
A Comparison of BFS, Dijkstra’s and A* Algorithm
for Grid-Based Path-Finding in Mobile Robots

Faza Fahleraz 13516095
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516095@std.stei.itb.ac.id

 Abstract—Path-finding plays a very significant role in
many applications such as mobile robot navigation. A grid-based
environment can be used to represent the navigation space for
robots on the real world, to avoid obstacles, or to navigate to a
desired position. Unlike many other path-finding problems, grid-
based path finding poses some unique challenges. A grid-based
search environment can be represented by a graph with a two-
dimensional grid of nodes with each nodes having a connecting
edge to it's neighboring edge. We can also represent some kind of
obstacles on the grid-based environment by deleting several nodes.
In this paper, I will do some analysis for three different path-finding
algorithms namely Breadth-First Search, Dijkstra’s, and A* in the
context of a grid-based path-finding that is frequently used in
mobile robot navigation. I will also present a performance
comparison for each of those algorithms.

 Keywords—path-finding; grid-based search; heuristic;
BFS; Dijkstra; A*.

I. INTRODUCTION

 Path-planning plays a very significant role in many
applications such as mobile robot navigation. A robot should be
move around it’s environment. It should be able to move from
it’s current position to a new desired postition. In order to do
this, a mobile robot should be able to model it’s environment
and the obstacles the robot should avoid in the environment. In
addition to modelling it’s environment, a mobile robot should
be able to plan it’s movement to a desired new position inside
it’s environment by calculating a path that stretches from the
robot’s current position to the new position. We also prefer the
path to be the shortest possible. This can be achieved by a path-
planning algorithm.

Figure 1.1 Several mobile robots playing soccer in the RoboCup MSL.
Source: https://www.researchgate.net/figure/A-typical-scenario-of-
the-RoboCup-MSL-competition-a-match-between-TU-e-and-NuBot-

in_fig1_317754606

 In this paper, I will discuss how some of the well known
path-planning algoritms can be used to tackle this problem
namely Breadth-First Search, Dijkstra’s, and A* algorithm. I
will also do a comparison of the performance for each of these
algorithms.

II. GRID-BASED ENVIRONMENT REPRESENTATION

A mobile robot should be able to navigate it’s environment
autonomously and it should be able to do it in a fast and
efficient manner. In order to navigate, a mobile robot should
have some kind of a model of it’s environment. A grid-based
map can be used to represent the robot’s environment.

Figure 2.1 A model of the robot’s environment as a grid map.
Source: author

 A mobile robot can move in many direction, therefore we
should be able to represent such movement in our model. A
grid fits nicely with how a mobile robot can navigate. To
model the environment in a grid, we shall devide the
environment into a two-dimensional grid of nodes where each
nodes represents each of the positions the robot may be. As you
may have noticed, the more nodes there is, the more positions
of the robot can be represented by the model, hence the greater
the resolution or the accuracy of the robot’s movement can be
achieved. To model the robot’s movement, we can add edges
that connects each of the nodes to all of it’s neighboring nodes.
 In addition to space and the robot itself, an environment can
also consist of other objects that acts as an obstacle for the
robot. Generally, when we tell a robot to move to a new desired
position, we also want the robot to avoid obstacles along it’s
way. This is called obstacle avoidance.
 The question now is, how do we represent these obstacle
inside our grid-based model of the environment. This can be
achieved by deleting the nodes at where the obstacle is. And

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

mailto:13516095@std.stei.itb.ac.id

subsequently deleting all of the edges that connect to those
nodes. Therefore we represents the obtacles as an absence of
node in the obstacle’s position. Signifying that the robot cannot
go into that direction.

Figure 2.2 A graph representing the grid-based environment.
Source: author

 After modelling the robot’s environment, we should also be
able to model the robot’s movement. This involves finding a
path that streches from the robot’s current position to the
robot’s goal position. We also would like the path to be the
shortest and we should be able to compute such path in a
reasonabli fast time. There are several algorithm that we can
use to accomplish this task. The most popular algoritms to
solve this kind of path-finding problem are the BFS Algorithm,
Dijkstra’s Algorithm, and A* Algorithm.

