the game the character strength for each level.

Create connection with database
Character Char <- fetchCharacterFromDB(get
character name)

PriorityQueue Q
Q.enqueue(Char)
int cost <- 0
int level <- 0
int itemsNumber <- 0
Char.level <- level
Char.cost <- cost
Char.itemsNumber <- itemsNumber
Character currentCharacter <- Char
SetOfInteger avgVal <-
fetchAverageFromDB(getCharRole(Char))

While(currentCharacter.level < 18 or
currentCharacter.itemsNumber < 6){
 For(Char temp in tempChar.pickItems()){
 temp.addCost(avgVal) //this will
calculate the cost for a given state
 Q.enqueue(temp)
 }
 currentCharacter <- Q.dequeue
}

https://champion.gg/
https://champion.gg/
https://champion.gg/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Here is an example of the program execution

Ashe is a carry character which means she can carries her
team to win the game, so she scales well as the game progress.
She’s a representation of a well balanced character as her win
rate is 50.51% and the delta value for carry role is 2.12%, so that
means she’s safely inside the balanced range. Some characters
have declining average strength after level 14 because the other
character in the game get way stronger. The highest average
strength level recorded is from the character Jinx where the

average strength level at level 19 is 3491, and her win rate is
51.85% which means the character is still justifiably balanced
but is rather on the strong side. Jinx’s growth is rather
exponential because in level 8 her average strength level is still
below Ashe’s which means she need more time to be strong. the
most underpowered character decided from the game is however
from the character named Kallista, her strength level throughout
the game is almost always lower than Ashe with the strength
point at level 18 is 2276 and her win rate is 44.09% which mean
she’s grossly unbalanced. Some characters also have a spike
where their average strength rise really high on a certain level,
which mean it’s the strongest point for the character in a game
and if a character has more than 2 levels of the spike then it can
be a justification for saying a character is statistically balanced.

The win rate grows does not exactly match the average
strength value because there are some factors that the program
does not consider such as how difficult to play a character and
how many players play the character, however the result of the
program is solid enough to decide that a character is not
balanced.

VI. CONCLUSION

Results from the algorithm does not exactly reflect the win

rate of each character. There are also some simplification in the
program that may cause the result to have some anomaly for
some characters. but it can be concluded that the results is good
enough to become a consideration if a character is balanced or
not.

ACKNOWLEDGEMENT

Firstly the author would like to thank god for his blessing
and his giving to the author so that the author is able to finish
this paper.

Secondly I’d like to thank my parents and my whole family
for supporting me to continue my study in college, and
especially to the government program for giving me scholarship.

I’d like to also thank the IF2211 lecturers that has created the
lecture material so that it’s easily understandable and reachable.

I’d also like to thank my friend Ramon who introduced me
to the game and help me to calibrate the calculation in my
program.

REFERENCES

[1] Munir, Rinaldi Slide of IF2211 : Strategi Algoritma, Branch

and Bound

[2] https://champion.gg, accessed on 11th May 2018.

[3] https://www.geeksforgeeks.org/branch-and-bound-set-1-

introduction-with-01-knapsack/, accessed on 12th May 2018.

https://champion.gg/
https://www.geeksforgeeks.org/branch-and-bound-set-1-introduction-with-01-knapsack/
https://www.geeksforgeeks.org/branch-and-bound-set-1-introduction-with-01-knapsack/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

[4] Clausen, Jens (1999). Branch and Bound Algorithms—

Principles and Examples (PDF) (Technical report). University

of Copenhagen.

DECLARATION

I hereby certify that this paper is my own writing, neither a copy

nor from another paper, and not an act of plagiarism

Bandung, May 13 2018

M Aditya Farizki/13516082