Figure 2.3 A graph representing the grid-based environment with
obstacles represented as an absence of nodes.

Source: author

III. PATH-FINDING ALGORITHMS

 A mobile robot should be able to navigate it’s environment
autonomously. To do that, we need some kind of a path-
planning algorithm for the robot to determine the shortest path
from the robot’s current position to a new desired position. In
this section, I will discuss three of the most common path-
finding algorithms: Breadth-First-Search, Dijkstra’s, and A*.

A. Breadth-First Search Algorithm

 Breadth-first search (BFS) is an algorithm for traversing or
searching a tree or a graph. BFS can be used for many

applications. In this case it can be used to find the shortest path
form a source node in a graph to a goal node.
 The BFS algorithm was first invented in 1945 by Konrad
Zuse and Michael Burke, in their (rejected) Ph.D. thesis on the
Plankalkül programming language, but this was not published
until 1972. It was reinvented in 1959 by Edward F. Moore,
who used it to find the shortest path out of a maze, and later
developed by C. Y. Lee into a wire routing algorithm in 1961.
 The BFS algorithm start from a single source node and
subsequently search over all the neighboring nodes and add it
into a queue. After fisiting each node, the algorithm will flag
that node as visited and will not add that node into the queue if
it is visited again in the future. The algorithms visits nodes in
the graph according to the queue and will add the all the
neigboring nodes of the currently visited node into the back of
the queue. The algorithm stops if the queue is empty or the
goal node is the currently visited node. Here is a general
pseudo-code for BFS:

function breadth_first_search(problem):
 open_set = Queue()
 closed_set = set()
 path = dict()

 root = problem.get_root()
 path[root] = (None, None)
 open_set.enqueue(root)

 while not open_set.is_empty():
 subtree_root = open_set.dequeue()

 if problem.is_goal(subtree_root):
 return construct_path(subtree_root,
 path)

 for (child, action) in
 problem.get_successors(subtree_root):
 if child in closed_set:
 continue

 if child not in open_set:
 path[child] = (subtree_root, action)
 open_set.enqueue(child)

 closed_set.add(subtree_root)

 In the case of robot navigaion, we cannot use the output of
the algorithm straight away, we need an algorithm to reverse-
iterate from the goal to the source node in order to know the
shortest path from the source to the goal node:

def reconstruct_path(state, path):
 action_list = list()

 while True:
 row = path[state]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

if len(row) == 2:
 state = row[0]
 action = row[1]
 action_list.append(action)
 else:
 break

 action_list.reverse()
 return action_list

B. Dijkstra’s Algorithm

 Dijkstra's algorithm is an algorithm for finding the shortest
paths between nodes in a graph. It was conceived by computer
scientist Edsger W. Dijkstra in 1956 and published three years
later in 1959.
 For a given source node in the graph, the algorithm finds the
shortest path between that node and every other node in the
graph. It can also be used for finding the shortest paths from a
single node to a single destination node by stopping the
algorithm once the shortest path to the destination node has
been determined.
 In the case of path-finding for robot navigation, we of course
only need the shortest-path from the source node to a single
destination node because a robot only moves from a single
current location to a desired new location. Also, the search
space will be too big if we also search for the shortest path for
all the nodes since in a grid-based world, the number of nodes
will be very big. To do this we can slightly modify the
algorithm. This variant is the one that we will use in the case of
robot navigation. The general pseudo-code for Dijkstra’s
Algorihtm is:

function Dijkstra(Graph, source, goal):
 create vertex set Q

 for each vertex v in Graph:
 dist[v] ← INFINITY
 prev[v] ← UNDEFINED
 add v to Q

 dist[source] ← 0

 while Q is not empty:
 u ← vertex in Q with min dist[u]
 remove u from Q

 if u = goal:
 break

 for each neighbor v of u:
 alt ← dist[u] + length(u, v)
 if alt < dist[v]:
 dist[v] ← alt
 prev[v] ← u

 return dist[], prev[]

 Just like in the case of BFS, we cannot use the output of the
algorithm straight away, we need an algorithm to reverse-
iterate from the goal to the source node in order to know the
shortest path from the source to the goal node:

function reconstruct_path(target)
 S ← empty sequence
 u ← target

 while prev[u] is defined:
 insert u at the beginning of S
 u ← prev[u]

 insert u at the beginning of S
 return S

C. A* Algorithm

 A* algorithm is another algorithm for finding the shortest
path between nodes in a graph. This algorithm was first
described by Peter Hart, Nils Nilsson and Bertram Raphael of
Stanford Research Institute (now SRI International) in 1968.
 A* is an informed search algorithm, or a best-first search,
which means that it solves the path-finding problem by
searching among all possible paths to the solution (all the
possible solutions in the search space) for the one that has the
smallest cost based on the heuristic used (in the case of path-
finding, the obvious heuristic is distance from the goal), and
among these paths it first considers the ones that appear to lead
most quickly to the solution. It is an improvement over
Dijkstra’s algorithm by using a heuristic to guide it’s search
faster towards the goal.
 At each iteration of its main loop, A* needs to determine
which of its partial paths to expand into one or more longer
paths. It does so based on an estimate of the cost (total weight)
still to go to the goal node. Formally, A* selects the path that
minimizes:

!

where n is the last node on the path, g(n) is the cost of the path
from the start node to n, and h(n) is a heuristic that estimates
the cost of the cheapest path from n to the goal. The heuristic is
problem-specific. For the algorithm to find the actual shortest
path, the heuristic function must be admissible, meaning that it
never overestimates the actual cost to get to the nearest goal
node.
 Typical implementations of A* use a priority queue to
perform the repeated selection of minimum (estimated) cost
nodes to expand. This priority queue is known as the open set
or fringe. At each step of the algorithm, the node with the
lowest f(x) value is removed from the queue, the f and g values
of its neighbors are updated accordingly, and these neighbors
are added to the queue. The algorithm continues until a goal
node has a lower f value than any node in the queue (or until
the queue is empty). The f value of the goal is then the length
of the shortest path, since h at the goal is zero in an admissible
heuristic. The general pseudo-code of the A* Algorithm is:

f (n)= g(n)+h(n)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

function A*(start, goal)
 closedSet := {}
 openSet := {start}
 cameFrom := an empty map

 gScore := map with default value of
 Infinity
 gScore[start] := 0

 fScore := map with default value of
 Infinity
 fScore[start] :=
 heuristic_cost_estimate(start, goal)

 while openSet is not empty
 current := the node in openSet having the
 lowest fScore[] value
 if current = goal
 return reconstruct_path(cameFrom,
 current)

 openSet.Remove(current)
 closedSet.Add(current)

 for each neighbor of current
 if neighbor in closedSet
 continue

 if neighbor not in openSet
 openSet.Add(neighbor)

 tentative_gScore := gScore[current] +
 dist_between(current, neighbor)
 if tentative_gScore >= gScore[neighbor]
 continue

 cameFrom[neighbor] := current
 gScore[neighbor] := tentative_gScore
 fScore[neighbor] := gScore[neighbor] +
 heuristic_cost_estimate(neighbor,
 goal)

return failure

 Much like the previous algorithms, we cannot use the output
of the A* algorithm straight away, we need an algorithm to
reverse-iterate from the goal to the source node in order to
know the shortest path from the source to the goal node:

function reconstruct_path(cameFrom, current)
 total_path := [current]

 while current in cameFrom.Keys:
 current := cameFrom[current]
 total_path.append(current)

 return total_path

IV. PERFORMANCE ANALYSIS

 Among the three algorithms to test, one can safely assume
that in finding the shotest path, A* will be the fastest since it’s
search will be guided by a heuristic and Dijkstra’s and BFS
will both be slower than A* and have more or less the same
execution time because the exhaustive search nature of both of
those algorithms.

Figure 4.1 Visualization of The Search History of Dijkstra’s and A*
Algorithm on a Grid Map with an Obstacle

Source: https://commons.wikimedia.org/wiki/
File:Dijkstras_progress_animation.gif and https://

commons.wikimedia.org/wiki/File:Astar_progress_animation.gif

 To test the performance of those algorithm against each
other, in this paper I propose a test that consist of three
different grid maps differing in configurations. Please notice
that the grid map is a model of the robot’s environment that can
be represented as a graph that was discussed in chapter two of
this paper. Each of the grid maps are of the same size but with
different configuration of obstacles that hopefully can test the
algorithm’s characteristics. Each of the algorithms are tested on
these three grid maps to find the shortest path of each of the
maps so that we can compare the execution time of each of the
algorithms. For the A* algorithm, we will use the manhattan
distance to the goal node as the heuristic for each node. The
start node of the map is colored in green and the goal node is
colored in yellow. Following are the test results:

A. Test map 1 (20 x 20)

Figure 4.2 Visualization of The Test Grid Map 1
Source: author

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

 Test results:
• BFS: 4.10330891609 seconds
• Dijkstra’s: 4.21949696541 seconds
• A*: 2.08329987526 seconds

B. Test map 2 (20 x 20)

Figure 4.3 Visualization of The Test Grid Map 2
Source: author

 Test results:
• BFS: 5.44553685188 seconds
• Dijkstra’s: 5.63682413101 seconds
• A*: 3.04203510284 seconds

C. Test map 3 (20 x 20)

Figure 4.4 Visualization of The Test Grid Map 2
Source: author

 Test results:
• BFS: 5.00317502022 seconds
• Dijkstra’s: 5.385323044764 seconds
• A*: 0.587857961655 seconds

 We can clearly see that A* consistently comes up as the
fastest just as predicted earlier. And we can also see that BFS
and Dijkstra are both much slower than A* and more or less
have the same execution time. If you look at the test map 3,
you can see that it has quite a bit more obstacles (and also
configured in a more complex way) than the other two test set.
This difference is reflected in the test results as the A*
execution time is significantly faster than the other two
algrorithm’s execution time (around 9x). This is probably
because the BFS and Dijkstra’s algorithm was having a harder
time figuring the shortest path since it had to search multiple
sections of the map that are not connected to the goal node
because of the complex and deceptive shape of the map’s
obstacles.

V. CONCLUSIONS

 A mobile robot’s environment as well as obstacles in the
environment can be modelled as a grid that can be represented
computationally as a graph. In order to navigate that
environment, the mobile robot can use a path-finding algorithm
to find the shortest path from the robot’s current position to the
desired new position while also avoid obstacles along it’s way.
Among some of the path-finding algorithms that are tested on
this paper, the A* algorithm is consistently the fastest by a
signifincant margin.

VI. ACKNOWLEDGMENTS

 I would like to thank Dr. Nur Ulfa Maulidevi, S.T., M.Sc, Dr.
Rinaldi Munir, and Dr. Masayu Leylia Khodra S.T., M.T. as the
lecturers of this amazing class and also giving me this chance
to explore the interesting applications of the things that I learnt
during this class which is to design and implement various
algorithms in an efficient manner. I would also like to thank
my families and friends to keep me motivated during this
chaotic times. As someone who loves robotics, I really
appreciate this opportunity to write something that connects
my favourite class in this semester and my passion for robotics.

VII. REFERENCES

[1] Felner, Ariel. Position Paper: Dijkstra's Algorithm
versus Uniform Cost Search or a Case Against Dijkstra's
Algorithm. 2011.

[2] Bondy, Adrian; Murty, U.S.R. (2008). Graduate Texts in
Mathematics 244 - Graph Theory. Springer.

[3] Zeng, W.; Church, R. L. Finding shortest paths on real
road networks: the case for A*. International Journal of
Geographical Information Science. 2009.

[4] Anbuselvi, R. Path Finding Solutions for Grid Based
Search. 2013.

[5] Saranya, C. Real Time Evaluation of Grid Based Path
Planning Algorithms: A comparative study. IEEE. 2013.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Mei 2018

!
Faza Fahleraz 13516095

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

